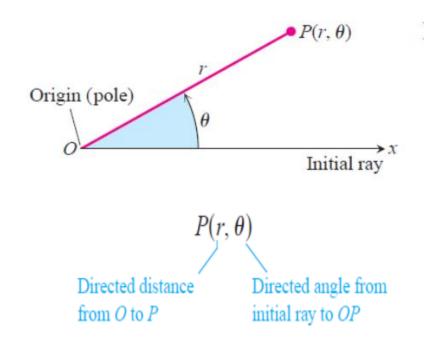
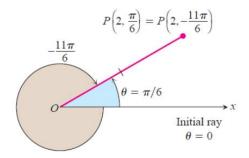
Polar Coordinates

Introduction

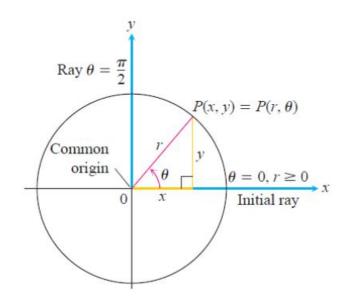
We first fix an origin O (called the pole) and an initial ray from O. Then each point P can be located by assigning to it a polar coordinate pair in which (r, θ) gives the directed distance from O to P and gives the directed angle from the initial ray to ray OP.



 θ is positive when measured counterclockwise. In addition, θ is negative when measured clockwise.



Relating Polar and Cartesian Coordinates



Equations Relating Polar and Cartesian Coordinates

$$x = rcos\theta$$
, $y = rsin\theta$, $x^2 + y^2 = r^2$

(Converting Cartesian to Polar)

Example: Find a polar equation for the circle $x^2 + (y-3)^2 = 9$

Solution:

$$x^{2} + (y-3)^{2} = 9$$

$$x^{2} + y^{2} - 6y + 9 = 9$$

$$r^{2} - 6r\sin\theta = 0$$

$$r(r - 6\sin\theta) = 0$$

$$r = 0 \text{ or } r = 6\sin\theta$$

(Converting Polar to Cartesian)

Example: Replace the following polar equations by equivalent Cartesian equations, and identify their graphs

(a)
$$rcos\theta = -4$$

(b)
$$r^2 = 4r\cos\theta$$

(c)
$$r = \frac{4}{2\cos\theta - \sin\theta}$$

Solution: we use the substitutions $rcos\theta = x$, $rsin\theta = y$, $r^2 = x^2 + y^2$

(a) $rcos\theta = -4$

The Cartesian equation:

$$rcos\theta = -4$$

$$x = -4$$

The graph: Vertical line through x = -4 on the x - axis

(b) $r^2 = 4r \cos \theta$

The Cartesian equation: $r^2 = 4r \cos \theta$

$$x^2 + y^2 = 4x$$

$$x^2 - 4x + v^2 = 0$$

$$x^2 - 4x + 4 + y^2 = 4$$

$$(x-2)^2 + v^2 = 4$$

The graph: Equation of a circle whose center is (2,0) and radius is 2.

(c) $r = \frac{4}{2\cos\theta - \sin\theta}$

The Cartesian equation: $r(2\cos\theta - \sin\theta = 4$

$$2r\cos\theta - r\sin\theta = 4$$

$$2x - y = 4$$

$$y = 2x - 4$$

The graph: Equation of a straight line

2.3 Convert from Cartesian Coordinates to Polar Coordinates via Points

If P is a point with Cartesian Coordinates (x, y) the polar coordinates (r, θ) of P is a given by:

$$r = \sqrt{x^2 + y^2} \qquad \theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Example: Find the polar coordinates of the points with the following Cartesian Coordinates:

$$a) (2,2)$$
 $b) (-1,1)$ $c) (1,-1)$

Solution:

a)
$$(x,y) = (2,2)$$

 $r = \sqrt{x^2 + y^2}$
 $\theta = \tan^{-1}\left(\frac{y}{x}\right)$
 $\theta = \tan^{-1}\left(\frac{2}{2}\right) = \frac{\pi}{4}$
 $\therefore x > 0, y > 0$ \Rightarrow the first quadrant
 $\therefore (r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$

b)
$$(x,y) = (-1,1)$$

 $r = \sqrt{x^2 + y^2}$
 $r = \sqrt{-1^2 + 1^2} = \sqrt{2}$
 $\tan \theta = \frac{y}{x}$
 $\theta = \tan^{-1}\left(\frac{1}{-1}\right) = -\frac{\pi}{4}$
 $\therefore x < 0, y > 0 \implies \text{the second quadrant}$
 $\Rightarrow \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$
 $\therefore (r,\theta) = (\sqrt{2}, \frac{3\pi}{4})$

c)
$$(x, y) = (1, -1)$$
 H.W