
1.1 Statistics: is the science of conducting studies to

- ✓ organize
- ✓ collect
- ✓ summarize
- ✓ present
- \checkmark and analyze data
- ✤ To obtain appropriate conclusions and decisions.

1.2 Branch of statistics

Example 1.1: A researcher asked 80 students about their weight. As a result of this information, the average weight of students was 59 kg. Which branch of statistics was used in this study?

- a) Observational
- b) Experimental
- c) Inferential
- d) Descriptive

Solution: d

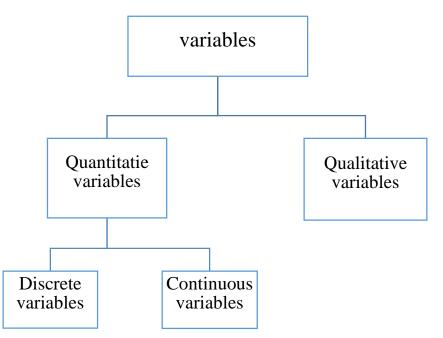
Example 1.2: There is a relationship between IQ and the final score student. The branch of statistics is:

- a) Observational
- b) Experimental
- c) Inferential
- d) Descriptive

Solution: c

<u>H.W 1.1</u>: Determine whether Descriptive or Inferential were used:

a. The average jackpot for the top five lottery winners was 367.6\$ million.


b. A study done by the American Academy of Neurology suggests that older people who had a high caloric diet more than doubled their risk of memory loss.

- c. In 2011, 79% of U.S. adults used the Internet.
- d. In 2011, there were 34 deaths from the avian flu.

1.3 Statistical Terms

1.3.1 Variables: is a characteristic that can assume different values and is symbolized by the symbol y or any other symbol (x or z). For example temperature, weight, height, gender, age, and nationality.

***** Types of variables

- Qualitative variables: are variables that have distinct <u>categories</u>, according to some characteristic or attribute. For example: Gender, Marital status, Color...etc.
- Quantitative variables: are variables that can be <u>counted or measured</u>. For example: Age, Height, Weight,etc
 - Quantitative variables can be either discrete or continuous.
 - A continuous variable: assume an infinite number of values between any two specific values. For example: Height, Wight, Time ...etc.
 - A discrete variable: assume values that can be counted. For example:
 - \checkmark Number of children in a family
 - ✓ Number of student in classroom

H.W 1.2: Classify each variable as a discrete variable or a continuous variable:

- a. The highest wind speed of a hurricane.
- b. The weight of baggage on an airplane.
- c. The number of pages in a statistics book.
- **1.3.2 Data:** is the values that the variables can assume
- **1.3.3 Population:** consists of all subjects (human or otherwise) that are studied.
- **1.3.4 Sample:** I a subset of population (is a group selected from a population).

For example:

In order to study the response times for emergency 988 calls in Jeddah 50 calls are selected randomly over a six month period and the response times are recorded.

Population: all calls 988. Sample: 50 calls

1.4 Statistical Notations

If the variable y represents

 $y = \{20, 14, 33, 5\}$

Then $y_1 = 20$, $y_2 = 14$, $y_3 = 33$, $y_4 = 5$

1. The sum of the values of the variable $\sum_{i=1}^{n} y_i$

Where \sum is an upper case Greek sigma. The subscript i is the index of summation and the 1 and n that appear respectively below and above the symbol \sum designate the range of the summation.

$$\sum_{i=1}^{n} y_i = y_1 + y_2 + y_3 + y_4$$

2.
$$\sum_{i=1}^{n} y_i^2 = y_1^2 + y_2^2 + y_3^2 + y_4^2$$

3.
$$(\sum_{i=1}^{n} y_i)^2 = (y_1 + y_2 + y_3 + y_4)^2$$

4.
$$\sum_{i=1}^{n} x_i * y_i = x_1 * y_1 + x_2 * y_2 + x_3 * y_3 + x_4 * y_4$$

5.
$$(\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i) = (x_1 + x + x_3 + x_4)(y_1 + y_2 + y_3 + y_4)$$

6.
$$\sum c = nc$$

7.
$$\sum_{i=1}^{n} cy_i = c \sum_{i=1}^{n} y_i$$
. Where c= constant number

Example 1.3 If you know that the values of the variables x and y are as follows:

x = (2, 6, 3, 1) y = (3, 9, 6, 2) finda) $\sum_{i=1}^{n} x * y_i^2$ b) $\sum_{i=1}^{n} (y_i - 3)$ c) $\sum_{i=1}^{n} y_i - 3$ Solution:
a) $\sum_{i=1}^{n} x * y_i^2 = x_1 * y_1^2 + x_2 * y_2^2 + x_3 * y_3^2 + x_4 * y_4^2$ $= 2*3^2 + 6*9^2 + 3*6^2 + 1 * 2^2$ = 616b) $\sum_{i=1}^{n} (y_i - 3) = \sum_{i=1}^{n} y_i - \sum 3$

$$= y_1 + y_2 + y_3 + y_4 - 4*3$$
$$= 8$$
c) $\sum_{i=1}^{n} y_i - 3 = y_1 + y_2 + y_3 + y_4 - 3$
$$= 17$$

<u>H.W 1.3</u>: If you know that the values of the variables x and y are as follows:

x= (2, 6, 3, 1) y= (3, 9, 6, 2) find a) $\sum_{i=1}^{n} (x_i * y_i)^2$ b) $\sum_{i=1}^{n} (y_i - 5) (x_i - 3)$ c) $\sum_{i=1}^{n} y_i \{ (\sum_{i=1}^{n} y_i)^2 \} / n$ d) $3 \sum_{i=1}^{n} y_i - \sum_{i=2}^{n} x_i$