
Republic of Iraq Ministry of Higher Education & Scientific Research University of Al-Maarif College of Dentistry

Introduction

Acids and bases are substances with specific physical and chemical properties

We can determine if substances are acidic or basic by testing their pH or by indicators.

Introduction

Living organisms are sensitive to the acidity of aqueous solutions in their internal and external environments.

The pH of human blood must be kept at precisely 7.4.

A sustained increase or decrease of only 0.2 pH units could mean death.

The definition of acid and base has changed over course of time. This is not a problem of orthodoxy of one definition but of the convenience of applying the concept of a particular chemical problem. Therefore, ranking the strength of acids and bases depends on the definition of acid and base used.

Acids and Bases

Some classifications of acids and bases

- 1. Arrhenius acids and bases.
- 2. Bronsted-Lowry acids and bases.
- 3. Lewis acids and base.

Arrhenius's acid and base

In 1884, Arrhenius defined that an acid is a substance that gives H+ and a base one that gives OH-. Namely, if an acid is HA and abase BOH, then

Acids and bases are electrolytes that form aqueous solutions with unique properties.

Svante Arrhenius (1859-1927)

Acids and Bases

Arrhenius's acid and base

Arrhenius, a Swedish chemist, was the first to characterize acids and bases in terms of their chemical properties.

According to Arrhenius, acids are solutes that produce hydrogen ions, H+(aq), in aqueous solutions, while bases produce hydroxide ions, OH-(aq), when dissolved in water.

Arrhenius's acid and base

This model fails to satisfactorily account for the basic properties of compounds that do not contain the hydroxide ion, such as ammonia (NH3(aq)).

NH3 N ... H3

Acids and Bases

Brønsted-Lowry's acid and base

In 1923, Johannes Brønsted of Denmark and Thomas Lowry of England recognized that, in most acid-base interactions, a proton (H+ ion) is transferred from one reactant to another.

Brønsted-Lowry's acid and base

H

Hydrogen chloride acts as a Brønsted-Lowry acid; water acts as a Brønsted-Lowry base. Notice the single arrow in the equation, indicating that hydrogen chloride is a strong acid, ionizing quantitatively (completely) when it reacts with water.

Acids and Bases

Brønsted-Lowry's acid and base

Brønsted-Lowry's acid and base

When ammonia reacts with water, a water molecule acts as a Brønsted-Lowry acid, donating a proton to ammonia, the Brønsted-Lowry base. Notice the double arrow in the equation, indicating that ammonia is a weak base, ionizing incompletely and forming a dynamic equilibrium with the products of the reaction.

Brønsted-Lowry's acid and base

Water can behave as base :

$$HA(acid) + H_2O \text{ (base)} \rightarrow H_3O(\text{conjugate acid)} + A^* \text{ (conjugate base)}$$

$$HCO_{3(aq)} + H_2O_{(0)} \rightleftharpoons CO_{3(aq)}^{2-} + H_3O_{(aq)}^+$$
acid base

Water can behave as acid:

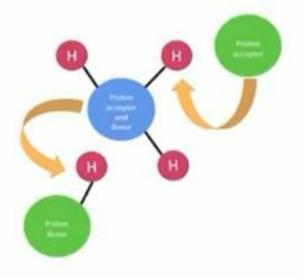
acid

base

$$HCO_{3(aq)} + H_2O_{(0)} \Rightarrow H_2CO_{3(aq)} + OH_{(aq)}$$

 $NH_{3(g)} + H_2O_{(j)} \rightleftharpoons NH_{4(aq)} + OH_{(aq)}$ base acid

a Brønsted-Lowry acid is a proton donor, and


a Brønsted-Lowry base is a proton acceptor.

Brønsted-Lowry's acid and base

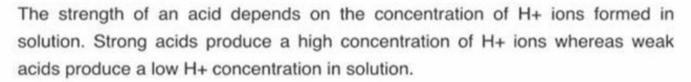
Amphoteric (Amphiprotic):

in the Brønsted-Lowry model, a substance capable of acting as an acid or a base in different chemical reactions; a substance that may donate or accept a proton.

According to the Brønsted-Lowry concept, acidbase reactions involve the transfer of a proton. These reactions are universally reversible and result in an acid-base equilibrium.

Brønsted-Lowry's acid and base

- A conjugate acid—base pair consists of two substances that differ only by a proton—the acid has one more proton than its conjugate base.
- A strong acid has a very weak attraction for protons.


Acids and Bases

Properties of acids

- pH values lower than the neutral value of 7.
- Sharp sour Taste.
- React with certain metals to liberate hydrogen gas.
- Soluble in water release H+ ions in solution.

- Strong acids can damage the skin and be dangerous.
- Are often corrosive.
- Are neutralized bases,
- They react with carbonates and bicarbonates to give off carbon dioxide gas.

Properties of acids

one H in a molecule that can form hydrogen ions is called a monoprotic acid, e.g. H+ Cl- A diprotic acid will give two H+, e.g. H2SO4. An example of a triprotic acid is phosphoric acid, H3PO4.

Properties of acids

Which one of them is stronger?

*Strong acids ionize completely when in solution, e.g. sulphuric acid.

$$H_2SO_4(1)$$
 + water --> 2 $H^+(aq)$ + $SO_4^{2-}(aq)$

*Weak acids do not ionize completely when in solution, e.g. ethanoic acid

Dissociation depends on

- Temperature. (Temp.)
- Concentration. (conc.)
- Nature of solution. (solut.)

Acids and Bases

Lewis acids and bases

A Lewis acid is defined to be any species that accepts lone pair electrons.

A Lewis base is any species that donates lone pair electrons.

concept	Acid	Base	Product
Arrhenius	+give H	gives OH	O2salt + H
Bronsted-Lowry	+donate H	+accepts H	conjugate acid base
Lewis	electron pair acceptor	electron pair donor	pair adduct

Naturally Occurring Acids			
	Acid	Source	
İ	Citric acid	Citrus fruits i.e., lemon, oranges	
ii	Lactic acid	sour milk	
iii	Formic acid	Stings of bees and ants	
iv	Butyric acid	Rancid butter	
٧	Tartaric acid	Tamarind, grapes, apples	
Vİ	Malic acid	Apples	
Vİİ	Uric acid	Urine	
VIII	Stearic acid	Fats	

Some common reactions to all acids

Dilute acids react with reactive metals to release hydrogen gas and form a salt.

$$Mg(s) + 2HCl(aq) --> MgCl_2(aq) + H_2(g)$$

A Lewis base is any species that donates lone pair electrons.

$$PbCO_3(s) + 2HNO_3(aq) \rightarrow Pb(NO_3)_2(aq) + CO_2(g) + H_2O(l)$$

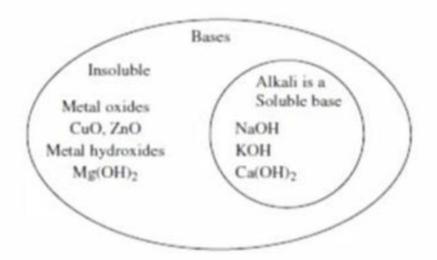
 $NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$

Some common reactions to all acids

Dilute acids react with metal oxides to form a salt and water.

$$CuO(s) + H2SO4(aq) --> CuSO4(aq) + H2O(l)$$

Dilute acids react with alkalis to form a salt and water. This is called a neutralization reaction.


$$NaOH(aq) + HCI(aq) --> NaCI(aq) + H2O(I)$$

Bases & Alkali

A base is a substance that reacts with an acid to produce a salt and water only.

An alkali is a solution of a base in water.

Just as there are weak and strong acids, there are weak and strong alkalis. The strength of an alkali depends on the amount of OH- ions in solution. The more an alkali ionizes the stronger it is.

Bases & Alkali

Properties of bases

- The pH of the solution lies between 8 and 14.
- 2. Soluble bases are called alkalis, e.g. sodium hydroxide, NaOH, potassium hydroxide, KOH, and ammonium hydroxide, NH4OH.
- 3. Bases are oxides or hydroxides of metallic elements.
- 4. Bases and alkalis will react with acids to neutralize them, forming salts plus water:

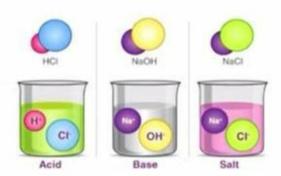
$$Acid + base \rightarrow salt + water$$

 $Acid + alkali \rightarrow salt + water$

- 5. All alkalis contain a hydroxide ion, OH-, that will react with and 'pick up' a H+ ion to form a water molecule.
- 6. Bitter taste.
- Soapy feeling when in a solution.
- Restore blue color to litmus that was turned red by an acid.

Bases & Alkali

Bases Containing Nitrogen


These are best called 'nitrogenous bases', which is a term often used in relation to amines, amino acids and proteins.

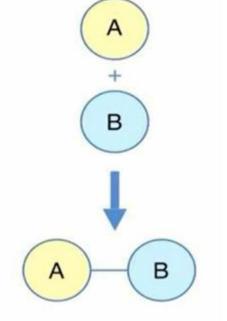
Bases referred to in medicine and biology usually contain nitrogen atoms that have the ability to pick up a proton and become a positive ion:

$$NH_3 + H^+ \rightarrow NH_4^+$$

Ammonia
 $HOOCCH_2NH_2 + H^+ \rightarrow HOOCCH_2NH_3^+$

Salts

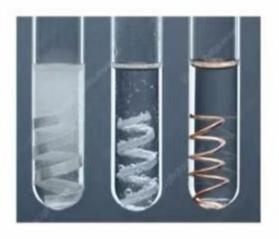
A salt is any ionic compound composed of positively charged cations and negatively charged anions, so that the product is neutral and without a net charge. These ions can be inorganic (CI-) as well as organic (CH3COO-) and monoatomic (F-) as well as polyatomic ions (SO42-). Salts are formed (as well as water) when acids and bases react.



Salts

Salts can be prepared by

1. Synthesis (or direct combination of elements) e.g.:


$$Zn(s) + S(s) --> ZnS(s)$$

2 Fe(s) + 3Cl₂(g) --> 2FeCl₃(s)

Salts

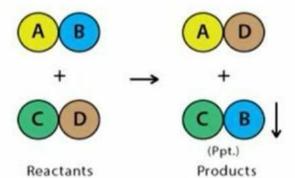
Salts can be prepared by

- 2. The action of an acid on:
- (i) a metal.
- (ii) an insoluble metal oxide, hydroxide, or carbonate.
- (iii) an alkali or soluble carbonate.

(i)
$$Mg(s) + H_2SO_4(aq) --> MgSO_4(aq) + H_2(g)$$

(ii)
$$CuO(s) + H_2SO_4(aq) --> CuSO_4(aq) + H_2O(g)$$

$$Mg(OH)_2(s) + H_2SO_4(aq) --> MgSO_4(aq) + 2 H_2O(l)$$


(iii) 2 NaOH_(aq) +
$$H_2SO_{4(aq)}$$
 Na₂SO_{4(aq)} + 2 $H_2O_{(1)}$

Salts

Salts can be prepared by

3. Precipitation

$$PbNO_3(aq) + H_2SO_4(aq) \longrightarrow PbSO_4(s) + HNO_3(aq)$$

