Torsion

Torsional Deformation

of a Circular Shaft

Torque is a moment that tends to twist a member about its longitudinal
axis. Its effect is of primary concern in the design of drive shafts used in
vehicles and machinery. We can illustrate physically what happens when a
torque is applied to a circular shaft by considering the shaft to be made of
a highly deformable material such as rubber, Fig. 5-1a. When the torque is
applied, the circles and longitudinal grid lines originally marked on the
shaft tend to distort into the pattern shown in Fig. 5-1b. Note that twisting
causes the circles to remain circles, and each longitudinal grid line deforms
into a helix that intersects the circles at equal angles. Also, the cross sections
at the ends of the shaft will remain flar — that is, they do not warp or bulge
in or out — and radial lines remain straight during the deformation,
Fig. 5-1b. From these observations we can assume that if the angle of twist
is small, the length of the shaft and its radius will remain unchanged.

The Torsion Formula

When an external torque is applied to a shaft, it creates a corresponding
internal torque within the shaft. In this section, we will develop an
cquation that relates this internal torque to the shear stress distribution
on the cross section of a circular shaft or tube.

[f the material 1s lincar-clastic, then Hooke's law applics, 7 = Gy, and
conscquently a linear variation in shear strain, as noted in the previous
section, leads to a corresponding linear variation in shear stress along
any radial line on the cross section. Hence, 7 will vary from zero at the
shaft’s longitudinal axis to a maximum value, 7,,,,. at its outer surface.
This variation 1s shown in Fig. 5-5 on the front faces of a selected number
of elements, located at an intermediate radial position p and at the outer
radius ¢. Duc to the proportionality of triangles, we can write



T = (g)f (5-3)

This cquation expresses the shear-stress distribution over the cross section
in terms of the radial position p of the element. Using it, we can now apply
the condition that requires the torque produced by the stress distribution
over the entire cross section to be equivalent to the resultant internal
torque 7" at the section, which holds the shaft in equilibrium, Fig. 5-5.

Shear stress varies hinearly along
each radial line of the cross section.
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Spccifically, cach clement of arca dA, located at p. is subjected to a
force of dF = 7 dA.The torque produced by this force is dT = p(7 dA).
We therefore have for the entire cross section

. . :
1 = /p(a" dA) = /p(!—_)rm‘.,\ dA (5-4)
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Since 7,,,./¢ 1S constant,
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The integral depends only on the gecometry of the shaft. It represents
the polar moment of inertia of the shaft’s cross-sectional arca about the
shaft’s longitudinal axis. We will symbolize its value as /, and therefore
the above cquation can be rearranged and written in a more compact
form. namely.
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Here
T = the maximum shear stress in the shaft, which occurs at the
outer surface
T = the resultant internal torque acting at the cross section. Its value is
determined from the method of sections and the equation of
moment equilibrium applied about the shaft’s longitudinal axis

J = the polar moment of inertia of the cross-sectional area

¢ = the outer radius of the shaft



Combining Egs. 5-3 and 5-6. the shear stress at the intermediate
distance p can be determined from

Either of the above two equations is often referred to as the rorsion
Jormula. Recall thatitis used only if the shaftis circular and the matenal
is homogencous and behaves in a lincar clastic manner, since the
derivation i1s based on Hooke’'s law.

Solid Shaft. 1If the shaft has a solid circular cross scction, the polar
moment of inertia J can be determined using an arca element in the form
of a differential ring or annulus having a thickness dp and circumference
27p, Fig. 5-6. For thisring, dA = 2@ p dp. and so
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Fig. 5-6




Note that J is a geometric property of the circular arca and is always
positive. Common units used for its measurement are mm®* or in™.

The shear stress has been shown to vary lincarly along cach radial line
of the cross section of the shaft. However, if an element of material on
the cross section is 1solated, then due to the complementary property of
shear, equal shear stresses must also act on four of its adjacent faces as
shown in Fig. 5-7a. Hence, not only does the internal torque T develop a
linear distribution of shear stress along each radial line in the plane of
the cross-sectional area, bur also an associated shear-stress distribution
is developed along an axial plane, Fig. 5-7b. It is interesting to note that
because of this axial distribution of shear stress, shaftts made from wood
tend to split along the axial plane when subjected to excessive torque,
Fig. 5-8. This i1s because wood 1s an anisotropic material. Its shear
resistance parallel to its grains or fibers, directed along the axis of the
shaft, is much less than its resistance perpendicular to the fibers, directed
in the plane of the cross section.

Shear stress varies linearly along
each radial line of the cross section.
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Fig. 5-7

Failure of a wooden shaft due to torsion.

Fig. 5-8




Tubular Shaft. If a shaft has a tubular cross section, with inner
radius ¢; and outer radius ¢,. then from Eq. 5-8 we can determine its
polar moment of inertia by subtracting / for a shaft of radius ¢; from that
determined for a shaft of radius ¢,. The result is

(5= ) (5-9)
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L.ike the sohd shaft, the shear stress distributed over the tube’s cross-sectional
area varies linearly along any radial line, Fig. 5-9a. Furthermore, the shear
stress varies along an axial plane in this same manner, Fig. 5-9b.

Absolute Maximum Torsional Stress.  If the absolute maximum
torsional stress 1s to be determined, then it becomes important to find the
location where the ratio 7¢/J is a maximum. In this regard, it may be
helpful to show the variation of the internal torque 7 at each section along
the axis of the shaft by drawing a rorque diagram, which is a plot of the
internal torque 7 versus its position x along the shaft’s length. Once the
internal torque throughout the shaft is determined. the maximum ratio of
Tc/J can then be identified.

Shear stress varies linearly along
each radial line of the cross section.
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Fig. 5-9




Example

The solid shaft of radius ¢ is subjected to a torque T, Fig. 5-10a.
Determine the fraction of T that is resisted by the matcerial contained
within the outer core of the shaft, which has an inner radius of ¢/2
and outer radius c.

SOLUTION

The stress in the shaft varies linearly, such that 7 = (p/c)m . EQ. 5-3.
Therefore, the torque d7' on the ring (area) located within the outer
core, Fig. 5-10b, is

dr’ = p{T dA) = P(P/f-')"'.mm(zﬂ'pdp)

For the entire outer core area the torque is
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This torque 7' can be expressed in terms of the applied torque 7T
by first using the torsion formula to determine the maximum stress in
the shaft. We have

Tc K+
7' — —l
nax J (7;_/2)(_4
or
2T
Tmax — — 3
we

Substituting this into Eq. 1 yields

T' = % T Ans.




Example

The shaft shown in Fig. 5-11a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at
points A and B, located at section a—a of the shaft, Fig. 5-11c.

42.5 kip-in.

30 kip-in.

42.5 kip-in.

0.75 in.- 0.15in.
X (c)
(b) Fig. 5-11

SOLUTION

Internal Torque. Since the bearing reactions do not offer
resistance to shaft rotation, the applied torques satisfy moment
equilibrium about the shaft’s axis.



The internal torque at section a—a will be determined from the
free-body diagram of the left segment, Fig. 5-11H. We have

M, = 0. 425 kip-in. — 30kip-in. — 7T = 0 7 = 125 kip-in.

Section Property. ‘The polar moment of inertia for the shaftis

J="(075in.)* = 0.497 in*

Shear Stress. Since point Aisatp = ¢ = 0.75 in..

Tc¢ 12.5kip-1in.) (0.75 in.
S £ L p-in.) (€ ) 189 ksi Ans.
J (0.497 in.”)

Likewise for point B, at p = 0.15 in., we have

1T 12.5kip-in.) (0.15 in.
P = ( P )(4 ) = 3.77 ksi Ans.
J (0.497 in.”")
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NOTE: The directions of these stresses on cach element at A and B,
Fig. 5—11c¢. arc cstablished from the dircection of the resultant internal
torque T,shown in Fig. 5-115. Note carcfully how the shear stress acts
on the planes of each of these elements.



