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1- Poisson’s Ratio 

When a deformable body is subjected to an axial tensile force, not only does it elongate but 

it also contracts laterally.  

Consider a bar having an original radius r and length L and subjected to the tensile force P in 

Figure.  

 

 
 

 

 
 

(a) The bar subjected to longitudinal elongation (positive strain). 
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(b) The bar subjected to the lateral contraction (negative strain). 

 

This force elongates the bar by an amount δ, and its radius contracts by an amount δ’.  

 

Strains in the longitudinal or axial direction is, 

 
And the lateral or radial direction is, 

 
 

In the early 1800s, the French scientist S. D. Poisson realized that within the elastic range the 

ratio of these strains is a constant, since the deformations δ and δ’ are proportional. This 

constant is referred to as Poisson’s ratio, 𝜗 (nu), and it has a numerical value that is unique for 

a particular material that is both homogeneous and isotropic. Stated mathematically it is, 
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The negative sign is included here since longitudinal elongation (positive strain) causes lateral 

contraction (negative strain), and vice versa. 

Poisson’s ratio is a dimensionless quantity, and for most nonporous solids it has a value that is 

generally between ¼ and 1/3. 

For an “ideal material” having no lateral deformation when it is stretched or compressed, 

Poisson’s ratio will be 0. The maximum possible value for Poisson’s ratio is 0.5. 

Therefore 0 <= 𝝑 <= 0.5. 

 

Example: 

A bar made of A-36 steel has the dimensions shown in Fig. If an axial force of P = 80 KN is 

applied to the bar, determine the change in its length and the change in the dimensions of its 

cross section after applying the load. The material behaves elastically. Where ν st = 0.32, Est = 

200 GPa. 

 
SOLUTION 
 
The normal stress in the bar is 

 
 

From the table for A-36 steel E st = 200 GPa, and so the strain in the z direction is, 

 
The axial elongation of the bar is therefore, 

 



 
 

4 
 

 
 

Using Eq. 1, where 𝜗 st = 0.32 as found from the table, the lateral contraction strains in both the 

x and y directions are, 

 

 
 

Thus the changes in the dimensions of the cross section are, 

 

 
And, 

 
 

 

2- The Shear Stress–Strain Diagram 

 

When a small element of material is subjected to pure shear, equilibrium requires that equal 

shear stresses must be developed on four faces of the element. These stresses τxy must be 

directed toward or away from diagonally opposite corners of the element, as shown in Fig. a. 

Furthermore, if the material is homogeneous and isotropic, then this shear stress will distort the 

element uniformly, Fig. b. 
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An example of such a diagram for a ductile material is shown in Fig. 3. Like the tension test, 

this material when subjected to shear will exhibit linear-elastic behavior and it will have a 

defined proportional limit τpl. Also, strain hardening will occur until an ultimate shear stress τu 

is reached. And finally, the material will begin to lose its shear strength until it reaches a point 

where it fractures, τf. 

 
Fig. (3) 

For most engineering materials, like the one just described, the elastic behavior is linear, and so 

Hooke’s law for shear can be written as, 

 
Here G is called the shear modulus of elasticity or the modulus of rigidity. Its value represents 

the slope of the line on the 𝜏 − 𝛾 diagram, that is, G = τ pl /𝛾pl. 

 

Notice that the units of measurement for G will be the same as those for τ (Pa or psi), since g is 

measured in radians, a dimensionless quantity. 

It will be given that the three material constants, E, ν, and G are actually related by the 

equation, 

 

Provided E and G are known, the value of ν can then be determined from this equation rather 

than through experimental measurement. For example, in the case of A-36 steel, 

  
So that, ν st = 0.32.  
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3-Failure of Materials Due to Creep and Fatigue 

 
The mechanical properties of a material have up to this point been discussed only for a 

static or slowly applied load at constant temperature. In some cases, however, a member may 

have to be used in an environment for which loadings must be sustained over long periods of 

time at elevated temperatures, or in other cases, the loading may be repeated or cycled. We will 

not consider these effects in this book, although we will briefly mention how one determines a 

material’s strength for these conditions, since they are given special treatment in design. 

 

Creep:  
 

When a material has to support a load for a very long period of time, it may continue to 

deform until a sudden fracture occurs or its usefulness is impaired. This time-dependent 

permanent deformation is known as creep. In the general sense, therefore, both stress and/or 

temperature play a significant role in the rate of creep. 

For practical purposes, when creep becomes important, a member is usually designed to resist a 

specified creep strain for a given period of time. An important mechanical property that is used 

in this regard is called the creep strength. 

An example of the results for stainless steel at a temperature of 1200°F and prescribed creep 

strain of 1% is shown in Fig. below. As noted, this material has a yield strength of 40 ksi (276 

MPa) at room temperature (0.2% offset) and the creep strength at 1000 h is found to be 

approximately σc = 20 ksi (138 MPa). 
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Fatigue: 
 

When a metal is subjected to repeat cycles of stress or strain, it causes its structure to 

break down, ultimately leading to fracture. This behavior is called fatigue, In order to specify a 

safe strength for a metallic material under repeated loading, it is necessary to determine a limit 

below which no evidence of failure can be detected after applying a load for a specified number 

of cycles. This limiting stress is called the endurance or fatigue limit. Using a testing machine 

for this purpose, a series of specimens are each subjected to a specified stress and cycled to 

failure. The results are plotted as a graph representing the stress S (or σ ) on the vertical axis 

and the number of cycles-to-failure N on the horizontal axis. This graph is called an S–N 

diagram or stress–cycle diagram, 
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