

THE CIRCULATORY SYSTEM: ANATOMY OF THE CARDIOVASCULAR SYSTEM

HUMANANATOMY

College of Pharmacy

Dr. Abeer Abdullah

LEARNING OBJECTIVES

- Describe the location of the heart in the body.
- Identify the walls of the heart.
- Identify the external and internal features of the heart.
- Compare pulmonary vs. systemic circulation.
- Identify the body's major arteries and veins, and name the body region supplied by each.

THE CIRCULATORY SYSTEM OVERVIEW

- The circulatory system is divided into two main components:
- **1.** Cardiovascular System.
- 2. Lymphatic System.

COMPONENTS OF THE CARDIOVASCULAR SYSTEM

- Heart: A muscular pump with four chambers that circulates blood to body tissue capillaries (that drives blood flow).
- Blood Vessels: Network of arteries, veins, and capillaries.
- 1. Arteries (carry blood Away from the heart).
- 2. Veins (return blood to the heart).
- 3. Capillaries (sites of gas/nutrient exchange).
- Blood: The fluid medium that transports oxygen, nutrients, hormones, and waste products throughout the body.

COMPONENTS OF THE CARDIOVASCULAR SYSTEM

- Blood Vessels: Form an extensive network through which blood flows.
- Divided into two circuits:
 - Pulmonary circuit: Carries blood to and from the lungs.
 - Systemic circuit: Delivers blood to and from all body tissues.

Lymphatic System

COMPONENTS OF THE LYMPHATIC SYSTEM

- Lymphatic Vessels: Drain interstitial fluid and return it to circulation.
- Lymphoid Tissues: Includes:
 - Spleen (filters blood, immune response).
 - **Thymus** (T-cell maturation).
 - **Tonsils** (oral/pharyngeal immunity).
 - Lymph Nodes (filter lymph, activate immune cells).

SIZEAND SHAPE OF THE HEART

- Size: Approximately the size of your FIST (250-300g).
- Shape: Cone-shaped; base (superior) to apex (inferior).
- Narrow at the tip (Apex)
- Flat at the top (Base).

LOCATION OF THE HEART

- Position: Thoracic cavity (mediastinum), between lungs, rests on diaphragm.
- Located directly posterior to the sternum, anterior to the vertebral column in between the 2nd and 6th ribs (costal bones), and it rests on the diaphragm.

HEART FUNCTIONS

Dual-Pump System:

- Separates oxygenated/deoxygenated blood.
- Unidirectional flow (valves prevent backflow).
- Generates blood pressure, which moves the blood through the circuits.
- Adjusts output (i.e., blood supply) to body demands.

P Clinical Correlation:

- 1. High cardiac output (sepsis) \rightarrow Rapid drug distribution.
- 2. Low output (heart failure) \rightarrow Delayed absorption (e.g., lidocaine).
- 3. Fluid retention in heart failure \rightarrow RAAS activation \rightarrow Diuretics/ACE inhibitors.

OVERVIEW OF THE HEART

- A large muscular organ surrounded by a protective sac (pericardium).
- Consists of:
 - Mostly cardiac muscle tissue (myocardium).
 - Four **chambers:**2 atria and 2 ventricles.
 - Two sets of valves: semilunar and atrioventricular valves.

THE PERICARDIUM

- The membrane that surrounds and protects the heart; fused with base of great vessels.
- Key Functions:
- **1. Protection:** Shields the heart from infections and mechanical trauma.
- 2. Anchoring: Fixes the heart in mediastinum via ligamentous attachments.
- **3. Prevents overfilling** of the heart with blood.
- 4. Friction reduction: Pericardial fluid; near-frictionless environment for the beating heart.

PERICARDIUM

Protective Layers

- **Pericardial Cavity**: Space between parietal & visceral layers.
- **Pericardial fluid** prevents friction during beats.
- \mathbf{P} Clinical Correlation: Pericarditis = Inflammation \rightarrow Painful rubbing.

THE WALLS OF THE HEART

- Heart wall layers (from outer to inner):
- 1. Epicardium (visceral pericardium).
- 2. Myocardium (thick cardiac muscle).
- **3.** Endocardium (smooth endothelial lining).
 - Clinical Correlation: Myocardium thickness determines drug penetration.

CHAMBERS OF THE HEART

Feature	Atria (Superior Chambers)	Ventricles (Inferior Chambers)
Number	2 (Right & Left)	2 (Right & Left)
Wall Thickness	Thin	-Thick (LV > RV) - The thickness of a chamber's myocardium is suited to it function
Structure	-Interatrial septum -Auricles (wrinkled pouches)	-Interventricular septum -Trabeculae carneae (muscular ridges)
Primary Function	Receive blood: - RA: Body (via SVC/IVC) - LA: Lungs (via pulmonary veins)	Pump blood: - RV: Lungs (low pressure; nearby) - LV: Systemic circulation (high pressure)

VALVES OF THE HEART

Right Atrium \rightarrow **Tri**cuspid valve (3 cusps).

VALVES OF THE HEART

VALVES OF THE HEART

- Atria:
- **1.** Tricuspid valve (3 cusps): $RA \rightarrow RV$.
- 2. Bicuspid or Mitral valve (2 cusps): $LA \rightarrow LV$.
- Ventricles:

Ventricle	Pumps To	Valve
Right	Lungs	Pulmonary semilunar
Left	Systemic circulation	Aortic semilunar

GROSS ANATOMY OF THE HEART: INTERIOR VIEW

EXTERNAL FEATURES OF THE HEART: ANTERIOR VIEW

EXTERNAL FEATURES OF THE HEART: POSTERIOR VIEW

RIGHT ATRIUM

- Location: Forms right border of heart.
- Blood supply:
 - Superior vena cava (deoxygenated blood from upper body).
 - Inferior vena cava (deoxygenated blood from lower body).
 - Coronary sinus (deoxygenated blood from heart muscle).

• Structure:

- Thin-walled.
- Contains *pectinate muscles*.
- Has right *auricle* (pouch).
- Valve: Tricuspid valve.
- Function: Receives and temporarily stores deoxygenated blood.

RIGHT VENTRICLE

- **Shape:** Crescent-shaped in cross-section.
- Location: Anterior to LV.
- Structure:
 - Moderately thick walls.
 - Trabeculae carneae (muscular ridges).
 - Papillary muscles with *chordae tendineae*.
- Valve: Pulmonary semilunar valve.
- Function: Pumps deoxygenated blood to lungs (low-pressure system).
- The pulmonary trunk divides into the left and right pulmonary arteries.

LEFT ATRIUM

- Location: Posterior base of heart.
- Blood supply: 4 pulmonary veins (oxygenated blood from lungs).
- Structure:
 - Smooth-walled (no pectinate muscles).
 - Has left auricle.
- Valve: Bicuspid (mitral) valve.
- Function: Receives oxygenated blood from lungs.

LEFT VENTRICLE

• **Shape:** Oval/conical shape.

• Structure:

- Thickest walls.
- Robust trabeculae carneae.
- Strong papillary muscles.
- Valve: Aortic semilunar valve.
- Special features:
 - Forms cardiac apex.
 - Gives rise to coronary arteries (blood vessels that lie on and nourish the heart itself).
- Function: Pumps oxygenated blood to body (high-pressure system).

SUMMARY OF MAJOR VESSELS OF THE HEART

- The aorta continues as ascending aorta then the arch of the aorta and then the descending aorta.
- Vessels returning blood to the heart include:
 - Superior and inferior venae cavae.
 - Right and left pulmonary veins.
- Vessels conveying blood away from the heart include:
 - Pulmonary trunk, which splits into right and left pulmonary arteries.
 - Ascending aorta (three branches):
 - Brachiocephalic.
 - Left common carotid.
 - Left subclavian arteries.

SUMMARY OF BLOOD FLOW PATHWAY

- Blood flow pathway
- 1. Deoxygenated \rightarrow RA \rightarrow Tricuspid \rightarrow RV \rightarrow Pulmonary valve \rightarrow Lungs
- 2. Oxygenated \rightarrow LA \rightarrow Mitral \rightarrow LV \rightarrow Aortic valve \rightarrow Body
- Coronary circulation (heart supply)
- Left Coronary Artery: Supplies LV (critical for systemic perfusion).
- Right Coronary Artery: Supplies RA/RV/SA node.

ANATOMY OF BLOOD VESSELS

- Three main types:
- **1. Arteries:** Carry blood away from heart (oxygenated except pulmonary arteries).
- 2. Veins: Return blood to heart (deoxygenated except pulmonary veins).
- **3. Capillaries:** Microscopic vessels for gas/nutrient exchange.
- Key Functions:
 - Transport blood and its components.
 - Gas exchange:
 - Pulmonary capillaries: CO₂/O₂ exchange.
 - Systemic capillaries: O₂/nutrient delivery and waste removal.
 - Blood pressure regulation.
 - Selective blood flow distribution.

ANATOMY OF BLOOD VESSELS

Clinical Correlation:Hypertension &Arterioles:

- Vasoconstrictors (e.g., angiotensin II)
- Vasodilators (e.g., calcium channel blockers).

Anatomy of Blood Vessels:

- Arteries: Thick muscular walls to withstand high pressure.
- **Capillaries:** Single endothelial cell layer for efficient diffusion.
- Veins: Thin walls with valves to prevent backflow.

CIRCULATORY PATHWAYS

Pulmonary vs Systemic circulations:

- Pulmonary circulation short loop that runs from the right heart to the lungs and back to the left heart.
- Systemic circulation routes blood through a long loop to all parts of the body and returns to the heart.

PULMONARY CIRCULATION

Blood Pathway :

- 1. Deoxygenated blood \rightarrow Right atrium \rightarrow Right ventricle
- Pulmonary trunk → Pulmonary arteries → Lung arterioles
- 3. Pulmonary capillaries (gas exchange)
- 4. Pulmonary venules →
 Pulmonary veins → Left atrium

SYSTEMIC CIRCULATION

Blood Pathway:

- 1. Oxygenated blood \rightarrow Left atrium \rightarrow Left ventricle \rightarrow Aorta
- 2. Systemic arteries \rightarrow Arterioles \rightarrow Capillaries (tissue exchange)
- 3. Venules \rightarrow Veins \rightarrow Superior/Inferior vena cava \rightarrow Right atrium

CIRCULATION: ARTERIES SYSTEMIC

Internal carotid artery External carotid artery Vertebral artery -Brachiocephalic trunk Common carotid arteries Ascending aorta Subclavian artery Axillary artery Aortic arch Abdominal aorta Coronary artery Brachial artery Thoracic aorta Superior Branches of celiac trunk: mesenteric artery Left gastric artery Splenic artery **Gonadal artery** Common hepatic artery Inferior Renal artery mesenteric artery **Radial artery** Common -Ulnar artery iliac artery Internal iliac artery External-Deep palmar arch iliac artery Superficial palmar arch Digital arteries Femoral artery Popliteal artery Anterior tibial artery Posterior tibial artery Arcuate artery (b)

ARTERIES OF THE HEAD, NECK AND THORAX

ARTERIES OF THE UPPER LIMB

ARTERIES OF THE ABDOMEN AND PELVIS

ARTERIES OF THE LOWER LIMB

MAJOR SYSTEMIC ARTERIES: AORTA STRUCTURE

1. Ascending aorta

• Branches: Left & right coronary arteries (heart supply)

2. Aortic arch

- Branches:
 - 1. Brachiocephalic artery \rightarrow
 - Right common carotid (head)
 - Right subclavian (right arm)
 - 2. Left common carotid (head)
 - 3. Left subclavian (left arm)

3. Descending aorta

- Thoracic aorta (supplies chest organs)
- Abdominal aorta (supplies abdominal organs)
 - Terminates as:
 - Left & right common iliac arteries \rightarrow
 - Internal iliac (pelvic organs)
 - External iliac (legs)

SYSTEMIC CIRCULATION: VEINS

VEINS OF THE HEAD, NECK AND THORAX

VEINS OF THE UPPER LIMB

VEINS OF THE ABDOMEN AND PELVIS

VEINS OF THE LOWER LIMB

HEPATIC PORTAL CIRCULATION

- P Clinical Correlation: Which vein is critical for first-pass metabolism?
- Sublingual drugs bypass hepatic metabolism (nitroglycerin for angina).

MAJOR SYSTEMIC VEINS

Upper Body Drainage:

- External & internal jugular veins (head/neck) →
 - Subclavian veins \rightarrow
 - Brachiocephalic veins \rightarrow
 - Superior vena cava →
 Right atrium

Lower Body Drainage:

- Hepatic portal system:
 - Abdominal viscera → Hepatic portal vein → Liver
 - Liver → Hepatic veins → Inferior vena cava
- Pelvis/legs:
 - Internal iliac veins (pelvic organs)
 - External iliac veins (legs) \rightarrow
 - Common iliac veins \rightarrow
 - Inferior vena cava →
 Right atrium

BLOOD VESSELS & PHARMACOLOGY

Clinical Correlation:

Aorta Branches:

- •Coronary arteries \rightarrow nitroglycerin for angina.
- •Carotid arteries \rightarrow anticoagulants for stroke prevention.

Hepatic Portal Vein:

•First-pass metabolism \rightarrow sublingual nitroglycerin bypasses liver.

HOME ACTIVITY

Foetal (Fetal) Circulation | Embryology

- <u>https://www.youtube.com/watch?v=m3p5PsB6aZ4&</u> <u>ab_channel=ByteSizeMed</u>
- <u>https://www.youtube.com/watch?v=iciwEwNXEWI&</u> <u>ab_channel=AJmonics</u>

THANKYOU

Key Take Home Message: Anatomy dictates function; function dictates pharmacology.