

ANATOMY OF THE NERVOUS SYSTEM

HUMAN ANATOMY College of Pharmacy Dr. Abeer Abdullah

LEARNING OUTCOME

By the end of this lecture, students will be able to:

- Describe the structural and functional divisions of the nervous system (CNS vs. PNS)
- Identify the major components of the brain (cerebrum, cerebellum, brainstem) and spinal cord
- Explain the production and functions of cerebrospinal fluid (CSF)
- Classify the 31 pairs of spinal nerves
- Differentiate between the somatic and autonomic nervous systems, focusing on the sympathetic ("fight or flight") and parasympathetic ("rest and digest") divisions
- Describe a reflex arc and its components

Central Nervous System

Peripheral Nervous System

NERVOUS SYSTEM

- The nervous system serves as the body's main communication and regulatory (control) network, coordinating functions and responses
- Major Divisions:
 - 1. Central Nervous System (CNS)
 - Brain
 - Spinal Cord
 - 2. Peripheral Nervous System (PNS)
 - Peripheral Nerves

Clinical Relevance: Understanding drug targets (e.g., neuropharmacology).

CENTRAL NERVOUS SYSTEM

The brain is the central nervous system (CNS) organ housed within the cranial cavity. It is continuous with the spinal cord via the foramen magnum

Major Divisions:

- Cerebrum Composed of two cerebral hemispheres (left & right)
- Cerebellum
- Brainstem (Connects brain to spinal cord)
 - 1. Midbrain
 - 2. Pons
 - 3. Medulla Oblongata (Directly continuous with the spinal cord)

FORAMEN MAGNUM

CEREBRUM

- Largest brain structure, making up most of the brain's mass. Located in the superior part of the brain
- Composed of two hemispheres (left & right), separated by the longitudinal cerebral fissure
- Each hemisphere controls the opposite side of the body (contralateral function)
- The two halves of the brain communicate through the corpus callosum (a thick bundle of white matter nerve fibers)

Function:

 Responsible for higher cognitive functions (Reasoning, memory, sensory processing, voluntary movement)

What Are Gray Matter and White Matter

of the brain?

White Matter

Mostly heavily myelinated axons

Connects brain regions to help with learning, attention, and motor control

Peaks in middle age

healthline

Gray Matter

Mostly neuronal cell bodies

Processes and transmits information; controls movement, memory, and emotion

Fully develops in your 20s

(a) Superior view

CEREBROSPINAL FLUID (CSF)

- A clear, colorless bodily fluid that forms a protective liquid barrier within the CNS
- Production Site: Choroid plexus (ventricles of the brain)
- Total Volume: ~150 mL in adults
- Composition: Plasma-like (but with selective permeability)
 Key Functions:
- Protective Cushioning : Absorbs impact, preventing brain damage from sudden movements
- Pressure Regulation : Maintains stable intracranial pressure
- Metabolic Support : Facilitates limited nutrient/waste exchange with neurons

SPINAL CORD

- Cylinder of nervous tissue that arises from the brainstem, extending downward through the vertebral canal
- Ends at inferior margin of **L1/L2** (conus medullaris)
- **Size:** ~45 cm long, ~1.8 cm thick (occupies upper ²/₃ of vertebral canal)
- The spinal cords exhibit longitudinal grooves:
 - Anterior median fissure (deep) & Posterior median sulcus (shallow)
- The cord widens at two points:
 - **1.** Cervical enlargement \rightarrow Nerves to upper limbs
 - 2. Lumbar enlargement (lumbosacral region)→ Nerves to pelvis/lower limbs

Spinal Nerves & Segmentation:

- **31 pairs** of spinal nerves (segmented into cervical, thoracic, lumbar, sacral regions)
- Cauda equina (horse's tail):
 - Bundle of nerve roots (L2–S5) below the spinal cord
 - Innervates pelvic organs/lower limbs

SPINAL NERVES

The human body contains 31 pairs of spinal nerves that connect to the spinal cord. Each pair is named and numbered according to its corresponding vertebral level

Nerve Distribution by Region:

- **Cervical:** 8 pairs (C1-C8)
- Thoracic: 12 pairs (T1-T12)
- Lumbar: 5 pairs (L1-L5)
- Sacral: 5 pairs (S1-S5)
- Coccygeal: 1 pair (Co1)

CRANIAL NERVES

PERIPHERAL NERVOUS SYSTEM (PNS)

- PNS can be divided into 2 subcategories:
- 1. Afferent (Sensory) Pathway
 - Transmits sensory input *from* skin/organs \rightarrow spinal cord \rightarrow brain
 - Includes receptors for touch, pain, temperature, and proprioception
- 2. Efferent (Motor) Pathway
 - Carries motor commands *from* CNS → muscles/glands
 - Divided into:
 - Somatic (voluntary muscle control)
 - Autonomic (involuntary functions)
- Mixed Nerves (spinal nerves)
 - Contain *both* sensory + motor fibers
 - Found specially in spinal nerve of spinal cord

AUTONOMIC NERVOUS SYSTEM (ANS)

- Major role in maintains homeostasis by controlling involuntary bodily functions:
 - Heart rate, digestion, respiration, glandular secretion, etc...

Two Complementary Divisions:

- 1. Sympathetic Nervous System
- 2. Parasympathetic Nervous System

Shared Characteristics:

- ✓ Dual innervation: Most organs receive input from both divisions
 ✓ Two-neuron pathway:
 - Preganglionic neuron (CNS \rightarrow ganglion)
 - Postganglionic neuron (ganglion \rightarrow target organ)
- ✓ Automatic operation: Functions unconsciously

SYMPATHETIC DIVISION

- Originating from the thoracic (T1-T12) and upper lumbar (L1-L2) spinal segments, the sympathetic division is anatomically termed the thoracolumbar division
- This system activates during stress responses, rapidly assuming control over visceral organs to prepare the body for "fight or flight" situations
 - Increased heart rate, bronchodilation, and blood flow redistribution to optimize performance under threatening conditions

PARASYMPATHETIC NERVOUS SYSTEM

- The parasympathetic division originates from cranial nerves (III, VII, IX, and X) and sacral spinal segments (S2–S4), earning its designation as the craniosacral division
- This division dominates during rest, coordinating "rest and digest" functions
 - Such as slowing heart rate, stimulating digestion, constricting pupils, and promoting nutrient absorption
- Its effects are often localized and antagonistic to sympathetic responses, maintaining homeostasis through acetylcholine-mediated signaling
- Clinically, parasympathetic pathways are targeted in treatments for conditions like glaucoma (cholinergic agonists) while anticholinergic drugs (e.g., atropine) inhibit its activity to manage overdoses or certain autonomic disorders

THANK YOU

