Frequency Distribution& Graphs

2.1 Introduction

After collecting data from any phenomenon, this data is not arranged or organized, so we need to present it in a way that makes it easy to study

- Unclassified data: is the raw data collected about the phenomenon unless it is tabulated
- Classified data: is data arranged and organized in a frequency distribution table (categories, frequencies).

2.2 Frequency Distribution Table

It is a simple table consisting of two columns

- ✓ The first column: The variable values are divided into sections or groups called classes
- ✓ The second column: shows the vocabulary of each class and is called class frequency.

Classes (c)	Frequency (f_i)

2.3 Important Definition

1. Classes (C): are the groups into which the variable values are divided, and each class takes a specific range of the variable values.

- 2. Frequency(f_i): is the number of vocabulary or values that fall within the range of that class.
- **3. Range** (**R**): is the difference between the maximum and minimum value of the data
- 4. Classes Limits: Lower class Limit

Upper class Limit Real Lower Class Limit Real Upper Class Limit

- 5. Class length (L): is the range between the two limits of the class.
- 6. Class Mark or Midpoint (y_i) : is the range between the two limits of the class.

2.4 Steps for organizing a frequency table

In general, following steps in the section below for organizing data.

A. Find the range of the data

 $\mathbf{R} = (max_v - min_v)$

B. Find the number of classes

- (m) = $2.5*\sqrt[4]{n} = 2.5*(n)^{\frac{1}{4}}$ (m) = 1+3.3log (n)
- $\checkmark\,$ n is the number of the vocabulary or data or observations.
- ✓ Ranging from 5 to 25 class.

C. Find length of class:
$$L = \frac{R}{m}$$

D. Find Class Mark = $\frac{upper \ class \ limit+lower \ class \ limit}{2}$

E. Find real class limit

- ✓ Upper real class limit = upper class limit +0.5
- ✓ Lower real class limit = lower class limit 0.5

F. Find the number of frequency

- \checkmark Recording the original value one by one in its own class
- ✓ The sum of the frequency for each class is equal to the total number of data or observations.

Example 2.1 Represent the following data in a frequency distribution table.

 56
 45
 67
 55
 65
 70
 60
 75
 83
 89
 56
 65
 46
 49
 65
 69
 48
 62

 72
 74

Solution

- 1. 45
 46
 48
 49
 55
 56
 60
 62
 65
 65
 67
 69
 70
 72
 74

 75
 83
 89
- **2.** $\mathbf{R} = (max_v min_v)$

= 89 - 45

3. m =
$$2.5*\sqrt[4]{n}$$

= $2.5*\sqrt[n]{n}$
= $5.2 \approx 5$

4. L =
$$\frac{R}{m}$$

 $=\frac{44}{5}$ $= 8.8 \cong 9$

5. Real class limit (R_c)

✓ Lower real class limit (first class) = lower class limit-0.5

= 45 - 0.5 = 44.5

✓ Upper real class limit (first class) = Upper class limit + 0.5

= 54 + 0.5= 54.5

6. Class Mark (for the first class) = $\frac{upper \ class \ limit+lower \ class \ limit}{2}$

$$=\frac{53+45}{2}$$
$$=49$$

С	f _i	y _i	R _c
45-53	4	49	44.5-53.5
54-62	5	58	53.5-62.5
63-71	6	67	62.5-71.5
72-80	3	76	71.5-80.5
81-89	2	85	80.5-88.5
	20		

H.W 2.1 the following data represent the results of the compressive strength test for fifteen concrete cubes in units (MPa). Arrange the following data in the frequency table:

48 54 79 55 69 74 59 60 75 61 68 81 51 59 73

2.5 Relative Frequency Distribution

Is the table shows the importance of relative frequency of each class, and can be calculated using following method:

✓ Relative Frequency(p_i) = $\frac{Frequency of classes}{sumation of the Frequency of classes} \left(\frac{f_i}{\sum f_i}\right)$

✓ Percentage Relative Frequency = $\frac{f_i}{\sum f_i}$ *100

2.5 Cumulative Frequency Distribution

There are two kind of cumulative frequency distribution:

- Ascending Cumulative Frequency Distribution
 - ✓ Ascending (\mathbf{F}_i) = frequency of class +frequency of the previous class
- Descending Cumulative Frequency Distribution

✓ Descending (\mathbf{F}_i) = $\sum f_i$ – frequency of the previous class

Example 2.2: According to the frequency distribution table shown below,

calculate the relative, percentage, and cumulative frequency distribution.

С	f _i
25-29	7
30-34	19
35-39	14
40-44	7
45-49	3
	$\sum f_i = 50$

Solution

$$\checkmark P_{i} = \frac{f_{i}}{\sum f_{i}}$$

$$= \frac{7}{50}$$

$$= 0.14$$

$$\checkmark P_{i}\% = \frac{f_{i}}{\sum f_{i}} *100$$

$$= 14$$

✓ Ascending (*F_i*) = frequency of class +frequency of the previous class

$$= 7+0$$
$$= 7$$

✓ Descending $(F_i) = \sum f_i$ – frequency of the previous class = 50-0 = 50

c	fi	P _i	P _i %	Ascending	Descending
	•	Ĩ	1	Fi	Fi
25-29	7	0.14	14	7	50
30-34	19	0.38	38	26	43
35-39	14	0.28	28	40	24
40-44	7	0.14	14	47	10
45-49	3	0.06	6	50	3
	$\sum f_i = 50$	$\sum P_i = 1$			0

Example 2.3: Represent the following data in a frequency distribution table. Number of classes (m) is 6.

24	15	22	28	17	12	20	16	23	16	22	15	23	18	11	21	17	30
16	29	19	39	19	18	14	20	28	18	29	24	20	22	34	12 2	29 2	25
17	23	20	18	24	14	32	27	18	21	15	19	17	16	21 1	.9 2	23	26
24	13	23	15	25	22	25	16	18	23	20	10	22	15	18	16	15	26
17	20	21	19	20 2	21 2	27 🤇	31										

7

Solution

С	f _i	y _i	R _C	P _i	<i>P</i> _i %	Ascending	Descending
10-14	8	12	9.5-14.5	0.1	10	8	80
15-19	28	17	14.5-19.5	0.35	35	36	72
20-24	27	22	19.5-23.5	0.33	33	63	44
25-29	12	27	24.5-29.5	0.15	15	75	17
29-30	4	32	28.5-30.5	0.05	5	79	5
35-39	1	37	34.5-39.5	0.0125	1.25	80	1
	$\sum f_i = 80$						0

<u>H.W 2.2:</u> Below are the data for the grades of students in the examination of the Engineering Statistic

5 4 4 5 3 4 2 3 1 2 3 7 4 1 6 3 2 5 3 4 7 3 2 6 5 3 4 2 4 1

Find the following

- ✓ Number of classes
- ✓ Frequency distribution
- ✓ Relative Frequency distribution
- ✓ Cumulative frequency distribution.

2.6 Graphical Representation

- The most important forms of graphical representation of frequency distribution tables are:
- ✓ Frequency Histogram
- ✓ Frequency Polygon
- ✓ Frequency Curve
- ✓ Cumulative Frequency Curve
- The horizontal axis (x-axis) represents variables and the vertical axis (y-axis) represents frequencies (f_i).

2.6.1 Frequency Histogram

Is a group of rectangles whose bases extend along the horizontal axis representing the lengths of the classes, while its height represents the frequency of classes.

2.6.2 Frequency Polygon

- \checkmark It is a closed polygon that begins and ends with the horizontal axis.
- ✓ It consists of broken straight lines connecting the center of the classes (class mark) and the frequency (y_i, f_i) .

2.6.3 Frequency Curve

It is similar to a polygon except that the lines connecting the points are curved rather than straight

3.6.4 Cumulative Frequency Curve

Is represents by a curved points connecting points located above the real limits of the classes. There are two types of cumulative frequency curve:

- ✓ Ascending Cumulative Frequency Curve
- ✓ Descending Cumulative Frequency Curve

Example 2.3: Draw histogram, frequency polygon frequency curve, and cumulative frequency curve for frequency distribution table below:

Classes	Frequency	У	AF	DF
31-40	1	35.5	1	80
41-50	2	45.5	3	79
51-60	5	55.5	8	77
61-70	15	65.5	23	72
71-80	25	75.5	48	57
81-90	20	85.5	68	32
91-100	12	95.5	80	12
	$\sum f_i = 80$			0

Solution

1. Histogram method

2. Polygon method

3. Ascending Cumulative Frequency Curve

4. Descending Cumulative Frequency Curve

