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Signal Sampling and Reconstruction 

The process of sampling is a bridge between continuous-time and discrete-time 

systems figure 1. Sampling is a process of converting a continuous-time signal to 

discrete-time signal and under certain condition the continuous-time signal can be 

completely recovered from its sampled sequence. 

 

Figure 1 Impulse-train sampling 

1. The Sampling Theorem 

According to sampling theorem "A band limited signal of finite energy can be 

completely reconstructed from its samples taken uniformly at a rate of (fs ≥ 2fm 

sample/sec). 

In other words, the minimum sampling rate is fs = 2fm Hz. 
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To prove sampling theorem, let x(t) be continuous-time finite energy signal whose 

spectrum is band limited to fm Hz (i.e. X(f) = 0 for | f | > fm). 

The input x(t) is sampled at the rate of fs Hz by multiplying x(t) by a periodic impulse 

train p(t) with period Ts = 1/fs. 

The sampled signal 'xp(t)' consists of impulses spaced every Ts second whose 

strength (area) is equal to instantaneous value of input signal x(t): 

𝑥𝑝(𝑡) = 𝑥(𝑡). 𝑝(𝑡)      (1) 

𝑝(𝑡) =  ∑ 𝛿(𝑡 − 𝑛𝑇𝑠)+∞
𝑛=−∞       (2) 

Where: x(t) continuous-time signal, p(t) periodic impulse train, xp(t) sampled 

signal, Ts sampling period. 

𝑥𝑝(𝑡) = 𝑥(𝑡). ∑ 𝛿(𝑡 − 𝑛𝑇𝑠)+∞
𝑛=−∞       (3) 

𝑥𝑝(𝑡) = ∑ 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠)+∞
𝑛=−∞       (4) [Sampling property of impulse] 

Taking Fourier transform of equation (2) is 

𝑝(𝑓) =
1

𝑇𝑠
∑ 𝛿(𝑓 − 𝑛𝑓𝑠)+∞

𝑛=−∞       (5) 

Let’s evaluate the Fourier transform of the output signal xp(t) 

𝑥(𝑡). 𝑝(𝑡)
𝑭𝑻
⇔ 𝑥(𝑓) ∗ 𝑝(𝑓)      (6) 

Multiplication in the time domain is convolution in the frequency domain  

𝑥𝑝(𝑓) = 𝑥(𝑓) ∗ 𝑝(𝑓) = 𝑥(𝑓) ∗
1

𝑇𝑠
∑ 𝛿(𝑓 − 𝑛𝑓𝑠)+∞

𝑛=−∞       (7) 

Where * denotes convolution. Next, we apply simple properties of convolution to 

movie x(f) inside the sum; that is, xp(f) becomes  

𝑥𝑝(𝑓) =
1

𝑇𝑠
∑ 𝑥(𝑓 − 𝑛𝑓𝑠)+∞

𝑛=−∞      (8) 

This result means that the spectrum xp(f) consists of x(f) repeating periodically with 

period Ts=1/fs. We have assumed spectrum x(t) is band limited to fm.  
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Figure 2 X(f) spectrum 

The sampling frequency can take three possible values with respect to spectrum 

width (2fm) 

(i) fs > 2fm,       (ii) fs = 2fm,      (iii) fs < 2fm 

Case-1 Oversampling: fs > 2fm  

Let fs = 3fm, the spectrum of sampled signal will be  

 

Figure 3 Spectrum of sampled signal with fs > 2fm 

We see for fs > 2fm, there is no overlap between the shifted spectrum of X(f). Thus, 

as long as the sampling frequency fs is greater than the twice the signal bandwidth 

(2fm), x(t) can be recovered by passing the sampled signal x(t) through ideal or 

practical low pass filter having cutoff frequency between fm and (fs - fm). 

𝐺𝑢𝑎𝑟𝑑 𝑏𝑎𝑛𝑑 = (𝑓𝑠 − 𝑓𝑚 ) − 𝑓𝑚 = 𝑓𝑠 − 2𝑓𝑚       (9) 
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Case-2 Nyquist Rate: fs = 2fm 

The spectrum of sampled signal will be 

 

Figure 4 Spectrum of sampled signal with fs = 2fm 

We see for fs = 2fm there is no overlap between shifted spectrum of X(f). 

Consequently x(t) can be recovered from its sampled signal by means of an ideal 

low pass filter. 

Case-3 Undersampling: fs < 2fm 

Let fs = fm, the spectrum of sampled signal will be 

 

Figure 5 Spectrum of sampled signal with fs < 2fm 

We see for fs < 2fm there is overlap between shifted spectrum of X(f). Consequently, 

the signal x(t) cannot be exactly recovered from its sampled signal. 
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2. Aliasing or Spectrum Folding 

When fs < 2fm, the copies overlap, and hence, the perfect reconstruction becomes 

impossible. If this Nyquist criterion is not considered, the folded back portion 

overlaps the original spectrum. This results a new shape of the reconstructed 

spectrum filtered by LPF. And this, undoubtedly, gives a signal different from X(t). 

This problem is called "aliasing". Two conditions are necessary to avoid the aliasing: 

(1) The input signal must be limited according the Nyquist condition, i.e. fm ≤ fs/2. 

(2) The sampling frequency must sufficiently greater than the maximum frequency            

component of the signal, i.e. fs ≥ 2fm. This condition is called "Nyquist Rate". 

Note: Aliasing is an irreversible process once aliasing has occurred then signal 

cannot be recovered back. 

Example 2.1: Statement (I): Aliasing occurs when the sampling frequency is less 

than twice the maximum frequency in the signal. Statement (II): Aliasing is a 

reversible process. 

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is 

the correct explanation of Statement (I). 

(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is 

not the correct explanation of Statement (I). 

(c) Statement (I) is true but Statement (II) is false. 

(d) Statement (I) is false but Statement (II) is true. 

 

Example 2.2: Specify the Nyquist rate for following signals 

(1) 𝑥1(𝑡)  =  𝑐𝑜𝑠 (2𝜋 × 103𝑡) 

(2) 𝑥2(𝑡)  =  𝑐𝑜𝑠 (2𝜋 ×  103𝑡)  +  𝑐𝑜𝑠 (6𝜋 ×  103𝑡) 

Solution: 

(1)  

𝑥1(𝑡)  =  𝑐𝑜𝑠 (2𝜋 × 103𝑡) 

𝜔𝑚 =  2𝜋 ×  103𝑟𝑎𝑑/𝑠𝑒𝑐 
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𝑓𝑚  =  103 𝐻𝑧  

𝑓𝑠 = 2𝑓𝑚 = 2 × 103 𝐻𝑧 

𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑟𝑎𝑡𝑒 =  2 𝑘𝐻𝑧 

(2) 

𝑥2(𝑡)  =  𝑐𝑜𝑠 (2𝜋 × 103𝑡)  +  𝑐𝑜𝑠 (6𝜋 × 103𝑡) 

𝑓𝑚1  =  103 𝐻𝑧  

𝑓𝑚2  =  3 × 103 𝐻𝑧  

𝑓𝑚  = max(𝑓𝑚1, 𝑓𝑚2) =  3 𝑘𝐻𝑧 

𝑓𝑠 = 2𝑓𝑚 = 2 × 3 𝑘𝐻𝑧 

𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑟𝑎𝑡𝑒 =  6 𝑘𝐻𝑧 

 

3. Reconstruction 

To perform successful sampling, we keep fs ≥ 2fm. This ensures the signal X(f) 

always contained perfectly in Xp(f). As a result, X(f) can be recovered exactly by 

simply passing Xp(f) through a LPF that with cutoff frequency (fc) between fm and 

(fs - fm). 

 

Figure 6 Low Pass Filter 
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Example 2.3: A signal s(t) is ideally sampled at a sampling rate (a) 15Hz, (b) 9Hz, 

(c) 10Hz. If the sampled signal, then passed through an ideal LPF with cutoff 

frequency equal 6Hz. Plot the spectrum of the signal at each step. State if there is 

any aliasing. 

 

 

 

Solution: 

 

Now work for: (b) and (c) and compare. 

 

Example 2.4: Repeat the above example if the cutoff frequency of the filter is 10Hz 

and fs =25Hz and the analog signal is 𝑠(𝑡) = 2𝑐𝑜𝑠(5𝜋𝑡) − 2𝑐𝑜𝑠(15𝜋𝑡). 

Solution: 𝑠(𝑡) = 2𝑐𝑜𝑠(5𝜋𝑡) − 2𝑐𝑜𝑠(15𝜋𝑡) and its frequency components can be 

written as: 

𝑓𝑚1  =  2.5 𝐻𝑧  

𝑓𝑚2  =  7.5 𝐻𝑧  
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Example 2.5: We can hear sounds with frequency components between 20 Hz and 

20 kHz. What is the maximum sampling interval Ts that can be used to sample a 

signal without loss of audible information? 

(a) 100 µs,    (b) 50 µs,    (c) 25 µs,    (d) 100π µs,    (e) 50π µs,    (f) 25π µs 

Solution: 

𝑓𝑠 = 2𝑓𝑚 = 2 × 20 𝑘𝐻𝑧 = 40𝑘𝐻𝑧 

𝑇𝑠 =
1

𝑓𝑠
= 25µ𝑠 

 

4. Practical Sampling 

A Sampling procedure discussed in the class using Impulse train is only theoretically 

possible. In reality, Sampling is done by using a pulse train in two different ways: 

a. Natural Sampling  

Out of the two practical procedures this is the one easy to realize mathematically but 

relatively difficult to implement practically. The resulting sampled signal will 

sustain the natural variation of the signal in the pulse duration and hence the name 

Natural Sampling also known as zero-order hold sampling, involves taking discrete 

interval samples of a continuous signal, similar to uniform sampling. 
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Figure 7 Natural Sampling 

b. Flattop Sampling 

Out of the two practical Sampling procedures this is difficult to realize 

mathematically but relatively easy to implement practically. The resultant sampled 

signal will hold the instantaneous values of the signal for the entire pulse duration 

resulting in a flat-top waveform. 

 

Figure 8 Flattop Sampling 
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Convolution 

Two most important attributes of systems are linearity and time-invariance. In this 

lecture we develop the fundamental input-output relationship for systems having 

these attributes. It will be shown that the input-output relationship for LTI systems 

is described in terms of a convolution operation. The importance of the convolution 

operation in LTI systems stems from the fact that knowledge of the response of an 

LTI system to the unit impulse input allows us to find its output to any input signals. 

The impulse response h (t) of a continuous-time LTI system (represented by T) is 

defined to be the response of the system when the input is δ (t), that is, 

ℎ(𝑡) = 𝑻{𝛿(𝑡)}      (10) 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
      (11) 

Equation (2) is commonly called the convolution integral. Thus, we have the 

fundamental result that the output of any continuous-time LTI system is the 

convolution of the input x (t) with the impulse response h (t) of the system. Figure 9 

illustrates the definition of the impulse response h (t) and the relationship of Eq. (2). 

 

 

 

Figure 9 Continuous-time LTl system 

Convolution Operation 

The convolution integral operation involves the following four steps: 

1. The impulse response h (τ) is time-reversed (that is, reflected about the origin) 

to obtain h (-τ) and then shifted by t to form h (t - τ) = h [- (τ - t)] which is a 

function of τ with parameter t. 
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2. The signal x (τ) and h (t - τ) are multiplied together for all values of τ with t 

fixed at some value. 

3. The product x(τ)h(t - τ) is integrated over all τ to produce a single output value 

y (t). 

4. Steps 1 to 3 are repeated as t varies over -∞ to ∞ to produce the entire output 

y(t) 

 Example 2.6: Evaluate y (t) = x (t)* h (t), where x (t) and h (t) are shown in 

Figure 10, by a graphical method. 

Figure 10 

Functions h(τ), x(τ) and h(t – τ), x(τ)h(t – τ) for different values of t are sketched in 

Figure 11. From Figure 11 we see that x(τ) and h(t - τ) do not overlap for t < 0 and t 

> 5, and hence y(t) = 0 for t < 0 and t > 5. For the other intervals, x(τ) and h(t – τ) 

overlap. Thus, computing the area under the rectangular pulses for these intervals, 

we obtain 

 

which is plotted in Figure 12. 
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Figure 11 
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Figure 12 

 

Properties of the Convolution Integral 

The convolution integral has the following properties. 

Commutative: 

𝑥(𝑡) ∗ ℎ(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡)      (12) 

Associative: 

{𝑥(𝑡) ∗ ℎ1(𝑡)} ∗ ℎ2(𝑡) = 𝑥(𝑡) ∗ {ℎ1(𝑡) ∗ ℎ2(𝑡)}      (13) 

Distributive: 

𝑥(𝑡) ∗ {ℎ1(𝑡) + ℎ2(𝑡)} = 𝑥(𝑡) ∗ ℎ1(𝑡) + 𝑥(𝑡) ∗ ℎ2(𝑡)      (14) 

 

Convolution Sum (Discrete Convolution) 

The following equation defines the convolution of two sequences x[n] and h[n] 

denoted by 

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]
∞

𝑘=−∞
      (15) 

Equation (15) is commonly called the convolution sum. Thus, again, we have the 

fundamental result that the output of any discrete-time LTI system is the convolution 

of the input x[n] with the impulse response h[n] of the system. Figure 13 illustrates 

the definition of the impulse response h[n] and the relationship of Eq. (15). 
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Figure 13 Discrete-time LTI system 

Properties of the Convolution Sum 

The following properties of the convolution sum are analogous to the convolution 

integral properties shown previously. 

Commutative: 

𝑥[𝑛] ∗ ℎ[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]      (16) 

Associative: 

{𝑥[𝑛] ∗ ℎ1[𝑛]} ∗ ℎ2[𝑛] = 𝑥[𝑛] ∗ {ℎ1[𝑛] ∗ ℎ2[𝑛]}      (17) 

Distributive: 

𝑥[𝑛] ∗ {ℎ1[𝑛] + ℎ2[𝑛]} = 𝑥[𝑛] ∗ ℎ1[𝑛] + 𝑥[𝑛] ∗ ℎ2[𝑛]      (18) 

 

Convolution Sum Operation 

Again, applying the commutative property (16) of the convolution sum to Eq. (15) 

we obtain 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]
∞

𝑘=−∞
      (18) 

which may at times be easier to evaluate than Eq. (15). Similar to the continuous-

time case, the convolution sum [Eq. (15)] operation involves the following four 

steps: 

1. The impulse response h [k] is time-reversed (that is, reflected about the origin) 

to obtain h [– k] and then shifted by n to form h[n – k] = h[– (k – n)] which is 

a function of k with parameter n. 

2. Two sequences x[k] and h[n – k] are multiplied together for all values of k 

with n fixed at some value. 
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3. The product x[k]h[n – k] is summed over all k to produce a single output 

sample y[n]. 

4. Steps 1 to 3 are repeated as n varies over -∞ to ∞ to produce the entire output 

y[n]. 

 

Example 2.7: Evaluate y[n] = x[n]*h[n], where x[n] and h [n] are shown in Fig. 2-

23, (a) by an analytical technique, and (b) by a graphical method. 

 

Figure 14 
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Figure 15 
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Example 2.8: Let x[n] = {−1, 1, −1, 1} and h[n] = {−1, 0, 2, 3, 4} be two discrete 

time signals. What is the signal obtained when x[n] is linearly convolved with h[n]? 

 

(a) {1, -1, -1, -2, -3, 3, -1, 4} 

(b) {-4, 1, -3, 3, 2, 1, 1, -1} 

(c) {1, 0, -2, 3, 0} 

(d) {-8, 8, -8, 8} 
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Solution: 

Let the given two signals x[n] and h[n] of length l1 and l2 be linearly convolved to 

obtain signal y[n] = x[n] ∗ h[n], where ∗ depicts convolution. The length of y[n] = 

l1+l2−1 = 4 + 5 − 1 = 8. Due to this, we can eliminate the last two options. To compute 

the convolution, we use the tabular method, 

 

 

 

 

 

 

 

From the table, we obtain, y[n] = {1, −1, −1, −2, −3, 3, −1, 4}. 


