Pharmacology I

Adrenergic Antagonists

Lecture No. : 6

مستقبل له تاريخ

Adrenergic Antagonists

- The adrenergic antagonists (also called **adrenergic blockers** or **sympatholytics**) bind to adrenoceptors but do not trigger the usual receptor-mediated intracellular effects.
- These drugs act by either <u>reversibly</u> or <u>irreversibly</u> attaching to the *adrenoceptors*, thus preventing activation by endogenous catecholamines.
- Like the agonists, the adrenergic antagonists are classified according to their **relative affinities for** α **or** β **receptors** in the sympathetic nervous system.
- Numerous adrenergic antagonists have **important roles in clinical medicine**, <u>primarily</u> to **treat diseases associated with the cardiovascular system**.

Adrenergic Antagonists

- **α-Adrenergic Blocking Agents**
- Drugs that block α adrenoceptors profoundly affect **blood pressure**.
- Because normal sympathetic control of the vasculature occurs in large part through agonist actions on $\underline{\alpha}$ -adrenergic receptors.
- <u>Blockade</u> of these receptors reduces the sympathetic tone of the blood vessels, resulting in decreased peripheral vascular resistance.

α BLOCKERS

Alfuzosin UROXATRAL Doxazosin CARDURA Phenoxybenzamine Phentolamine GENERIC **Prazosin** MINIPRESS Silodosin RAPAFLO Tamsulosin FLOMAX Terazosin Generic ONLY Yohimbine YOCON

- **Adrenergic Antagonists**
- **□***α*-Adrenergic Blocking Agents
- (Phenoxybenzamine and Phentolamine)
- This induces a <u>reflex tachycardia</u> resulting from the lowered blood pressure.
- The **magnitude** of the response depends on the **sympathetic tone** of the individual when the agent is given.
- [Note: β receptors, including β 1 adrenoceptors on the heart, are not affected by α blockade.].
- *Phenoxybenzamine* and *phentolamine*, have **limited** applications.

1 ml

PHENTOLAMINE

INJECTION BP

FENTANOR

10 mg 1ml

FOR IM/IV use

clinical

- **Δ**. <u>Phenoxybenzamine</u> (nonselective *α1 and α2 irreversible blocker*)
- *Phenoxybenzamine* is nonselective, linking covalently to both α1 and α2 receptors.
- The block is **irreversible** and **noncompetitive**, and the only way the body can overcome the block **is to synthesize new adrenoceptors**, which requires **a day or longer**.
- Therefore, the actions of *phenoxybenzamine* last about 24 hours.
- After the drug is injected, a delay of a few hours occurs before a blockade develops.

- **Δ** A. Phenoxybenzamine (nonselective *α1 and α2 irreversible blocker*)
- Actions:
- a. Cardiovascular effects: By blocking α1 receptors,
 phenoxybenzamine prevents vasoconstriction of peripheral blood
 vessels by endogenous catecholamines.
- The **decreased peripheral resistance** provokes a **reflex tachycardia**.
- Furthermore, the ability to **block presynaptic inhibitory** $\alpha 2$ **receptors** in the heart can contribute to an **increased cardiac output**.

- **Δ** A. Phenoxybenzamine (nonselective *α1 and α2 irreversible blocker*)
- Actions:
- [Note: Blocking these receptors results in more norepinephrine release, which stimulates β1 receptors on the heart, increasing cardiac output.]
- Thus, the drug has been **unsuccessful** in maintaining lowered blood pressure in hypertension, and **it is no longer used** for this purpose.

- **A.** Phenoxybenzamine (nonselective *α1 and α2 irreversible blocker*)
- Actions:
- **B. Epinephrine reversal:** <u>All</u> α-adrenergic blockers <u>reverse</u> the α agonist actions of epinephrine.
- For example, the vasoconstrictive action of epinephrine is interrupted, but vasodilation of other vascular beds caused by stimulation of β2 receptors is not blocked.
- Therefore, in the presence of phenoxybenzamine, the systemic blood pressure
 <u>decreases</u> in response to epinephrine .

A. Phenoxybenzamine (nonselective *a1 and a2 irreversible blocker*)

• Actions:

- [Note: The actions of norepinephrine are not reversed but are diminished because norepinephrine lacks significant β agonist action on the vasculature.]
- Phenoxybenzamine has <u>no effect</u> on the actions of isoproterenol, which is a pure β agonist.

Summary of effects of adrenergic blockers on the changes in blood pressure induced by *isoproterenol*, *epinephrine*, and *norepinephrine*

A. Phenoxybenzamine (nonselective *α1 and α2 irreversible blocker*)

2. Therapeutic uses:

- Phenoxybenzamine is used in the treatment of sweating and
 hypertension associated with pheochromocytoma, a
 catecholamine-secreting tumor of cells derived from the adrenal
 medulla.
- ii. Phenoxybenzamine is sometimes effective in treadisease and frostbite.

Frostbite of fingers

A. Phenoxybenzamine (nonselective *a1 and a2 irreversible blocker*)

3. Adverse effects:

- Phenoxybenzamine can cause postural hypotension, nasal stuffiness, nausea, and vomiting.
- It may inhibit ejaculation.
- It may also induce **reflex tachycardia**, which is mediated by the baroreceptor reflex.
- Phenoxybenzamine should be used with <u>caution</u> in patients with cerebrovascular or cardiovascular disease.

- **B.** Phentolamine (nonselective *a1 and a2 reversible blocker*)
- In contrast to phenoxybenzamine, phentolamine produces a **competitive** block of $\alpha 1$ and $\alpha 2$ receptors.
- Effects last for approximately **4 hours** after a single injection.
- **Pharmacological effects** of phentolamine are very similar to those of phenoxybenzamine.

B. Phentolamine

- It is used for the
- 1. Diagnosis and short-term management of pheochromocytoma.
- 2. Locally to prevent dermal necrosis following extravasation of norepinephrine.
- 3. Treat hypertensive crisis due to abrupt withdrawal of clonidine or ingestion of tyramine containing foods in patients taking monoamine oxidase inhibitors.

- **C.** Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin (selective competitive α1-blocker).
- Prazosin, terazosin, and doxazosin are selective competitive blockers of the $\alpha 1$ receptor.
- In contrast to *phenoxybenzamine* and *phentolamine*, they are **useful** in the **treatment of hypertension**.

- **C.** Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin (selective competitive α1-blocker) .
- Tamsulosin and alfuzosin are examples of other selective α1 antagonists indicated for the treatment of *benign prostatic hyperplasia* (BPH).
- Metabolism leads to inactive products that are excreted in urine except for those of doxazosin, which appear in feces.
- **Doxazosin** is the **longest acting** of these drugs.

C. Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin

1. Mechanism of action:

- All of these agents decrease peripheral vascular resistance and lower
 blood pressure by causing relaxation of both arterial and venous smooth muscle.
- These drugs, unlike *phenoxybenzamine* and *phentolamine*, cause
 minimal changes in cardiac output, renal blood flow, and
 glomerular filtration rate.

- C. Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin 1. Mechanism of action:
- Tamsulosin has the least effect on blood pressure because it is <u>less</u>
 <u>selective</u> for α1B receptors found in the blood vessels and more selective for α1A receptors in the prostate and bladder.
- Blockade of the $\alpha 1A$ receptors a decrease tone in the smooth muscle of the bladder neck and prostate and improves urine flow.

C. Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin

2. Therapeutic uses:

- A. Individuals with **elevated blood pressure** treated with one of these drugs **do not become tolerant** to its action.
- However, the first dose of these drugs may produce an exaggerated orthostatic hypotensive response that can result in syncope (fainting).
- This action, termed a "first-dose" effect, may be minimized
- I. By adjusting the first **dose to one-third or one fourth of the normal dose**
- II. By giving the drug at bedtime.

C. Prazosin, terazosin, doxazosin, tamsulosin, and alfuzosin

2. Therapeutic uses:

- These drugs may cause **modest improvement in lipid profiles** and **glucose metabolism** in **hypertensive patients**.
- Because of inferior cardiovascular outcomes as compared to other antihypertensives, $\alpha 1$ antagonists are not used as monotherapy for the treatment of hypertension.
- The $\alpha 1$ receptor antagonists have been used as an **alternative to surgery** in patients with **symptomatic BPH**.

C. Prazosin, terazosin, doxazosin, tamsulosin, alfuzosin

3. Adverse effects:

- $\bullet \alpha 1\text{-Blockers}$ such as prazosin and doxazosin may cause
- 1. Dizziness,
- 2. A lack of energy,
- 3. Nasal congestion,
- 4. Headache,
- 5. Drowsiness,
- 6. Orthostatic hypotension
- (although to a lesser degree than that observed with phenoxybenzamine and phentolamine)

Sexual

dysfunction

D. Yohimbine (selective competitive α 2-blocker)

- **Yohimbine** is a selective competitive **α2-blocker** that works at the level of the CNS to increase sympathetic outflow to the periphery.
- It is found as a component of the bark of the **yohimbe tree** (Pausinystalia yohimbe) and has been used as a **sexual stimulant** and in the treatment of **erectile dysfunction**.
- Its use in the treatment of these disorders is not recommended due to lack of demonstrated efficacy.

- All of the clinically available β -blockers are competitive antagonists.
- Nonselective β -blockers act at both $\beta 1$ and $\beta 2$ receptors, whereas cardioselective β antagonists primarily block $\beta 1$ receptors.
- [Note: There are no clinically useful β2 antagonists.]

- These drugs also differ in
- 1. Intrinsic sympathomimetics activity,
- 2. CNS effects,
- 3. Blockade of sympathetic receptors
- 4. Vasodilation
- 5. Pharmacokinetics.
- Although all β-blockers lower blood pressure, they do not induce postural hypotension, because the α adrenoceptors remain functional. Therefore, normal sympathetic control of the vasculature is maintained.

- β-Blockers are effective in treating :
- 1. Hypertension,
- 2. Angina,
- 3. Cardiac arrhythmias,
- 4. Myocardial infarction,
- 5. Heart failure,
- 6. Hyperthyroidism, and
- 7. Glaucoma.
- 8. They are also used for the **prophylaxis of migraine headaches**.
- [Note: The names of all β -blockers end in "-olol" except for *labetalol* and *carvedilol*.]

A. Propranolol: A nonselective β antagonist

- *Propranolol* is the prototype β -adrenergic antagonist and blocks both $\beta 1$ and $\beta 2$ receptors with equal affinity.
- Sustained release preparations for once-a-day dosing are available.

a. Cardiovascular:

- *Propranolol* diminishes cardiac output, having both negative inotropic and chronotropic effects.
- It directly **depresses sinoatrial** and **atrioventricular** nodal activity. The resulting **bradycardia** usually limits the dose of the drug.
- During exercise or stress, when the sympathetic nervous system is activated, β -blockers attenuate the expected increase in heart rate.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist 1. Actions:
- a. Cardiovascular:
- Cardiac output, workload, and oxygen consumption are decreased by blockade of $\beta 1$ receptors, and these effects are useful in the treatment of angina.
- The β-blockers are effective in attenuating supraventricular cardiac arrhythmias, but generally are not effective against ventricular arrhythmias (except those induced by exercise).

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- 1. Actions:
- **b.** Peripheral vasoconstriction:
- Nonselective blockade of β receptors **prevents** β 2-mediated **vasodilation** in skeletal muscles, increasing peripheral vascular resistance.
- The reduction in cardiac output produced by all β-blockers leads to decreased blood pressure, which triggers a reflex peripheral vasoconstriction that is reflected in reduced blood flow to the periphery.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- **1. Actions:**
- **b.** Peripheral vasoconstriction:
- In patients with hypertension, **total peripheral resistance returns to normal or decreases** with **long term** use of *propranolol*.
- There is a gradual reduction of both systolic and diastolic blood pressures in hypertensive patients.

- 1. Actions:
- c. Bronchoconstriction:
- Blocking $\beta 2$ receptors in the lungs of susceptible patients causes contraction of the bronchiolar smooth muscle.
- This can precipitate an exacerbation in patients with chronic obstructive pulmonary disease (COPD) or asthma.
- Therefore, β-blockers, particularly, nonselective ones, are <u>contraindicated</u> in patients with <u>COPD or asthma</u>.

1. Actions:

d. Disturbances in glucose metabolism:

- β blockade leads to **decreased glycogenolysis** and decreased glucagon secretion.
- Therefore, if *propranolol* is given to a diabetic patient receiving *insulin*, **careful monitoring of blood glucose** is essential, because pronounced **hypoglycemia** may occur after insulin injection.
- β-blockers also attenuate the normal physiologic response to hypoglycemia.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- 1. Actions:
- e. Blocked action of isoproterenol:
- Nonselective β -blockers, including *propranolol*, have the ability to **block** the actions of *isoproterenol* (β 1, β 2 agonist) on the cardiovascular system.
- Thus, in the presence of a β-blocker, *isoproterenol* does not produce cardiac stimulation (β1 mediated) or reductions in mean arterial pressure and diastolic pressure (β2 mediated).

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- 1. Actions:
- e. Blocked action of isoproterenol:
- [Note: In the presence of a nonselective β-blocker, epinephrine no longer lowers diastolic blood pressure or stimulates the heart, but its vasoconstrictive action (mediated by α receptors) remains unimpaired.
- The actions of *norepinephrine* on the cardiovascular system are mediated primarily by α receptors and are, therefore, unaffected.]

- 2. Therapeutic uses:
- a. Hypertension:
- *Propranolol* does **not reduce blood pressure** in people with **normal blood pressure**.
- *Propranolol* lowers blood pressure in **hypertension** by several different mechanisms of action :
- 1. Decreased cardiac output is the primary mechanism,
- 2. But **inhibition** of **renin** release from the kidney,
- 3. Decrease in total peripheral resistance with long-term use, and
- **4. Decreased sympathetic outflow** from the CNS also contribute to the antihypertensive effects.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- 2. Therapeutic uses:
- **b. Angina pectoris:**
- *Propranolol* decreases the oxygen requirement of heart muscle and, therefore, is effective in reducing chest pain on exertion that is common in angina.
- *Propranolol* is, thus, useful in the chronic management of stable angina.

- 2. Therapeutic uses:
- c. Myocardial infarction:
- *Propranolol* and other β -blockers have a **protective effect on the myocardium**.
- Thus, patients who have had one myocardial infarction appear to be **protected against a second heart attack** by **prophylactic use of** β **- blockers**.
- In addition, administration of a β -blocker **immediately** following a myocardial infarction **reduces infarct size** and **fastens recovery**.
- The mechanism for these effects may be a **blocking of the actions of circulating catecholamines**, which would increase the oxygen demand in an already ischemic heart muscle.
- *Propranolol* also **reduces the incidence** of **sudden arrhythmic death** after myocardial infarction

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
 2. Therapeutic uses:
- d. Migraine:
- *Propranolol* is effective in reducing migraine episodes when used prophylactically. It is one of the most useful β-blockers for this indication, due to its lipophilic nature that allows it to penetrate the CNS.
- [Note: For the **acute management of migraine**, serotonin agonists such as *sumatriptan* are used, as well as other drugs.]

III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist2. Therapeutic uses:

e. Hyperthyroidism:

- *Propranolol* and other β -blockers are effective in **blunting** the widespread sympathetic stimulation that occurs in hyperthyroidism.
- In acute hyperthyroidism (thyroid storm), β -blockers may be lifesaving in protecting against serious cardiac arrhythmias.

3. Pharmacokinetics:

- After oral administration, *propranolol* is almost completely absorbed.
- It is subject to **first-pass effect**, and only about **25%** of an administered dose reaches the circulation.
- The volume of distribution of *propranolol* is **quite large** (4 L/kg), and
- the drug readily crosses the blood-brain barrier due to its high lipophilicity.
- *Propranolol* is extensively **metabolized**, and most **metabolites** are excreted in the **urine**.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist4. Adverse effects:
- a. Bronchoconstriction:
- *Propranolol* has the potential to cause significant bronchoconstriction due to **blockade of \beta 2 receptors**.
- **Death** by **asphyxiation** has been reported for patients with asthma whom were <u>carelessly</u> administered the drug.
- □ Therefore, *propranolol* is <u>contraindicated</u> in patients with COPD or asthma.

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
 4. Adverse effects:
 b. Arrhythmias:
- Treatment with β -blockers must never be stopped abruptly because of the risk of precipitating cardiac arrhythmias, which may be severe.
- The β -blockers must be **tapered** off gradually over a period of at least a few weeks.
- Long-term treatment with a β antagonist leads to **up-regulation of the** β **receptor**. On **suspension** of therapy, the increased receptors can **worsen angina or hypertension**.

III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist 4. Adverse effects:

c. Sexual impairment:

- Because ejaculation in the male is mediated through α -adrenergic activation, β -blockers do not affect ejaculation or internal bladder sphincter function. On the other hand, some men do complain of impaired sexual activity.
- The reasons for <u>this are not clear and may be independent of β</u>
 <u>receptor blockade.</u>

- III. β-Adrenergic Blocking Agents A. Propranolol: A nonselective β antagonist
- 4. Adverse effects:
- d. Metabolic disturbances:
- β Blockade leads to decreased glycogenolysis and decreased glucagon secretion. Fasting hypoglycemia may occur.
- In addition, β-blockers can prevent the counter regulatory effects
 of catecholamines during hypoglycemia. Thus, the perception of
 symptoms of hypoglycemia such as tremor, tachycardia, and
 nervousness are blunted by β-blockers.

4. Adverse effects:

d. Metabolic disturbances:

- A major role of β receptors is to mobilize energy molecules such as free fatty acids.
- [Note: **Lipases** in fat cells are activated mainly by β2 and β3 receptor stimulation, leading to the metabolism of triglycerides into free fatty acids.]
- Patients administered nonselective β-blockers have increased low density lipoprotein ("bad" cholesterol), increased triglycerides, and reduced high-density lipoprotein ("good" cholesterol).
- These effects on the serum lipid profile may be less pronounced with the use of β 1-selective antagonists such as metoprolol.

4. Adverse effects:

e. CNS effects:

- *Propranolol* has numerous **CNS-mediated effects**, including depression, dizziness, lethargy, fatigue, weakness, visual disturbances, hallucinations, short-term memory loss, emotional lability, vivid dreams (including nightmares), and depression.
- Fewer CNS effects may be seen with more **hydrophilic** βblockers (for example, *atenolol*), since they do not cross the ^{Sexual} dysfunction blood-brain barrier as readily.

Bronchoconstriction

Fatigue

Arrhythmias (upon abrupt withdrawal)

- **B.** Nadolol and timolol: Nonselective β antagonists
- *Nadolol* and *timolol* also block β1-and β2-adrenoceptors and are more potent than *propranolol*.
- *Nadolol* has a **very long duration** of action.
- *Timolol* reduces the production of aqueous humor in the eye.
- It is used topically in the treatment of **chronic open-angle** glaucoma.

B. Nadolol and timolol: Nonselective β antagonists

1. Treatment of glaucoma:

- β-blockers, such as topically applied *timolol, betaxolol,* or *carteolol*, are effective in diminishing intraocular pressure in glaucoma.
- This occurs by decreasing the secretion of aqueous humor by the ciliary body.
- Unlike the cholinergic drugs, these agents neither affect the ability of the eye to focus for near vision nor change pupil size.

- **B.** Nadolol and timolol: Nonselective β antagonists
- 1. Treatment of glaucoma:
- When administered **intraocularly**, the **onset** is about **30 minutes**, and the effects last for **12 to 24 hours**.
- The β-blockers are only used for chronic management of glaucoma.
 In an acute attack of glaucoma, *pilocarpine* is still the drug of choice for emergency lowering of intraocular pressure.

CLASS OF DRUG	DRUG NAMES	MECHANISM OF ACTION	SIDE EFFECTS
β-Adrenergic antagonists (topical)	Betaxolol, carteolol, levobunolol, metipranolol, timolol	Decrease of aqueous humor production	Ocular irritation; contraindicated in patients with asthma, obstructive airway disease, bradycardia, and congestive heart failure.
α-Adrenergic agonists (topical)	Apraclonidine, brimonidine	Decrease of aqueous humor production and increase of aqueous outflow	Red eye and ocular irritation, allergic reactions, malaise, and headache.
Cholinergic agonists (topical)	Pilocarpine, carbachol	Increase of aqueous outflow	Eye or brow pain, increased myopia, and decreased vision.
Prostaglandin-like analogues (topical)	Latanoprost, travoprost, bimatoprost	Increase of aqueous humor outflow	Red eye and ocular irritation, increased iris pigmentation, and excessive hair growth of eye lashes.
Carbonic anhydrase inhibitors (topical and systemic)	Dorzolamide and brinzolamide (topical), acetazolamide, and methazolamide (oral)	Decrease of aqueous humor production	Transient myopia, nausea, diarrhea, loss of appetite and taste, and renal stones (oral drugs).

- C. Acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, and nebivolol: Selective ß1 antagonists
- Drugs that preferentially **block the \beta1 receptors** minimize the unwanted bronchoconstriction (β 2 effect) seen with *propranolol* use in asthma patients.
- Cardioselective β -blockers, such as *acebutolol*, *atenolol*, and *metoprolol*, antagonize β 1 receptors at doses **50- to 100-fold** less than those required to block β 2 receptors.
- This cardioselectivity is most pronounced at low doses and is lost at high doses.
- [Note: Since β1 selectivity of these agents is lost at high doses, they may antagonize β2 receptors.]

C. Acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, and nebivolol: Selective $\beta 1$ antagonists

1. Actions:

- These drugs lower blood pressure in hypertension and increase exercise tolerance in angina.
- Esmolol has a very short half-life due to metabolism of an ester linkage.
- It is only available **intravenously**.
- It is **used** to: **1**) control **blood pressure or 2**) **heart rhythm** in critically ill patients and those undergoing surgery or diagnostic procedures.

C. Acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, and nebivolol: Selective β1 antagonists

1. Actions:

- In addition to its cardioselective β -blockade, **nebivolol** releases **nitric oxide** from endothelial cells and causes vasodilation.
- In contrast to propranolol, the cardioselective β -blockers have fewer effects on
- 1. Pulmonary function,
- 2. Peripheral resistance, and
- 3. Carbohydrate metabolism.

C. Acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, and nebivolol: Selective β1 antagonists

- **1. Actions:**
- Nevertheless, asthma patients treated with these agents must be carefully monitored to make certain that respiratory activity is not compromised.
- Because these drugs have less effect on peripheral vascular β2
 receptors, coldness of extremities (Raynaud's phenomenon), a common side effect of β -blockers, is less frequent.

- **C.** Acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, and nebivolol: Selective β1 antagonists
- 2. Therapeutic uses:
- The **Cardioselective β-blockers** are useful in **hypertensive** patients with **impaired pulmonary function**.
- These agents are also **first-line therapy for chronic stable angina**.
- **Bisoprolol** and the extended-release formulation of **metoprolol** are indicated for the **management of chronic heart failure**.

D. Acebutolol and pindolol: Antagonists with partial agonist activity

DC 62559-255-01

Acebutolol

Hydrochloride

Capsules USP

100 Caps

- 1. Actions:
- a.Cardiovascular:
- Acebutolol (β 1-selective antagonist)
- *Pindolol* (nonselective β -blocker)
- They not pure antagonists.
- These drugs also have the **ability** to **weakly stimulate** both **β1 and β2 receptors** and are said to have **intrinsic sympathomimetic activity** (ISA).

- **D. Acebutolol and pindolol: Antagonists with partial agonist activity**
- 1. Actions:
- a.Cardiovascular:
- These **partial agonists** stimulate the β receptor to which they are bound, yet they **inhibit stimulation** by the **more potent endogenous catecholamines**, epinephrine and norepinephrine.
- The result of these opposing actions is a diminished effect on cardiac rate and cardiac output compared to that of β -blockers without ISA.

D. Acebutolol and pindolol: Antagonists with partial agonist activity

1. Actions:

b. Decreased metabolic effects:

- β -blockers with ISA <u>minimize</u> the disturbances of lipid and carbohydrate metabolism that are seen with other β -blockers.
- For example, these agents **do not decrease** plasma HDL levels.

- **D. Acebutolol and pindolol: Antagonists with partial agonist** activity
- **2. Therapeutic use in hypertension:**
- β-blockers with ISA are effective in hypertensive patients with moderate bradycardia, because a further decrease in heart rate is less pronounced with these drugs.
- [Note: β-blockers with ISA are <u>not</u> used for stable angina or arrhythmias due to their partial agonist effect.].

- E. Labetalol and carvedilol: Antagonists α and β Actions:
- *Labetalol* and *carvedilol* are nonselective β-blockers with concurrent a1-blocking actions that produce peripheral vasodilation, thereby reducing blood pressure.
- They contrast with the other β-blockers that produce initial peripheral vasoconstriction, and these agents are, therefore, useful in treating hypertensive patients for whom increased peripheral vascular resistance is undesirable.
- *Carvedilol* also decreases lipid peroxidation and vascular wall thickening, effects that have benefit in heart failure.

- **III.** β-Adrenergic Blocking Agents
- **E.** Labetalol and carvedilol: Antagonists of both α and β adrenoceptors
- 2. Therapeutic use in hypertension and heart failure:
- *Labetalol* is employed as an alternative to *methyldopa* in the treatment of **pregnancy-induced hypertension**.
- Intravenous *labetalol* is also used to treat **hypertensive emergencies**, because it can rapidly lower blood pressure.
- β-blockers <u>should not be given</u> to patients with an acute exacerbation of heart failure, as they can worsen the condition.

- E. Labetalol and carvedilol: Antagonists of both α and β adrenoceptors
- 2. Therapeutic use in hypertension and heart failure:
- However, *carvedilol* as well as *metoprolol* and *bisoprolol* are beneficial in patients with **stable chronic heart failure**.
- These agents **work by blocking** the effects of **sympathetic stimulation** on the heart, which causes **worsening** heart failure over time.

E. Labetalol and carvedilol: Antagonists of both α and β adrenoceptors

- 3. Adverse effects:
- Orthostatic hypotension and dizziness are associated with $\alpha 1$ blockade. Below Figure summarizes the receptor specificities and uses of the β adrenergic antagonists.

DRUG	RECEPTOR SPECIFICITY	THERAPEUTIC USES
Propranolol	β ₁ , β ₂	Hypertension Migraine Hyperthyroidism Angina pectoris Myocardial infarction
Nadolol Pindolol ¹	β ₁ , β ₂	Hypertension
Timolol	β ₁ , β ₂	Glaucoma, hypertension
Atenolol Bisoprolol ² Esmolol Metoprolol ²	β1	Hypertension Angina Myocardial infarction
Acebutolol1	β1	Hypertension
Nebivolol	β ₁ , NO 🕇	Hypertension
Carvedilol² Labetalol	α ₁ , β ₁ , β ₂	Hypertension

Drugs Affecting Neurotransmitter Release Or Uptake

- Some agents act on the adrenergic neuron, either to interfere with neurotransmitter release from storage vesicles or to alter the uptake of the neurotransmitter into the adrenergic neuron.
- However, due to the advent of newer and more effective agents with fewer side effects, these agents **are seldom used therapeutically**.
- **Reserpine** is one of the remaining agents in this category.

Drugs Affecting Neurotransmitter Release Or Uptake

- Reserpine, a plant alkaloid, blocks the Mg2+/adenosine triphosphate dependent transport of biogenic amines (norepinephrine, dopamine, and serotonin) from the cytoplasm into storage vesicles in the adrenergic nerve terminals in all body tissues.
- This causes the **ultimate depletion** of biogenic amines.
- Sympathetic function, in general, is **impaired** because of decreased release of norepinephrine.

Drugs Affecting Neurotransmitter Release Or Uptake

Reserpine

- Reserpine has a slow onset, a long duration of action, and effects that **persist** for many days after discontinuation.
- It has been used for the management of hypertension but has largely been replaced with newer agents with better side effect profiles and fewer drug interactions.
- It is also indicated in **agitated psychotic states** such as **schizophrenia** to relieve symptoms.