

ANATOMY OF THE ENDOCRINE SYSTEM

HUMAN ANATOMY

College of Pharmacy

Dr. Abeer Abdullah

LEARNING OUTCOME

- Explain the role of the endocrine system in maintaining homeostasis and its integration with the nervous system
- Identify major endocrine glands, their hormones, and target organs (e.g., insulin from pancreatic beta cells)
- Relate endocrine dysfunction to common disorders and associated pharmacotherapies

ENDOCRINE SYSTEM

- Maintenance of homeostasis involves coordinating activities of organs and systems throughout the body
- The nervous system and endocrine system work together to monitor and adjust physiologic activities
- In general, the nervous system performs fast, short-term very specific responses to environmental stimuli
 - chemical messengers are **neurotransmitters**
- The endocrine system regulates **slow, long-term,** ongoing metabolic processes throughout the body
 - chemical messengers are hormones

ENDOCRINE SYSTEM

Definition:

"A network of **ductless glands that secrete hormones** directly **into the bloodstream** to regulate distant target organs."

Key Features:

- Hormones: Chemical messengers (e.g., insulin, cortisol)
- **Target Organs:** Specific tissues with hormone receptors
- Feedback Loops: Maintain homeostasis

Major Functions:

- Maintain homeostasis
- Controls metabolism, growth, reproduction, mood, and electrolyte balance
- Works with the nervous system for coordinated responses

HORMONE CONTROL BY FEEDBACK MECHANISMS

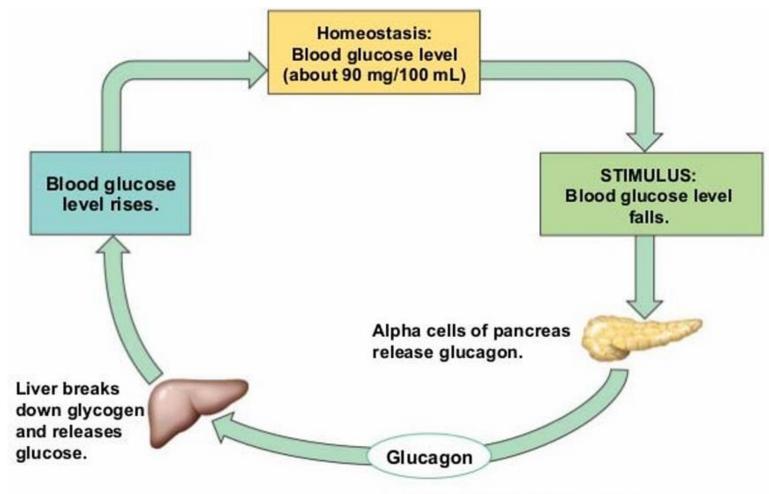


Figure 14: The Insulin Glucagon Loop

KEY TO PITUITARY HORMONES

- ACTH Adrenocorticotropic hormone
- TSH Thyroid-stimulating hormone
- GH Growth hormone
- PRL Prolactin
- FSH Follicle-stimulating hormone
- LH Luteinizing hormone
- MSH Melanocyte-stimulating hormone
- ADH Antidiuretic hormone

'Pure' endocrine glands: pituitary, pineal, thyroid, parathyroid, and adrenal

Organs containing endocrine cells: pancreas, thymus, gonads, and hypothalamus

HYPOTHALAMUS

Production of ADH, oxytocin, and regulatory hormones

PITUITARY GLAND

Pars distalis (anterior lobe): ACTH, TSH, GH, PRL, FSH, LH, and MSH Neurohypophysis (posterior lobe): Release of oxytocin and ADH

THYROID GLAND

Thyroxine (T₄) Triiodothyronine (T₃) Calcitonin (CT)

THYMUS (Undergoes atrophy during adulthood) Thymosins

SUPRARENAL GLANDS

Each suprarenal gland is subdivided into: Suprarenal medulla: Epinephrine (E) Norepinephrine (NE) Suprarenal cortex: Cortisol, corticosterone, aldosterone, androgens

Testis-

PINEAL GLAND Melatonin

PARATHYROID GLANDS (on posterior surface of thyroid gland) Parathyroid hormone (PTH)

HEART

Natriuretic peptides: Atrial natriuretic peptide (ANP) Brain natriuretic peptide (BNP)

KIDNEY

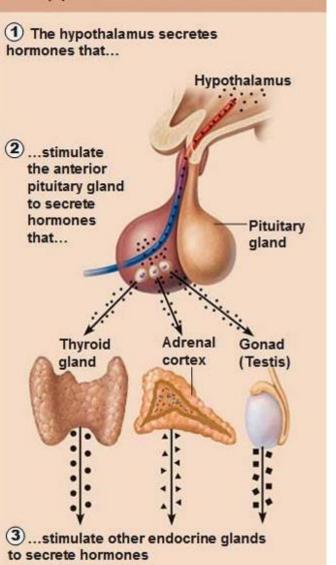
Erythropoietin (EPO) Calcitriol (Chapters 19 and 26)

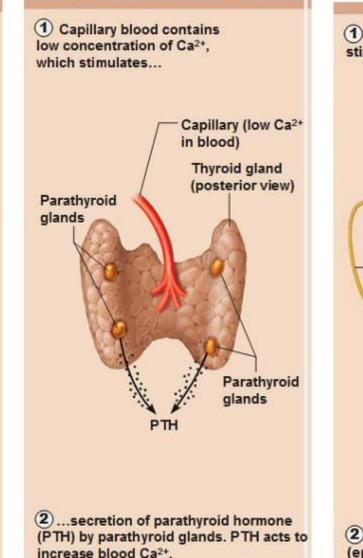
ADIPOSE TISSUE Leptin Resistin

DIGESTIVE TRACT Numerous hormones (detailed in Chapter 25)

PANCREATIC ISLETS Insulin, glucagon

GONADS

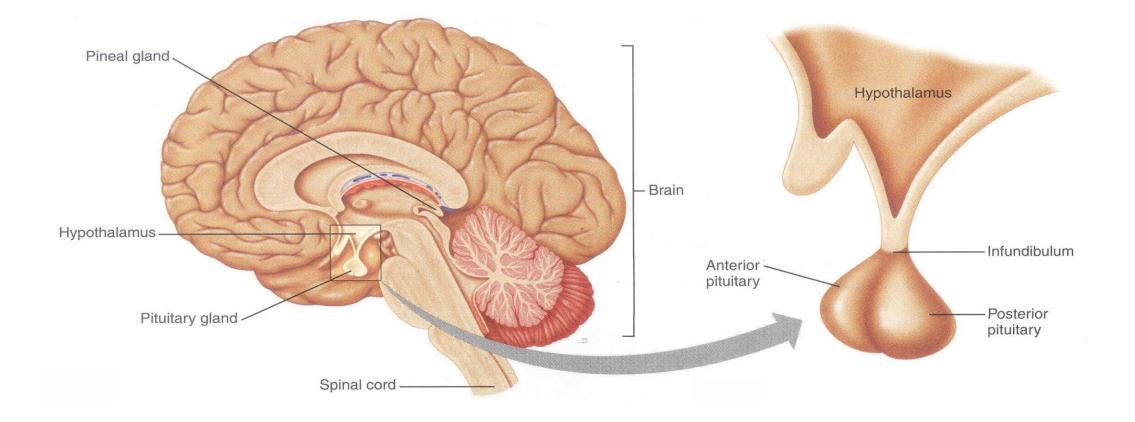

Z


Ovary

Testes (male): Androgens (especially testosterone), inhibin Ovaries (female): Estrogens, progestins, inhibin

Types of Endocrine Gland Stimuli

- Hormonal----Hormone
- Humoral--- Critical level of ions/nutrients
- Neural---- Neural input



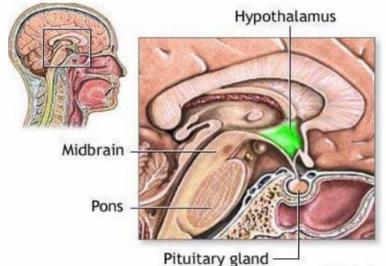
1 Preganglionic sympathetic fibers stimulate adrenal medulla cells... CNS (spinal cord) Preganglionic sympathetic fibers Medulla of adrenal gland Capillary (2)...to secrete catecholamines (epinephrine and norepinephrine)

OUTLINE-ENDOCRINE

- Hypothalamus
- Pituitary Glands
 - Anterior Pituitary
 - Posterior Pituitary
- Pineal Gland
- Thyroid Gland
- Parathyroid Gland
- Adrenal glands
- Pancreas
- Gonads
- Other endocrine organs (Heart, Kidney, Placenta, and Skin)

HYPOTHALAMUS & PITUITARY GLAND

HYPOTHALAMUS

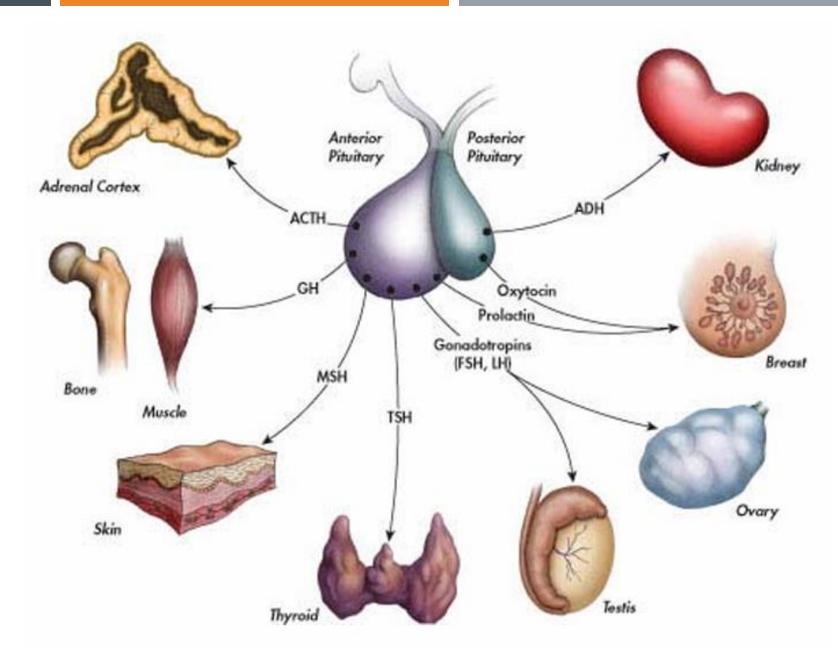

- Overview: The neuroendocrine control center that bridges the nervous and endocrine systems;
 Composed of different nuclei that synthesize different hormones in response to physiological changes
- Location: below the thalamus, above the brainstem
- Function: Controls pituitary hormone release, maintains homeostasis (temperature, hunger, thirst), and manages stress response and circadian rhythms

Hormones Secreted:

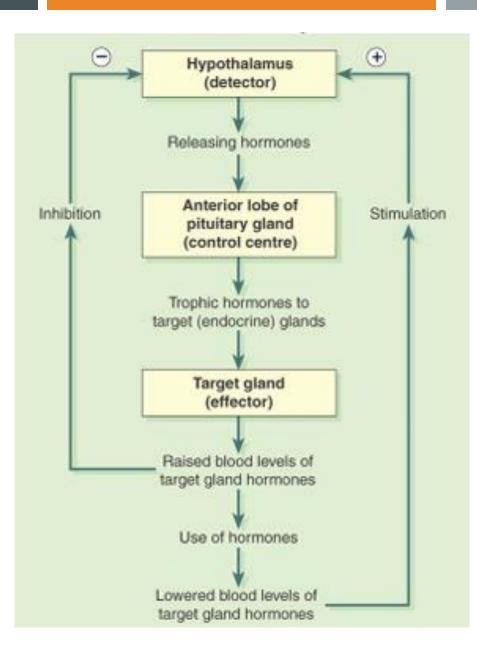
Releasing hormones (releasing factors) (RH)

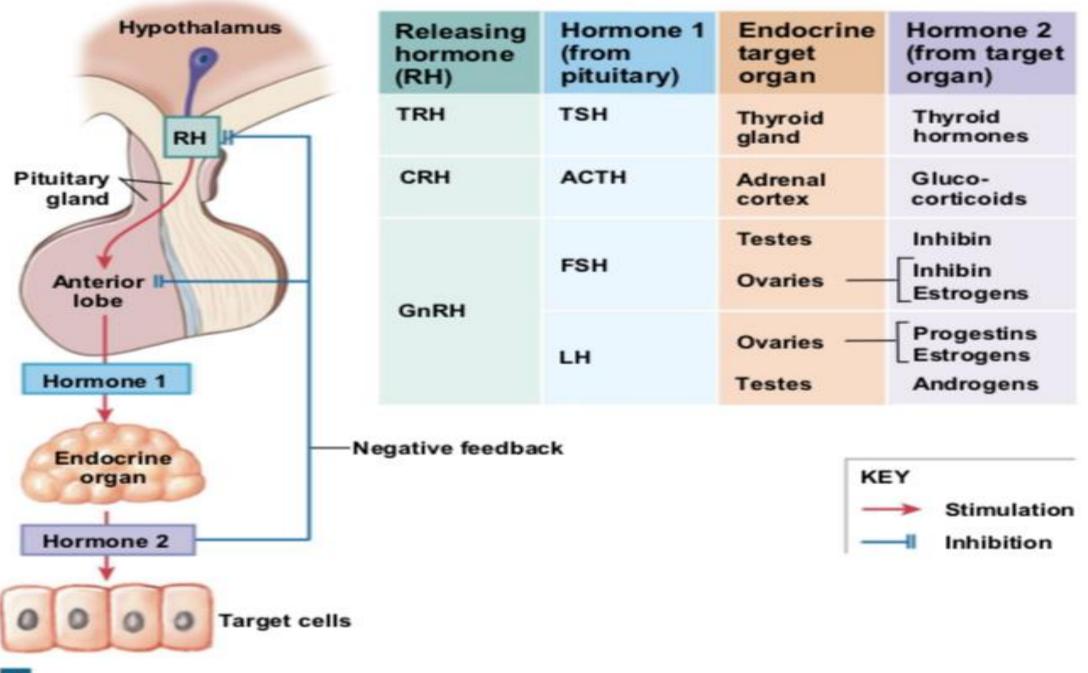
Secreted like neurotransmitters from neuronal axons into capillaries and veins to anterior pituitary

- I. TRH-----stimulates TSH production
- 2. **CRH**-----stimulates ACTH production
- 3. GnRH (=LHRH)---stimulates FSH and LH production
- 4. **PRF**-----stimulates PRL production
- 5. GHRH----stimulates GH production
- Inhibiting hormones (IH)
 - I. GH inhibiting hormone ---inhibits GH production
 - 2. PIF-----inhibits PRL production

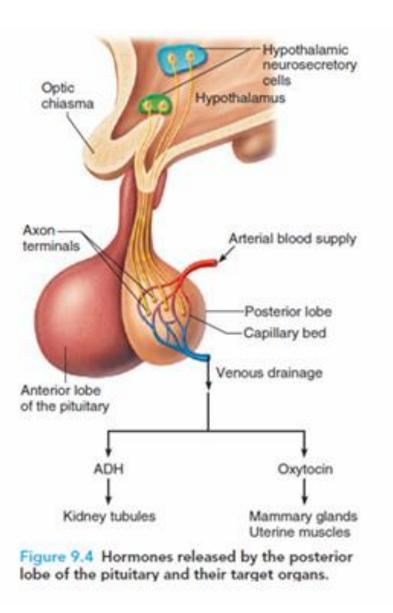


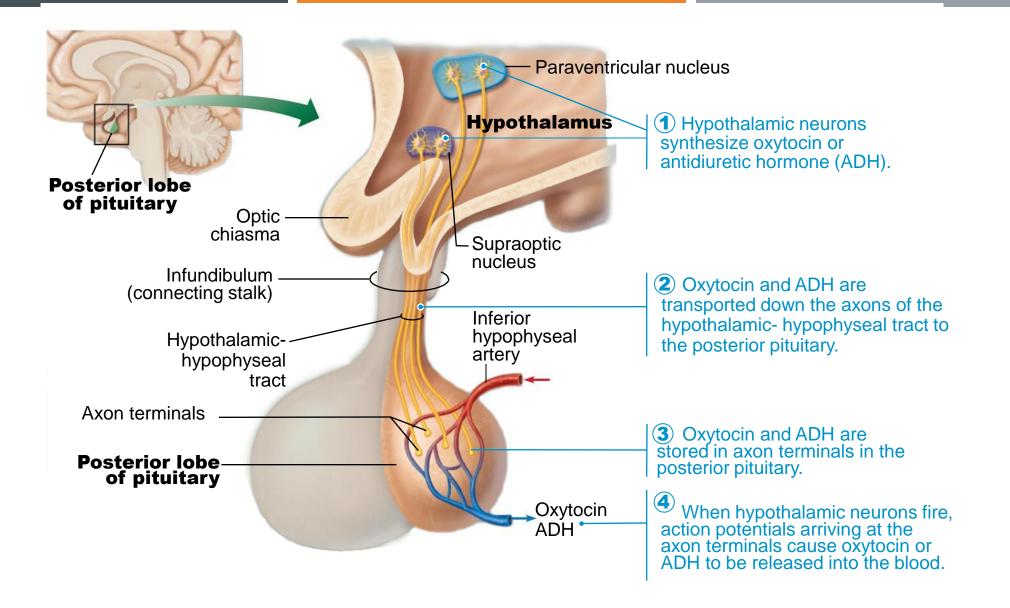
@ ADAM, Inc.

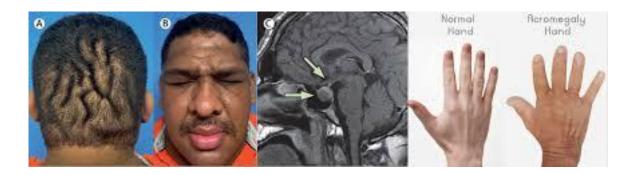

PITUITARY GLAND


- **Overview:** "Master gland" that regulates other endocrine glands
- Location: Base of the brain, in the sella turcica (connected to the hypothalamus)
- Hypothalamus and pituitary glands connected by stalk (infundibulum) containing nerve fibers (posterior pituitary) and blood vessels (anterior pituitary)
- I. Anterior lobe (Adenohypophysis):
 - True endocrine gland (secretes hormones)
 - Hormones: GH, ACTH, TSH, FSH, LH, Prolactin
 - **Control:** Hypothalamic releasing hormones via blood portal system
- 2. Posterior lobe (Neurohypophysis):
 - Neural extension of hypothalamus (stores/releases)
 - **Hormones:** ADH, Oxytocin (made in hypothalamus)
 - Transport: Via hypothalamo-hypophyseal tract
- Function: Controls growth, metabolism, reproduction, stress response, and water balance

Hormones Produced by the Anterior Pituitary

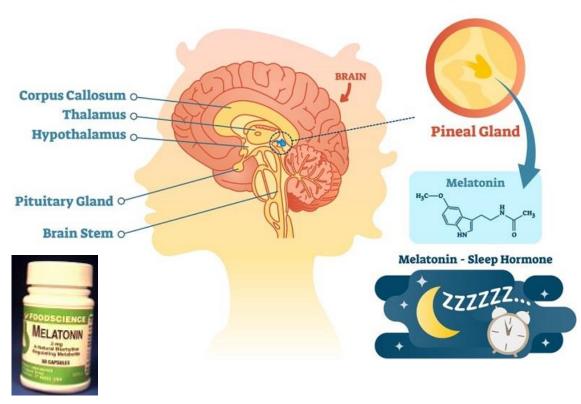



Regulation of Secretion of Anterior Pituitary Hormones


Hormones -Posterior Pituitary

DISTURBANCE OF GROWTH HORMONE SECRETION

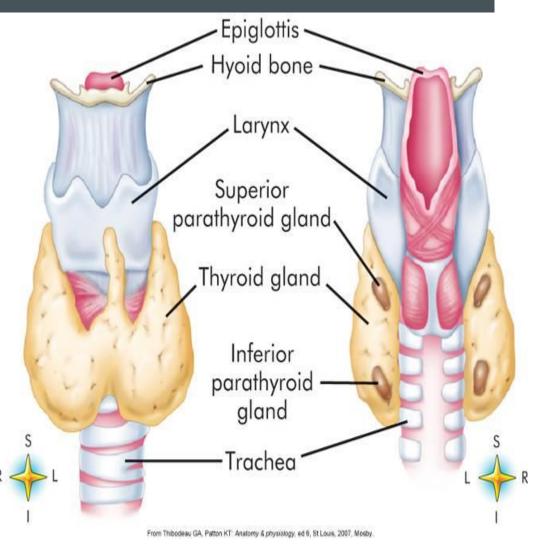
- Pituitary Dwarfism: Decreased secretion of GH during childhood
- Gigantism: Increased production of GH is produced during childhood
- Acromegaly: Overproduction of GH in adult, results in larger than normal feet, hands, and face



PINEAL GLAND

- **Overview:** Regulator of sleep-wake cycles
- **Location:** Epithalamus of the brain
- Hormone Secreted: Melatonin
- Function: Modulates circadian rhythm (The biological clock of the diurnal (night/day) rhythm) and seasonal cycles

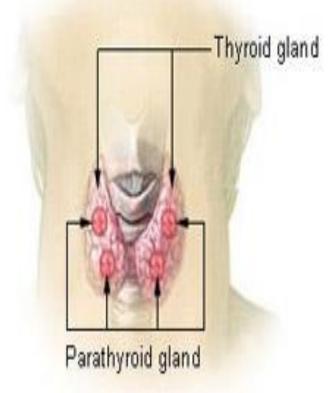
PINEAL GLAND



THYROID GLAND

- Overview: Two lateral lobes connected via an isthmus, thyroid gland is a key regulator of metabolism and calcium homeostasis
- Location: Anterior neck, on trachea inferior to the larynx (butterfly-shaped)
- Hormones Secreted: Thyroxine (T4), Triiodothyronine (T3), Calcitonin

Function:


- T3/T4: ↑ Metabolic rate, growth, and development
- Calcitonin: involved with calcium and phosphorus metabolism (Lowers blood calcium levels)

PARATHYROID GLAND

- **Overview:** Tiny glands critical for calcium balance
- Location: Embedded on the posterior surface of thyroid gland (usually 4 glands)
- Hormone Secreted: Parathyroid hormone (PTH)
- Function:
 Blood calcium by stimulating bone resorption (osteoclast), kidney reabsorption, and vitamin D activation

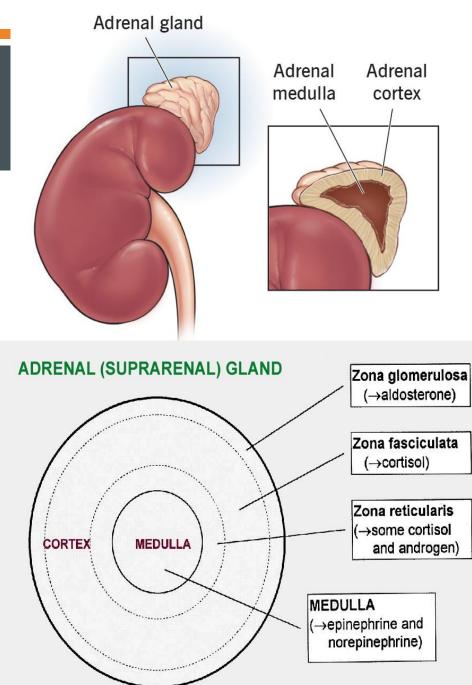
Thyroid and Parathyroid Glands

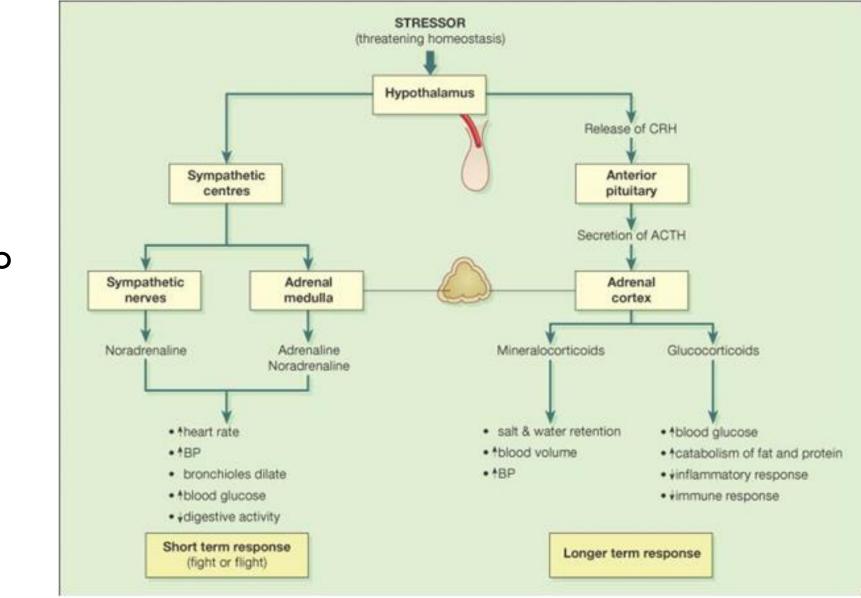
THYROID ABNORMALITIES

a. Simple goiter

b. Congenital hypothyroidism

c. Exophthalmic goiter

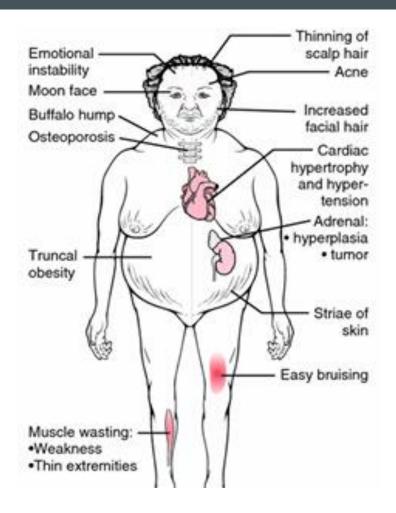

ADRENAL GLAND


- Overview: Paired, pyramid-shaped suprarenal organs for Stress-response and metabolic regulation
- Location: On top of each kidney (2 parts: cortex & medulla)

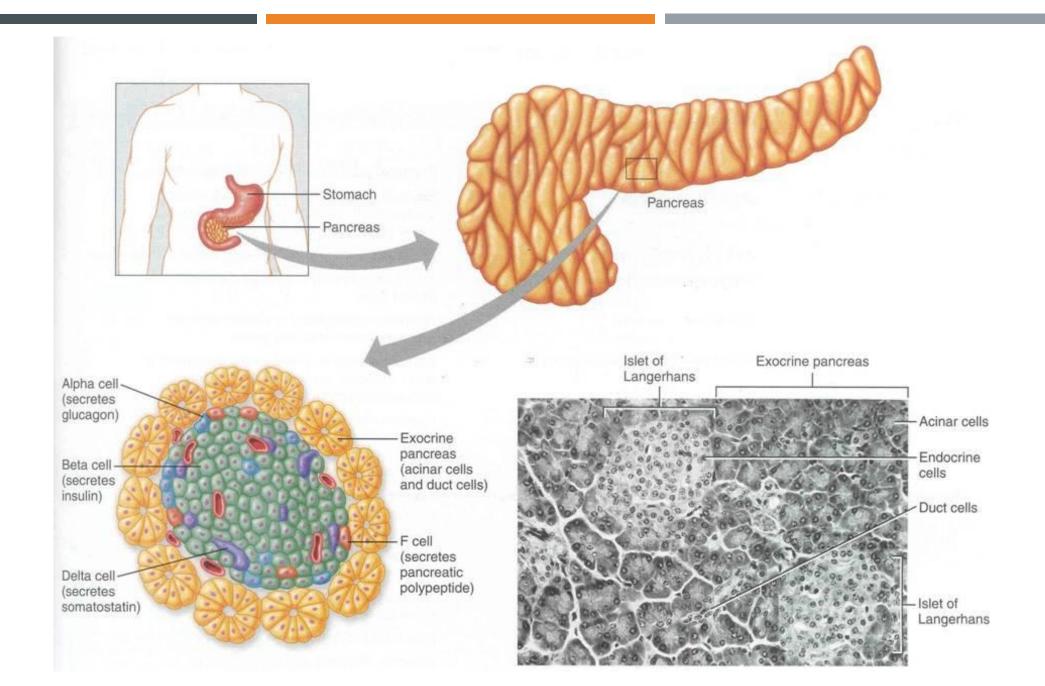
Hormones Secreted:

- Cortex (glandular tissues): Cortisol (stress), Aldosterone (Na+/K+ balance), Androgens(sex hormone/secondary sex characteristics)
- Medulla (nervous tissues): Epinephrine/Norepinephrine (fight-or-flight, acute response to stress)

Function: Manages stress, blood pressure, electrolytes, and metabolism



Response to Stressors


CUSHING SYNDROME

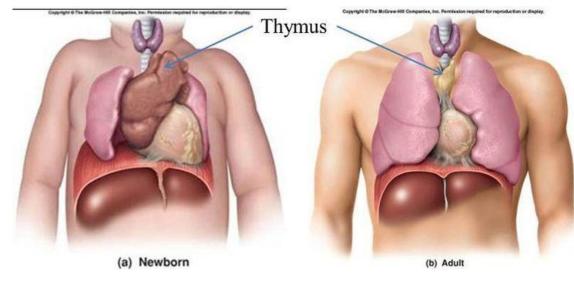
- Hypersecretion of glucocorticoids by the adrenal cortex, characterized by
 - Weight gain in the trunk of the body but not arms and legs (due to mobilization of fat from periphery)
 - Hyperglycemia
 - Hypertension

PANCREAS (ENDOCRINE PARTS)

- **Overview:** Dual-function gland (endocrine + exocrine)
 - Acinar cells (forming most of the pancreas)
 - Exocrine function
 - Secrete digestive enzymes
 - Islet cells (of Langerhans)
 - Endocrine function
- Location: Behind the stomach
- Hormones Secreted (Islets of Langerhans=endocrine cells)
 - I. Alpha cells (25%): Glucagon (↑ blood glucose)
 - 2. Beta cells (70%): Insulin (\downarrow blood glucose)
 - 3. Delta cells (5%): Somatostatin (inhibit glucagon & insulin)
 - Function: Maintains blood glucose homeostasis

THYMUS GLAND

Overview:


"Primary lymphoid organ training immune cells"

Location:

- Thoracic cavity, behind sternum and just ventral to great vessels of heart.
- Until puberty, a large structure, after which it begins to atrophy and gets replaced with adipose tissue
 Hormones Secreted:
- Thymosin
- Thymopoietin
- Thymulin

Functions:

- Matures **T-lymphocytes** (critical for immunity)
- Programs immune tolerance (prevents autoimmunity)

ENDOCRINE CELLS IN VARIOUS ORGANS

- The kidneys:
 - Juxtaglomerular cells secrete renin
 - Renin indirectly signals adrenal cortex to secrete aldosterone
 - **Erythropoietin:** signals bone marrow to increase RBC production
- The heart: atrial natriuretic peptide (ANP)
 - Stimulates kidney to secrete more salt
 - Thereby decreases excess blood volume, high BP and high blood sodium concentration
- Gl tract & derivatives: Diffuse neuroendocrine system (DNES)
- The placenta: secretes steroid and protein hormones
 - Estrogens, progesterone
 - HCG (human chorionic gonadotropin hormone)
- The skin:
 - Modified cholesterol with UV exposure becomes Vitamin D precursor
 - Vitamin D necessary for calcium metabolism: signals intestine to absorb CA++

Table 9.2 Hormones Produced by Organs Other Than the Major Endocrine Organ

Hormone	Chemical composition	Source	Stimulus for secretion	Target organ/Effects
Prostaglandins (PGs); several groups indicated by letters A–I (PGA–PGI)	Derived from fatty acid molecules	Plasma membranes of virtually all body cells	Various (local initiation, hormones, etc.)	Have many targets but act locally at site of release. Examples of effects include the following: increase blood pressure by acting as vasoconstrictors cause constriction of respiratory passageways; stimulate muscle of the uterus, promoting menstrual pain and labor; enhance blood clotting; promote inflammation and pain; increase output of digestive secretion by stomach; cause fever.
Gastrin	Peptide	Stomach	Food	Stomach: stimulates glands to release hydrochloric acid (HCI).
intestinal gastrin	Peptide	Duodenum of small intestine	Food, especially fats	Stomach: stimulates gastric glands and motility.
Secretin	Peptide	Duodenum	Food	Pancreas: stimulates release of bicarbonate-rich juice. Liver: increases release of bile. Stomach: reduces secretions and motility.
Cholecystokinin (CCK)	Peptide	Duodenum	Food	Pancreas: stimulates release of enzyme-rich juice. Galibladder: stimulates expulsion of stored bile. Duodenal papilla: causes sphincter to relax, allowing bile and pancreatic juice to enter duodenum.
Erythropoietin	Glycoprotein	Kidney	Hypoxia	Bone marrow: stimulates production of red blood cells.
Active vitamin D ³	Steroid	Kidney (activates provitamin D made by epidermal cells)	РТН	Intestine: stimulates active transport of dietary calcium across intestinal ce membranes.
Atrial natriuretic peptide (ANP)	Peptide	Heart	Stretching of atria of heart	Kidney: inhibits sodium ion reabsorption and renin release. Adrenal cortex: inhibits secretion of aldosterone, thereby decreasing blood volume and blood pressure.
Leptin	Peptide	Adipose tissue	Fatty foods	Brain: suppresses appetite and increases energy expenditure.
Resistin	Peptide	Adipose tissue	Unknown	Fat, muscle, liver: antagonizes insulin action on liver cells.

THANK YOU

