

Lecture 7

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 32

Bottom-Up Parsing
 The term "Bottom-Up Parsing" refer to the order in which
nodes in the parse tree are constructed, construction starts at the
leaves and proceeds towards the root. Bottom-Up Parsing can
handle a large class of grammars.

1. Shift-Reduce Parsing: Is a general style of Bottom-up
syntax analysis , it attempts to construct a parse tree for an
input string beginning at leaves and working up towards
the root,(reducing a string w to the start symbol of
grammar).At each reduction step a particular substring
matching the right side of production is replaced by the
symbol on the left of that production.

Example : consider the grammar

And the input is abbcde
The implementation Bottom-Up Parsing is

Handle : Is a substring that matches the right side of a
production.

Stack Implementation of Shift-Reduce Parsing:
A convenient way to implement a shift-reduce parser is to use a
Stack to hold a grammar symbols and an input buffer to hold the
sting w to be parsed. We use $ to mark the bottom of stack and
also the right end of the input string. There are actually four
possible actions:

S aABe

A Abc b

B d

a b b c d e
a A b c d e
a A d e
a A B e
S
Accept

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 33

1. Shift : The next input symbol is Shifted onto the top
 of stack.
2. Reduce : Replace the handle with nonterminal.
3. Accept : The parser announces successful
 completion of parsing .
4. Error : The parser discovers that syntax error has
 occurred and calls an error recovery routine.
Example: Consider the following grammar

 And the input string is id + id * id, then the
implementation is :

Stack Input Buffer Action

$
$id
$E
$E+
$E+id
$E+E
$E+E*
$E+E*id
$E+E*E
$E+E
$E

id+id*id$
 +id*id$
 +id*id$
 id*id$
 *id$
 *id$
 id$
 $
 $
 $
 $

Shift
Reduce: E→id
Shift
Shift
Reduce: E→id
Shift(*)
Shift
Reduce: E→id
Reduce: E→E*E
Reduce: E→E+E
Accept

Conflicts During Shift-Reduce Parsing:

There are context free grammars for which shift-reduce
parsing cannot be used. Ambiguous grammars lead to parsing
conflicts. Can fix by rewriting grammar or by making
appropriate choice of action during parsing. There are two type
of conflicts :

E E+E E*E (E) id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 34

Example is Better than Precept

1. Shift/Reduce conflicts: should we shift or reduce? (See
previous example (*))

2. Reduce/Reduce conflicts: which production should we
reduce with? for example:

stmt → id(param)
param → id
expr → id(expr) | id

Stack Input Buffer Action

$...id(id ,id)...$ Reduce by ??

Should we reduce to param or to expr ?

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

	titel.doc
	L1
	L2
	L3
	L4
	L5
	ß
	ß
	ß
	ß
	ß
	ß
	ß
	ß

	L6
	L7
	L8
	L9
	L10
	L11
	L12
	L13
	L14
	ref.doc

