

Lecture 6

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 26

Top-Down Parsing :-
 Top-down parsing can be viewed as an attempt to

find a leftmost derivation for an input string. Equivalently, A top
down parser, such as LL(1) parsing, move from the goal symbol
to a string of terminal symbols. in the terminology of trees, this
is moving from the root of the tree to a set of the leaves in the
syntax tree for a program. in using full backup we are willing to
attempt to create a syntax tree by following branches until the
correct set of terminals is reached. in the worst possible case,
that of trying to parse a string which is not in the language, all
possible combinations are attempted before the failure to parse
is recognized. the nature of top down parsing technique is
characterized by:
1-Recursive-Descent Parsing : It is a general form of Top-
Down Parsing that may involve " Backtracking ",that is ,making
repeated scans of the input.

 Example: consider the grammar

 Input : cad
Then the implementation of Recursive-Descent Parsing is:

2-Predictive parsing : In many cases, by carefully writing a
grammar , eliminating left-recursion from it and left-factoring
the resulting grammar, we can obtain agrammar that can be
parsed by recursive-descent parser that needs no
"Backtracking",i.e.,a Predictive parser.

S cAd

A ab a

 S S S

 c A d c A d c A d

 a b a

 - a - - b - - c -

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 27

2.1. Transition Diagrams for Predictive parsers
 It is useful plan or flowchart for a predictive parser. There
is one diagram for each nonterminal, the labels of edges are
tokens and nonterminals.for example:

E→ E+T T

T→ T*F F // Original grammar

F→ (E) id

Eliminate left-recursion and left factoring

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

Transition Diagrams

E :

E' :

T :

T' :

F :

0 1 2

3 4 5 6

13 12 11 10

17 16 15 14

7 8 9

T E'

+ T E'

ε

F T'

ε

T' * F

E)

id

(

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 28

First & Follow :

• First : To compute First(X) for all grammar symbols
apply the following rules until no more terminal or ε
can be added to any First set :

1. If x is terminal, then FIRST(x) is {x}.
2. If x є is a production ,then add є to FIRST(x).
3. If x is nonterminal and x y1y2 … yk is a production,

then place a in FIRST(x) if for some i ,a is in
FIRST(yi),and є is in all of FIRST(y1)… FIRST(yi-1).

• Follow :To compute Follow(A) for all nonterminals
apply the following rules until nothing can be added to
any Follow set.

1. Place $ in FOLLOW(S),where S is the start symbol.
2. If there are a production A αBß, then everything in

FIRST(ß)except for є is placed in FOLLOW(B).
3. If there are a production A αB ,or a production

A αBß where FIRST(ß) contains є, then everything in
FOLLOW(A) is in FOLLOW(B).

Example : suppose the following grammar

Nonterminals First Follow
E (, id) , $
E' + , ∊) , $
T (, id + ,) , $
T' * , ∊ + ,) , $
F (, id * , + ,) , $

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 29

2.2. Nonrecursive Predictive Parsing :-The nonrecursive
parser in following figure lookup the production to be
applied in a parsing table.

• Construction of Predictive Parsing Table :
1. For each production A α of the grammar, do

steps 2 and 3 .
2. For each terminal a in First(α),add A α to

M[A, a].
3. If ε is in First(α) ,add A α to M[A,b] for

each b in Follow(A).
4. Make each undefined entry of M be error.

• Predictive Parsing Program :The parser is
controlled by a program that behaves as follows:

 The program consider X- the symbol on top of the
stack- and a – the current input symbol-. These two
symbols determine the action of the parser. There are
three possibilities :

Output

Input

Stack

 Model of a Nonrecursive Predictive Parsing

Predictive Parsing
Program

Parsing Table
M

a + b $

X

Y

Z

$

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 30

1. If X = a = $, the parser halt, and successful
completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and
advances the input pointer to the next input
symbol.

3. If X is nonterminal , the program consults entry
M[X,a] of the parsing table.If M[X,a]=
{ X UVW }the parser replaces X on top of
stack by WVU (with U on top).

Example:

Input symbol Nonterminals
id + * () $

E

E'

T

T'

F

TE'

FT'

id

+TE'

 є

*FT'

TE'

FT'

(E)

є

є

є

є

E→ E+T T

T→ T*F F // Original grammar

F→ (E) id
Eliminate left-recursion and left factoring

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

Predictive Parsing Table M

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 31

Everything Comes to him who Waits

stack Input output

$E
$E'T
$E'T'F
$E'T'id
$E'T'
$E'
$E'T+
$E'T
$E'T'F
$E'T'id
$E'T'
$E'T'F*
$E'T'F
$E'T'id
$E'T'
$E'
$

id+id*id$
id+id*id$
id+id*id$
id+id*id$
 +id*id$
 +id*id$
 +id*id$
 id*id$
 id*id$
 id*id$
 *id$
 *id$
 id$
 id$
 $
 $
 $

E TE'
T FT'
F id

T' є
E' +TE'

T FT'
F id

T' *FT'

F id
T' є
E' є
Accept

LL(1)Grammar :A grammar whose parsing table has no
multiply-defined entries is said to be LL(1).

Example :- (H.W)

Implement Predictive Parsing Program

S iEtSS' a

S' eS ε

E b

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

	titel.doc
	L1
	L2
	L3
	L4
	L5
	ß
	ß
	ß
	ß
	ß
	ß
	ß
	ß

	L6
	L7
	L8
	L9
	L10
	L11
	L12
	L13
	L14
	ref.doc

