

Lecture 3

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 12

Lexical Analyzer
 The analysis of source program during compilation is often
complex . The construction of compiler can often be made easier
if the analysis of source program is separated into two parts , with
one part identifying the low – level language constructs , such as
variable names , keyword , labels , and operations , and the
second part determine the syntactic organization of the program .

Lexical Analyzer : the job of the lexical analyzer , or scanner , is
to read the source program ,one character at a time and produce as
output a stream of tokens . the tokens produced by the scanner
serve as input the next phase , parser . Thus , the lexical analyzers
job is the translate the source program into a form more
conductive the recognition by the parser .

Tokens : are used to represent low – level program units such as:-

- Identifiers , such as sum , value , and X .
- Numeric literals , such as 123 and 1.35e02 .
- Operators , such as +,*,&&, < = , and % .
- Keywords , such as if , else and returns.
- Many other language symbols .

 There are many ways we could represent the tokens of a
programming language . one possibility is to use a 2- duple of the
form < token – class, value > .

For example :-

- The identifiers sum and value may be represented as :

 < ident , “ sum “ >
 < ident , “ value” >

- The numeric literals 123 and 1.35E02 may be represented

as :

 < numericliteal , “ 123” >
 < numericliteral , “ 1.35E02” >
- The operators > = and + may be represented as :

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 13

 < relop , “ >= “ >
 < addop , “ + “ >

- The scanner may take the expression x = 2+f(3) , and
produce the following stream of tokens :

 < ident , “ x “ > < lparent , “ (“ >
 < assign – op , “ = “ > < numlit , “ 3 “ >
 < numlit , “ 2 “ > < rporent, “) “ >
 < addop , “ + “ > < semicolon , “ ; “ >
 < ident ,“ f ”>

Interaction of Scanner with Parser :

 Using only parser can become costly in terms of time and
memory requirements .The complexity and time can be reduced
by using a scanner .
 The separation of scanner and parser can have other
advantages, scanning characters is typically slow in compilers
and separating it from parsing particular emphasis can be given to
making the process efficient .
Therefore, The scanner usually interacts with the parser in one of
two ways :-

1- The scanner may process the source program in separate
pass before parsing begins . Thus the tokens are stored in
file or large table .

2- The second way involves an interaction between the
parser and scanner , the scanner called by the parser
whenever the next token in the source program is required .

PARSER

SCANNER

SYMBOL
Table

Source
program

Token

Get next

Token

Interaction of Scanner with Parser

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 14

 The latter approach is the preferred method of operation ,
since an internal form of the complete source program dose not
need to be constructed and stored in memory before parsing can
begin .
Note : The lexical analyzer may also perform certain secondary
tasks at the user interface : such task is stripping out from source
program comments and white space in the form of bank , tab and
new line characters.

Lexical Errors : the lexical phase can detect errors where the
characters remaining in the input do not form any token of the
language for example if the string “ fi “ is encountered in ‘ C ‘
program :-
 fi (A = = f(x)) ...

A lexical analyzer can not tell whether “ fi “ is misspelling of the
keyword “ if “ or an undeclared function identifier since “ fi “ is a
valid identifier , the lexical must return the token for an identifier
and let some other phase of compiler handle any error. The
possible error – recovery actions are :

1. Deleting an extraneous character .
2. Inserting a missing character .
3. Replacing an incorrect character by a correct char .
4. Transposing two adjacent characters .

 Finally , the scanner breaks the source program into tokens .
the type of token is usually represented in the form of unique
internal representation number or constant. For example, a
variable name may be represented by 1 ,a constant by 2 , a label
by 3 and so on .
 The scanner then returns the internal type of token and some
time the location in the table where the tokens are stored . Not all
tokens may be associated with location , while variable name and
constant are stored in table , operators , for example , may not be .

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 15

By their Fruit Ye shall know them

Example : Suppose that the value of tokens are :

 Variable name ____ 1
 Constant ______ 2
 Label _______ 3
 Keyword ______4
 Add operator _____ 5
 Assignment ____ 6

and the program is :
 Sum : A = a+b ;
 Goto Done ;

The output is :

Token Internal represent Location
Sum 3 1
: 11 0
A 1 2
= 6 0
A 1 2
+ 5 0
B 1 3
; 12 0
Goto 4 0
Done 3 4
; 12 0

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

	titel.doc
	L1
	L2
	L3
	L4
	L5
	ß
	ß
	ß
	ß
	ß
	ß
	ß
	ß

	L6
	L7
	L8
	L9
	L10
	L11
	L12
	L13
	L14
	ref.doc

