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Chapter One
Limits and Continuity
1. Limits

Definition 1.1 ( Limits ): We write
limf(x) =L
X—C

and say “ the limit of f(x), as x approaches c, equals L”

Example 1.2: Find the limit of the function f (x) = x?-x + 2 as x approaches 2.

Solution:

f-.'L'I T J r y — w2 - ]
approaches + 4 |
4. |1

S, SO

As x approaches 2,
Figure 1
limx?-x+2=2%2-2+2=4
xX—2

x—1
x2-1

Example 1.3: Guess the value of lin}
X

Solution:

0.5 + -
0 . ] - x
Figure 2
. x—1 . x—1 1 1 1
lim = m—=1m—=—=—=0.5
x51x2-1 x51 (x+1D)(x-1) xo1x+1 141 2
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The Limit Laws

To calculate limits of functions that are arithmetic combinations of functions having known limits, we
can use several easy rules:

THEOREM 1 —Limit Laws
If L. M, ¢, and k are real numbers and
lim f(x) =L and lim g{x) = M, then
1. Sum Rule: im(fix) + glx)y) =L+ M
2. Difference Rule: m(fix) —glx)) =L —M
3. Constant Multiple Rule: lim(k- f(x)) = k- L
4. Product Rule: m(fix) glx))=L-M
5. Quotient Rule: J!E;I:_ ':;Eg = J%, M=10
6. Power Rule: lim [ f(x) ]* = L", n a positive integer
7. Root Rule: lim W/ flx) = ‘tff =LV pna positive integer
(If n is even, we assume that f(x) = 0 for x in an interval containing c.)

Example 1.4: Find the following limits

x*+x? -1
(@) limx3 + 4x%2 -3 (b) lim ————— (o) lim V4x? -3
x—2 x-»-1 x24+5 x—>—2

Solution:
(@) limx3 +4x%2 =3 =1lim x3 +1lim 4x?—1lim 3=(2)3+4(2)?-3=21
x—2 X—2 x—2 x—2
xt+x? -1 lim xf e’ -1yt 21 1
(b) lim = x=-1 :( )"+ (1) -
X—>—

x2+5 lim x2+5 (=12 +5 6

x—--1

(©) limzw/4x2 -3= |lim 4x*>-3= J4(=2)2-3=+13
X—>— X——
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THEOREM 2—Limits of Polynomials

. n—1
If Pix) = @, x" + a,—x" " + --- + ay. then

lim P(x) = Plc) = a,c” + a,_1c"" ' + -+ + ay.
" =1

=y

bl (g gilly Jad 5 gaad) 5,58 Allall djle 1 Adaadla
Example 1.5 : Find lin;) x3—3x2+2x—1
xX—

Solution: lirr31)x3 —3x?+2x—1=32-3(3)?+23)-1=5
x—

THEOREM 3 —Limits of Rational Function

If P(x) and Q(x) are polynomials and Q(c) # 0. then

i P(x) P(c)
m i
X—>¢ (]( X) (]( C)

ALt Ja a5 b Al 1S 130 Ll el (ymg seilly (a5 i (5 sbasy Y alial) (S 131 2 5ol A1) Ale + Aiadle
Jalall aladinly ol (Rl 5 GaxSa g gana 5l GLA A idall dalall | (im e (o LA ) S A8 el Jlaill (3 ,k (s2al

(G al) il
Example 1.6 : Find the following limits
D 1 x3 +4x%2 -3 @ 1 x2+x—2 @ I Vx2 +100 — 10
o x2+5 Ak x2 —x 50 x2
Solution:
o x34+4x2 -3 (-1D3+4(-1)?*-3 —-1+44-3 0
(1) llm = = = — =
x> x?>+5 (-1?+5 6 6
x%4+x—2 x+2)(x—1 x+2 1+2
@ lim X% _ ( )( ) _ v _1+2 .
x-1 X% —x -1 x(x—1) x-1 X 1
3) 1 Vx?+100—-10 5 Vx? + 100 — 10 o Vx? + 100+ 10
O VX7 £ 1001 10
_ x?+ 100 — 100 2 1 1
li — = 0.05

X
m = lim =lim =
x>0 x2(v/xZ +100 + 10)  *>0x2(VxZ + 100 + 10) *~0+xZ+100+ 10 20
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Properties of Limits: oLl yaslas

dis ol (g9l all AW Gl -1

1) limK =K
X—C
C 2l BY) s (5 sl X salad) Al Ay -2
2) limx =c
X—C

1 1 X
3) lim —=+00 & lim —=—-0  but limI=0

x—0t X x-0" X x—0

4) lim sinx =0 & limcosx=1 & lim tanx =0
x—0 x—-0 x—-0

sinax ax

5) lim =1 & lim — =1
x-0  ax x—0 sinax
tanax ax
6) lim =1 & lim =1
x-0 ax x-0 tanax

Indeterminate Forms:

There are seven indeterminate forms in limits:

olo

,E,O X 00,00 — 00,0, 0% and 1*
Example 1.7 : Find lim iz if it exists.
x-0 X

Solution: As x becomes close to 0, x2 also becomes close to 0, and 1/x? becomes very large. (See the
table).

. 1 1 . 1 .
Hence, lim — = - = oo. So, lim — does not exists.
x—0 X 0 x>0 X

Example 1.8 : Investigate lim sin(g)
X—
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Solution: The function f(x) = sin (1r/x) is undefined at 0. The graph of function was

shown in Figure 5.

VA
y=sini@/x)

I
Il

| F4
T #
1

,‘|‘|{.

2 f ".-ll‘
- l_

Figure 5

Since, lim sin(%) = sin (E) = sinoo = o0, So, lim sin(>) does not exists.
x—0 X 0 x-0 X

THEOREM 4—The Sandwich Theorem
Suppose that g(x) = f(x) = hix) for all x in some open interval containing c,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim hix) = L.

X=rr X=r

Then lim f(x) = L.

==L

The Sandwich Theorem is also called the Squeeze Theorem
Example 1.9 : Show that lim x? sin% =0.
X

Solution: First note that we cannot use

1
limx? sin— = limx2X limsin— =0 X oo
x—0 X x—-0 x—-0 X

. .1 . .
because lll‘r(l) sin~ does not exists. However, since
xX—

1
—-1<sin—-<1
X

we have,

1
—x? < x%sin— < x?
X
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. 2 . 2 . 1 . 2
lim— x“ < limx“sin— < limx
x—-0 x—-0 X x—-0

o, 1
0<limx<sin—<0
x—-0 X

So, by Squeeze Theorem, we obtain

. o1
lim x%sin- = 0.
x—0 X

One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x approaches the
number ¢ from the left-hand side (where x < ¢) or the right-hand side (x > c) only.

THEOREM 6 Suppose that a function f'is defined on an open interval
containing c, except perhaps at ¢ itself. Then f(x) has a limit as x approaches ¢
if and only if it has left-hand and right-hand limits there and these one-sided
limits are equal:

lim f(x) = L = lim f(x) =L and lim_f(x) = L.

K= o Ko

In another word:

e Right-hand limit is the limit of f (x) as x approaches ¢ from the right, or lim_f(x) = L
X—C
e Left-hand limit is the limit of f(x) as x approaches c from the left, or lim f(x) =L
X—C
e lim f(x)=Lifandonlyif lim f(x) =Landlim f(x) =L
x-ct x—oct x—-c~

x>+1,x<1

Example 1.10 : Let f(x) = {3 —x x>1

(a) Find }Ciir%+ f(x)and }Ci_r)r}_ f(x)

(b) Does lim1 f(x) exist ? why ?
xX—

Dl e A (5 5 el e Aladl S 13 80 g g dpe ) Al Ao () 5S5 17 Adiadle

Dbl ddle e Jx (<) el Aadle 5 el e e Jai (>) S)ADle - 2
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Solution:
chl_r)r%+f(x) =3161_r)r%+3—x= 3—-1=2
lim f(x)=1lim x2+1=12+1=2
x—-1" x—-1"
Hence, lim1 f(x) = 2, so the limit exist.
X—

x>+1, x>0

Example 1.11: Let f(x) = { X +<0

(@) Find lim_ f(x) and lim f(x)
x—0t x—-0~
(b) Does lim0 f(x) exist ? why ?
X—
Solution:
: — 1 2 — N2 —
)lcl_r)ré+f(x)—3161_r)r(‘)1+x +1=04+1=1
lim f(x)=1lim x=0
x>0~ x>0~

So, lim0 f(x) does not exist.
X—

Piecewise-Defined Functions
Sometimes a function is described in pieces by using different formulas on different parts

of its domain. One example is the absolute value function

| | X, x=0 First formula
X| =
—X, x<20 Second formula

Absolute Value in Limit Problems

Example 1.12: Find
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|x + 2|
1 3
m, G35
Solution:
(x+2 ,x=>-2
x +2] _{—x—Z X < —2
) x+2 )
xll)rzl2+ (x + 3)m = xl_l)rzler x+3)=-2+3=1
) —x —2 _ —(x+2) ) (x+2)
x]_l)r{lz_ (x+3) Pl xll,rflz— (x + 3)W = —xlirzlz_ (x+3) Py
=— limz_ (x+3)=—-(-2+43)=-1
xX——
Limits Involving (%)
THEOREM 7 —Limit of the Ratio sin #/6 as 8 —0
. sinfl . .
lim =1 {# in radians) (1)
g—s0 0
Example 1.13: Show that
I sin2x 2 4 Y 1 cosx—l_0
(a) xl—l;% 5x B 5 an ( ) xll;% X B
Solution:
I sin2x 1 sin2x 1 I 2sin2x 2 I sin2x 2 % 1= 2
@ lim = - =gim = =gl =slim— =5 x1=3
. 2 (X . X
o cosx—1 (1 - 2sin (7)) -l —2sin (7)
(b)) lim———— = lim = lim
x—0 X x—0 X x—0 X
Letg =2
2
i 2sin*(8) . sinf 8 = —(1)(0) = 0
=TimTg == i sind =~()(O) =

Example 1.14: Find
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~ tant sec2t
lim
t—0 3t
Solution :
sint 1 )
lim tant sec2t _ ll' cost cos2t _ llim sint N 1 N 1
t—0 3t 3t-0 t 3t-0 t cost cos2t
11_ sint I 1 I 1 1 1 1 1
== X X == —X ===
3 tl_r)r(} t tl_r)r(} cost tl_rg cos2t 3 1 1 3

Limits at Infinity

Sometimes we need to know what happens to f(x) as x gets large and positive (x — o) or large and

negative (x » —).

Consider a function f(x) = %what dose lim,_,, f(x) equals ?

See that
x 1 10 100 1000 10000 100000 ... o
f(x) :1 1 0.1 0.01 0.001 0.0001 0.00001 0
x
f(x) gets close to 0, as x gets large and large, This written
1
lim —=0
X—+oo X
Or
1
lim —=0
X—>—00 X
Example 1.15: Show that limg_, o, % =0.
Solution: We know
—-1<sin8 <1
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-1 sin6 1

0 0 7]
I —1<l sm9<1 1
l—r>ro]o? 913)10 7] 1—r>{>105

sin@
0 < lim TS 0

[ZEEYe)

Then from Sandwich theorem:

I smH_
o 0

Limits at Infinity of Rational Functions

For rational function ! E %

1- Divide both the numerator and the denominator by the highest power of x in denominator.

- I degree of £(x) less than degree of g(x), then lim,_, .o - E’S

- If degree of £ (x) equals degree of g(x), then lim,_, .o - Eﬁ;

4- If degree of f(x) greater than degree of g(x), then lim, ! g; +o0

domys 3B 136 pliadl 3 Sy9m (ol el e lasd 3590 d IS s Bolgidlall i &S JIgall &l s : Dl
Co8 13 Ll Lol laue @Lﬂl QM ﬁL&A“ 4>y L“stuJ ol d>ys 3813 Ll [J¥- 9 @L‘J\ Qgs,'ua ‘GU&J\ dyo oo J81 Jawdd!
400 @L;JI QM fLiA]\ d>yo O.n_xSl bl dsya

Examples 1.16: Find the following limits if they exist

W 1 11x + 2 @ 5x%+8x—3 @ 1 x3—4x2+7
o %3 —1 i 3x2 2 it 2x% — 3
Solution:
11x 2 11 2
D i x+2_ F"’x_i‘_l. X2 T% 040 0
oo2xd —1  xow2x3_ 1 xow ., 1 2-0 2
=3 %3 33
5x2 8x 3 3
oy i P83 S tar e S+y—32 5+40-0 5
@) lim —— e — = lim 2= lim 2  3+0 3
2 ) 3 2
X X X
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. x3 x? + 7
C xXP—4x?+7 Tz Tz
® M Toe—s T T 3
X X2
7
= lim =—=00
xoe o i 2—0 2
X2
Example 1.17: Find
3
Y x2+5
im ——
x=04/x3 + 4
Solution:
3 5 5
2
x—3 +— 1+ —3
lim—xi xi:lim x7:1+02
x>0 [43 4 x—>oo\/ 4 \/1 +0
it T+
Home works
Find the following limits
. 5x348x?2 . x3—a? . Sin5x . tan2y
1) llmx_)o m ) 2) llmx_)a m ) 3) llmx_>0 m ) 4) llmy_,a T
Sin2x . 1 . 3x345x%2-7 . x3-1
) 6) lll'l'lx_>OO (1 + Cos ;) ) 7) lll’ﬂx_>00 m ) 8) llmx_,oo m
1

S im0
SinX) , 10)lim,, Sin (gCos(tanX)), 11) limy_,, —3;’: , 12) limx-»—rm

1-——

9) lim, (

11
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2. Continuity

We noticed that the limit of a function as x approaches c can often be found simply by calculating the
value of the function at c. Functions with this property are called continuous at c.

Definition 2.1 ( Continuity at a Point ): A function f is continous at c if

lim £(x) = f(c)

Continuity Test
A function f(x) is continuous at a point x = ¢ if and only if it meets the following
three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim,_,_ f(x) exists (f has a limit as x — c).
3. lim,__._ f(x) = f(c) (the limit equals the function value).

Remark 2.2: If a function f is not continuous at a point c, we say that f is discontinuous at c and c is a
point of discontinuity of f.

Example 2.3: 1- The identity function f(x) = x and constant functions f(x) = k are continuous
everywhere

2- The function f(x) = i IS continuous at every point of f except x = 0. It has a point of discontinuity

atx = 0.

Algebraic combinations of continuous functions are continuous wherever they are defined.

THEOREM 8 —Properties of Continuous Functions
If the functions f and g are continuous at x = ¢, then the following algebraic
combinations are continuous at x = c.

1. Sums: rF+ g

2. Differences: fF— g

3. Constant multiples: k- f, for any number k

4. Products: f-g

5. Quotients: f/g, provided g(c) #= O

6. Powers: ", n a positive integer

7. Roots: N/f. provided it is defined on an interval

containing ¢, where n is a positive integer

12
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Example 2.4: Show that the function f(x) = x2 + 2x — 3 is continuous at x = 2.
Solution:

1-f(2)=2%2+2(2)-3=5

2-lim,,, f(x) =lim,, x2 +2x —3 =22+4+2(2)-3=5

3-lim,,, f(x) =f(2) =5

So, f is continuous at x = 2.

Remark 2.5: The polynomial functions are continuous everywhere.

Example 2.6: Where are each of the following functions discontinuous ?

x?—x—-2

(@ fO)=——"%5—

1
B) f)={zz Tx*0
1 ifx=0
x2—x-2
© f)={"x=2  Ux*2
1 ifx=2

Solution: (a) Notice that f(2) does not exists, so f is discontinuous at 2. But f(x) is continuous at all
other numbers.

(b)

1- £(0) = 1 exists.

2- limy o f(x) =lim,_, x_12 = oo does not exist.
So f is discontinuous at 0.

(©)

1- f(2) = 1 exists

. . x%—x-2 . (x=2)(x+1)
2- lim,_,, f(x) =lim,_,, — = lim,_,, —

=limy_,(x+1)=2+1=3
3-lim,,; f(x) #f(2)
So f is discontinuous at 2.

13
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xX>+1,x>1

continuousatx =1 ?
2x ,x<1

Example 2.7: Is the function f(x) = {

Solution:
1-f() =12 +1=2
2-
xli,r{]+f(x) =xli_)r{1+x2 +1=12+1=2
Jim £ = Jim 2x =2(1) =2
So, lim,_,; f(x) exists
3-lim,,; f(x) =f(1) =2
Therefore, f is continuous at x = 1.
Example 2.8: What value should be assigned to a to make the function

x? -1, x<3
2ax x =3

flx) = {
continuous at x = 37?
Solution: To make f(x) continuous atx = 3

lim £(x) = £(3)

lim x?2 — 1 =2a(3)

x—3"

32-1=6a

8=6a=a=

[e )3 Nee]
Q
Il

w e

Home Works
1- Is the function f(x) = ﬁ continuous at x = 2 ?

3x+1, x=>-1

2 continuous at x = —17?
x° ,x<-1

2- Is the function f(x) = {

14



