The inverse Fourier transform

if $F(\omega)$ is the Fourier transform of f(t), i.e.,

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

then

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

let's check

$$\frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} F(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} \left(\int_{\tau = -\infty}^{\infty} f(\tau) e^{-j\omega \tau} \right) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{\tau = -\infty}^{\infty} f(\tau) \left(\int_{\omega = -\infty}^{\infty} e^{-j\omega(\tau - t)} d\omega \right) d\tau$$

$$= \int_{-\infty}^{\infty} f(\tau) \delta(\tau - t) d\tau$$

$$= f(t)$$

Example

Determine the inverse transform, if the Fourier transform $F(\omega)$ are given as;

$$F(\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| \le \pi \end{cases}$$

Sol:

$$f(n) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega n} d\omega$$

$$f(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n} \qquad n \neq 0$$

For n=0, we have

$$f(0) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{\omega_c}{\pi}$$

Hence

$$f(n) = \begin{cases} \frac{\omega_c}{\pi} & n = 0\\ \frac{\omega_c \sin \omega_c n}{\pi \omega_c n} & n \neq 0 \end{cases}$$

Matlab

```
1 -
     clc
2 -
     clear
     wc=0.5;
     n=[0:35];
     m=[0:-1:-35];
     a=1./(pi*n);
     f1=a.*sin(wc*n);
     f2=f1;
     9 -
     [x1 y1]=dimpulse(f1,d,n)
10 -
     nm=[m n];
11 -
12 -
     f=[f2 f1];
13 -
     stem(nm,f)
14
```



```
1
  _
        clear
 2 -
        clc
 3
        w=[0:.01:20];
        A=1;
        b=A*sin(w);
 5 -
        f=b./w;
        plot(w,f,-w,f)
        xlabel('w')
        ylabel('F(w)')
 9 -
        title( 'the sinc(w) with amplit
10 -
11
```


The unit sample and unit step

Let's examine some special signals, first in discrete time, then in continuous time.

Definition 1 The discrete time unit step is given by

Third Stage
Dr. Mahmoud Fadhel

$$u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$$

The unit sample or impulse is defined as

$$\delta[n] = u[n] - u[n-1]$$

We notice that they are related via the sum relation

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

Notice the unit sample sifts signals

Proposition 1 The unit sample has the "sampling property," picking off values of signals that it sums against:

$$x[n] = \sum_{k} x[n-k]\delta[k]$$

This is true for all signals, implying we can derive various properties, the "summed" and "differenced" versions. Defining x[n] = u[n], then

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

Odd and Even Functions

Even	Odd
f(-t) = f(t)	f(-t) = -f(t)
Symmetric	Anti-symmetric
Cosines	Sines
Transform is real*	Transform is imaginary*

^{*} for real-valued signals

Sinusoids

Spatial Domain f(t)	Frequency Domain $F(u)$	
$\cos(2\pi st)$	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$	
$sin(2\pi st)$	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$	

Constant Functions

Spatial Domain $f(t)$	Frequency Domain $F(u)$
1	$\delta(u)$
a	a δ(u)

Matlab

Syms t w wc u

Fourier (dirac (t), w)	return	1
Fourier (dirac (1), w)	return	0
iFourier (dirac (w), t)	return	1/(2*pi)
iFourier (a*dirac (w), t)	return	a/(2*pi)
iFourier (dirac (1), t)	return 0	

Delta Functions

Spatial Domain $f(t)$	Frequency Domain $F(u)$	
$\delta(t)$	1	

Square Pulse

Spatial Domain
$$f(t)$$
 Frequency Domain $F(u)$
$$\begin{cases} 1 & \text{if } -a/2 \leq t \leq a/2 \\ 0 & \text{otherwise} \end{cases} \quad \text{sinc}(a\pi u) = \frac{\sin(a\pi u)}{a\pi u}$$

Square Pulse

Differentiation

Spatial Domain $f(t)$	Frequency Domain F(u)	
<u>d</u>	2πiu	

Gaussian

Spatial Domain Frequency Domain
$$F(u)$$
 $F(u)$ $e^{-\pi t^2}$

Some Common Fourier Transform Pairs

Spatial Domain		Frequency Domain	
f(t)		F(u)	
Cosine	$cos(2\pi st)$	Deltas	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$
Sine	sin(2πst)	Deltas	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$
Unit	1	Delta	$\delta(u)$
Constant	а	Delta	aδ(u)
Delta	$\delta(t)$	Unit	1
Comb	$\delta(t \mod k)$	Comb	$\delta(u \mod 1/k)$

Properties: Linearity

Adding two functions together adds their Fourier Transforms together:

$$\mathcal{F}(f+g) = \mathcal{F}(f) + \mathcal{F}(g)$$

Multiplying a function by a scalar constant multiplies its Fourier Transform by the same constant:

$$\mathcal{F}(af) = a \mathcal{F}(f)$$

Properties: Notation

Let F denote the Fourier Transform:

$$F = \mathcal{F}(f)$$

Let \mathcal{F}^{-1} denote the Inverse Fourier Transform:

$$f = \mathcal{F}^{-1}(F)$$

More Common Fourier Transform Pairs

Spatial Domain f(t)		Frequency Domain F(u)	
Square	 if -a/2 ≤ t ≤ a/2 otherwise 	Sinc	sinc(aπu)
Triangle	$1 - t $ if $-a \le t \le a$ 0 otherwise	Sinc ²	sinc ² (aπu)
Gaussian	$e^{-\pi t^2}$	Gaussian	e ^{-πυ²}
Differentiation	<u>d</u>	Ramp	2πiu

Rayleigh's Theorem

Total "energy" (sum of squares) is the same in either domain:

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(u)|^2 du$$

Fourier Transform	MATLAB Commands
$f(x) = e^{-x^2}$	<pre>syms x; f = exp(-x^2); fourier(f)</pre>
$F[f](w) = \int_{-\infty}^{\infty} f(x)e^{-ixw}dx$	returns
$= \sqrt{\pi}e^{-w^2/4}$	ans = $pi^{(1/2)}/exp(w^2/4)$
$g(w) = e^{- w }$	<pre>syms w; g = exp(-abs(w)); fourier(g)</pre>
$F[g](t) = \int_{-\infty}^{\infty} g(w)e^{-itw}dw$	returns
$=\frac{2}{1+t^2}$	ans = 2/(v^2 + 1)
$f(x) = xe^{- x }$	<pre>syms x u; f = x*exp(-abs(x));</pre>
$F[f](u) = \int_{-\infty}^{\infty} f(x)e^{-ixu}dx$	fourier(f,u) returns
$= -\frac{4iu}{(1+u^2)^2}$	ans = -(u*4*i)/(u^2 + 1)^2

$$\begin{split} f(x,v) &= e^{-x^2 \frac{|v| \sin v}{v}}, \; x \; \text{real} \\ F[f(v)](u) &= \int\limits_{-\infty}^{\infty} f(x,v) e^{-ivu} dv \\ &= -\arctan \frac{u-1}{x^2} + \arctan \frac{u+1}{x^2} \\ &= -\arctan ((u+1)/x^2) \dots \\ &= -\arctan (1/x^2 * (u-1))]) \end{split}$$