

Lectures in :

Compilers

Principles & Techniques

By

Uni.Al-Anbar,Computers College
Dr. Esam T. Yassen

Adapted By
Dr.Sameeh Abdulghafour Jasim

Uni. of Al-MAARIF, Col. of
Sciences

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 32

Bottom-Up Parsing
 The term "Bottom-Up Parsing" refer to the order in which
nodes in the parse tree are constructed, construction starts at the
leaves and proceeds towards the root. Bottom-Up Parsing can
handle a large class of grammars.

1. Shift-Reduce Parsing: Is a general style of Bottom-up
syntax analysis , it attempts to construct a parse tree for an
input string beginning at leaves and working up towards
the root,(reducing a string w to the start symbol of
grammar).At each reduction step a particular substring
matching the right side of production is replaced by the
symbol on the left of that production.

Example : consider the grammar

And the input is abbcde
The implementation Bottom-Up Parsing is

Handle : Is a substring that matches the right side of a
production.

Stack Implementation of Shift-Reduce Parsing:
A convenient way to implement a shift-reduce parser is to use a
Stack to hold a grammar symbols and an input buffer to hold the
sting w to be parsed. We use $ to mark the bottom of stack and
also the right end of the input string. There are actually four
possible actions:

S aABe

A Abc b

B d

a b b c d e
a A b c d e
a A d e
a A B e
S
Accept

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 33

1. Shift : The next input symbol is Shifted onto the top
 of stack.
2. Reduce : Replace the handle with nonterminal.
3. Accept : The parser announces successful
 completion of parsing .
4. Error : The parser discovers that syntax error has
 occurred and calls an error recovery routine.
Example: Consider the following grammar

 And the input string is id + id * id, then the
implementation is :

Stack Input Buffer Action

$
$id
$E
$E+
$E+id
$E+E
$E+E*
$E+E*id
$E+E*E
$E+E
$E

id+id*id$
 +id*id$
 +id*id$
 id*id$
 *id$
 *id$
 id$
 $
 $
 $
 $

Shift
Reduce: E→id
Shift
Shift
Reduce: E→id
Shift(*)
Shift
Reduce: E→id
Reduce: E→E*E
Reduce: E→E+E
Accept

Conflicts During Shift-Reduce Parsing:

There are context free grammars for which shift-reduce
parsing cannot be used. Ambiguous grammars lead to parsing
conflicts. Can fix by rewriting grammar or by making
appropriate choice of action during parsing. There are two type
of conflicts :

E E+E E*E (E) id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 34

Example is Better than Precept

1. Shift/Reduce conflicts: should we shift or reduce? (See
previous example (*))

2. Reduce/Reduce conflicts: which production should we
reduce with? for example:

stmt → id(param)
param → id
expr → id(expr) | id

Stack Input Buffer Action

$...id(id ,id)...$ Reduce by ??

Should we reduce to param or to expr ?

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 35

LR Parsers
 This section presents an efficient Bottom-Up syntax
analysis technique that can be used to parse a large class of
context-free grammars. The technique is called LR(k) parsing,
the "L" is for left to right scanning of input, the "R" for
constructing a rightmost derivation in reverse, and "k" for the
number of input symbols of lookahead that are used in making
parsing decisions-when "k" is omitted , k is assumed to be 1).
LR parsing is attractive for a variety of reasons:-

1. LR parsers can be constructed to recognize virtually all
programming language constructs for which context-free
grammars can be written.

2. The LR parsing method is the most general
nonbacktracking shift-reduce parsing method known, yet it
can be implemented as efficiently as other shift-reduce
methods.

3. The class of grammars that can be parsed using LR
methods is a proper superset of the class of grammars that
can be parsed with predictive parsers.

The schematic form of an LR parser is shown in following
figure .It consists of an Input,an Output,a Stack,a Driver
program,and a Parsing table that has two parts (action and
goto) .

a1 …… ai ……. an $

Sm
Xm
Sm-1
Xm-1
………
S0

LR
Parsing program

action goto

Output

Input

Stack
 Model of an LR parser

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 36

 There are three techniques for LR parser depending on the
construct of LR parsing table for a grammar :

1. Simple LR parser (SLR for short):Is the easiest to
implement but the least powerful of the three.It may be
fail to produce a parsing table for certain grammars on
which the other methods succeed.

2. Canonical LR parser: It is most powerful, and most
expensive.

3. Lookahead LR parser (LALR for short):It is
intermediate in power and cost between other two. The
LALR method will work on most programming-language
grammars and ,with some effort ,can be implemented
efficiently.

The LR parsing Algorithm :- The LR program is the same for
all LR parsers, only the parsing table changes from one parser to
another.

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 37

Implementation of SLR parser:-
The SLR-parser Extremely tedious to build by hand, so

need a generator. The following steps represents the main
stages, which are used to build system that is used for
implementing the SLR-parser:

1. Input stage : In this state the grammar has been reading
and the symbols of grammar (terminals and nonterminals)
could be specified and each production of grammar must be
on one straight line. Finally, the productions has been
numbered.

 For example, consider the grammar

2. Compute First & Follow stage : Through this state First

& Follow could be detected for each nonterminal.
3. Construct DFA stage:By using a deterministic finite
automaton (DFA)the SLR-parser know when to shift and
when to reduce. the edges of DFA are labeled by symbols
of grammar(terminals & nonterminals).In this state, where
the input begins with S'(root),that means that it begins with
any possible right-hand side of an S-production we indicate
that by

Call this state1 or state0,a productions combined with the
dot(.) that indicates a position of parser.Firstly ,for each
production in state1 we exam the symbol that occur after
dot, there are three cases :

1. If the symbol is null (the dot has been occurred in the end
of right side of production),then there are no new state .

2. If the symbol is "$" sign, then there are no new state.

E E+T T

T T*F F

F (E) id

1 E E+T
2 E T
3 T T*F
4 T F
5 F (E)
6 F id

S' .S$
S .
.
.

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 38

3. If the symbol is a terminal or nonterminal, then there are
new state, this state start with current production after the dot
has been proceeded one step forward. If the symbol has been
occurred after the dot(in new position)is nonterminal such as A,
then we add all possible right hand side of A to a new state, and
so on.

You must know that any new state must built firstly in a buffer,
and we compare it with a previous states in DFA, if there are no
similarity situation then the new state is added to DFA and give
it a new number equal to number of states in DFA plus one.
Finally ,we repeat this steps on all new states until the DFA
completed.
Example : consider grammar

Initially, it will have an empty stack, and the input will be
a complete S-sentence followed by $;that is the right-hand side
of the S' rule will be on the input. we indicate this as S' . S$
where the dot indicates the current position of the parser. So:

E T+E
E T
T x

0 S' E$
1 E T+E
2 E T
3 T x

S' . E$
E .
T+E
E . T

E T+ E
.

T x .

S' E .

E T .
+E

E T+
.E
E .
T+E
E .T

E
x

T

E

x

0

3

2

4

1

5

+ T

 Deterministic finite automaton (DFA)

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 39

4. Construct SLR table stage:The SLR-table is a data
structure consist of many rows equal to the number of the
states in DFA,also many columns equal to the number of
grammar symbols plus "$" sign .As know ,data structure
presents fast in information treatment and information
retrieve .In this stage SLR-table is constructed .this table had
seen as two subtables:

1. The Action table: consist of many rows equal to number
of states in DFA,and many columns equal to number of
terminals plus "$" sign(the end of input).

2. The Goto table: consist of many rows equal to number of
states in DFA,and many columns equal to number of
nonterminals.

the elements(entries) in the SLR-table are labeled with four
kinds of actions:

• Sn shift into state n
• gn goto state n
• rk reduce by production k
• a accept
• error (denoted by blank entry in the table)

For the construction of this table and the contribution the
actions on the tables cells must pass to each state in DFA
individually :

• Shift action & Goto action could be specified according to the

edge which has been moved from the current state(n) to the
new state.
If the edge was terminal symbol (t) then
 Cell[n-1,t]= sn
If the edge was nonterminal symbol (N) then
 Cell[n-1,N]= gn

N

State
n+1

State
n

t
State
n-1

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 40

• If there are production in current state has the form
 (the dot in the end of right hand side, ß is any
string),then the action is reduce
 Cell[n-1,f]=rk { f in Follow(A), k is the no. of

 production}
• If there are production in current state has the form

 {the dot occurred before $ sign, ß is any string },then
the action is accept

 Cell[n-1,$]=a
• Finally, any empty cell in row n-1 means error action.
Repeat the above steps for each states in DFA.

state x + $ E T

0 S4 g1 g2
1 Accept
2 S3 r2
3 S4 g5 g2
4 r3 r3
5 r1

5.Implement LR Algorithm : Suppose input string is x+x.
After insert input string the LR-program is executed, as
follows:

Stack Input Action
0 x+x $ shift
0S4 +x$ Reduce by T x
0T2 +x$ shift
0T2S3 x$ Shift
0T2S3S4 $ Reduce by T x
0T2S3T2 $ Reduce by E T
0T2S3E5 $ Reduce by E T+E
0E1 $ Accept

A ß.

A ß.$

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 41

Semantic Analysis
 The semantic analysis phase of compiler connects variable
definition to their uses ,and checks that each expression has a
correct type.
This checking called "static type checking" to distinguish it
from "dynamic type checking" during execution of target
program. This phase is characterized be the maintenance of
symbol tables mapping identifiers to their types and locations.

Examples of static type checking:-
1. Type checks : A compiler should report an error if an

operator is applied to an incompatible operand.
2. Flow of control checks:- Statements that cause flow of

control to leave a construct must have some place to which
to transfer the flow of control. For example, a "break"
statement in 'C' language causes control to leave the
smallest enclosing while , for , or switch statement ;an
error occurs if such an enclosing statement does not exist.

3. Uniqueness checks:- There are situations in which an
object must be defined exactly once. For example, in
'Pascal' language, an identifier must be declared uniquely.

4. Name-related checks:- Sometimes, the same name must
appear two or more times. For example, in 'Ada' language
a loop or block may have a name that appear at the
beginning and end of the construct. The compiler must
check that the same name is used at both places.

Type system:-

 The design of type checker for a language is based on
information about the syntactic constructs in the language, the
notation of types, and the rules for assigning types to language
constructs.
The following excerpts are examples of information that a
compiler writer might have to start with.

• If both operands of the arithmetic operators "addition",
"subtraction", and "multiplication" are of type integer ,
then the result is of type integer.

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 42

• The result of Unary & operator is a pointer to the object
referred to by the operand. If the type of operand is T , the
type of result is ' pointer to T '.

We can classify type into :
1. Basic type: This type are the atomic types with no

internal structure , such as Boolean, Integer, Real,
Char, Subrange, Enumerated, and a special basic
types " type-error , void ".

2. Construct types: Many programming languages
allows a programmer to construct types from basic
types and other constructed types. For example
array, struct, set.

3. Complex type: Such as link list, tree, pointer.

 Type system:- is a collection of rules for assigning type
expressions to the various parts of a program. A type checker
implements a type system.

Specification of a simple type checker:-
 The type checker is a translation scheme that synthesizes
the type of each expression from the types of its subexpressions.
In this section, we specify a type checker for simple language in
which the type of each identifier must be declared before the
identifier is used.
Suppose the following grammar to generates program,
represented by nonterminal P, consisting of a sequence of
declarations D followed by a single expression E.

Type checker (translation scheme) produce the following part
that saves the type of an identifier:

P D ; E

D D ; D id : T

T char int array[num] of T T

E literal num id E mod E E[E] E

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 43

• The type checking of expression: the following some
of semantic rules:

We can use a function lookup(e) to fetch the type saved in ST
,if identifier " e " appears in an expression:

• The type checking of statements :

P D;E
D D;D
D id:T {addtype(id.entry,T.type)}
T char {T.type=char}
T int {T.type=int}
T T1 {T.type=pointer(T1.type)}
T array[num] of T1 {T.type=array(1..num.val,T1.type)}

E literal {E.type=char} //constants represented
E num {E.type=int} // = =

E id {E.type=lookup(id.entry)}

The following expression formed by applying (mod) to two subexpression:

E E1 mod E2 {E.type= if E1.type=int and E2.type=int then int
 Else type-error }
An array reference:
E E1[E2] { E.type= if E2.type=int and E1.type=array[s,t] then t
 Else type-error}

E E1 { E.type= if E1.type=pointer(t) then t
 Else type-error}

S id=E {S.type=if id.type = E.type then void
 Else type-error)}

S if E then S1 {S.type= if E.type=boolean then S1.type
 Else type-error }

S while E do S1 {S.type= if E.type=boolean then S1.type
 Else type-error }

S S1 ; S2 { S.type= if S1.type=void and S2.type=void then void
 Else type-error}

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 44

Intermediate Code Generation (IR)

 IR is an internal form of a program created by the
compiler while translating the program from a H.L.L to
L.L.L.(assembly or machine code),from IR the back end of
compiler generates target code.
Although a source program can be translated directly into the
target language,some benefits of using a machine independent
IR are:

1. A compiler for different machine can be created by
attaching a back end for a new machine into an existing
front end.

2. Certain optimization strategies can be more easily
performed on IR than on either original program or L.L.L.

3. An IR represents a more attractive form of target code.
Intermediate Languages:-

1. Syntax Tree and Postfix Notation are tow kinds of
intermediate representations, for example a=b*-c+b*-c

 = =

 a + a +

 * * *

 b - b - b -

 c c c

• A DAG give the same information in syntax tree but in
compact way because common subexpressions are
identified.

• Postfix notation is a linearized representation of a syntax
tree, for example: a b c - * b c - * + =

• Two representation of above syntax tree are:

Syntax Tree DAG

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 45

2. Three-Address Code is a sequence of statements of the
general form :

 X=Y op Z // op is binary arithmetic
 operation
 For example : x + y * z

 t1 = y * z
 t2 = x + t1

where t1 ,t2 are compiler generated temporary.

= • •

id c

id b

id a

+ • •

* • •

- •

id c

id b

- •

* • •

 id b

 id c

 - 1

 * 0 2

 id b

 id c

 - 5

 * 4 6

 + 3 7

 id a

 = 9 8

…. ….. …..

….. ….. …..

0

1

2

3

4

5

6

7

8

9

10

1 2

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 46

Types of three address code statement:-

1. Assignment statements of the form X=Y op Z (where
op is a binary arithmetic or logical operator).

2. Assignment instructions of the form X= op Y (op is
a unary operator).

3. Copy statements of the form X=Y .
4. Unconditional jump (Goto L).
5. Conditional jump (if X relop Y goto L).
6. Param X & Call P,N for procedure call and and

return Y , for example :
 Param x1
 Param x2
 ……..
 Param xn
 Call P,n

7. Index assignments of the form X=Y[i] & X[i]=Y.
8. Address & Pointer Assignments

 X= &Y
 X= * Y
 *X= Y
Example : a= b * -c + b * -c

t1 = - c
t2 = b * t1
t3 = - c
t4 = b * t3
t5 = t2 + t4
a = t5

t1 = - c
t2 = b * t1
t5 = t2 + t2
a = t5

Three address code
For syntax tree

Three address code
For DAG

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 47

Note: Three-address statements are a kin to assembly code
statements can have symbolic labels and there are statements for
flow of control.

Implementation of Three Address Code :-

 In compiler , three-address code can be implement as
records, with fields for operator and operands.

1. Quadruples :- It is a record structure with four
fields:

• OP // operator
• arg1 , arg2 // operands
• result

2. Triples :- To avoid entering temporary into ST , we

might refer to a temporary value by position of the
statement that compute it . So three address can be
represent by record with only three fields:

• OP // operator
• arg1 , arg2 // operands

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 48

Example: a = b * -c + b * -c

i. By Quadruples

Position OP arg1 arg2 result
0 - c t1
1 * b t1 t2
2 - c t3
3 * b t3 t4
4 + t2 t4 t5
5 = t5 a

ii. By Triples

Position OP arg1 arg2
0 - c
1 * b (0)
2 - c
3 * b (2)
4 + (1) (3)
5 = a (4)

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 49

Code Optimization
Compilers should produce target code that is as good as can be
written by hand. This goal is achieved by program
transformations that are called " Optimization " . Compilers that
apply code improving transformations are called " Optimizing
Compilers ".
Code optimization attempts to increase program efficiency by
restructuring code to simplify instruction sequences and take
advantage of machine specific features:-

• Run Faster , or
• Less Space , or
• Both (Run Faster & Less Space).

The transformations that are provided by an optimizing compiler
should have several properties:-

1. A transformation must preserve the meaning of
program. That is , an optimizer must not change the
output produce by program for an given input, such
as division by zero.

2. A transformation must speed up programs by a
measurable amount.

This lecture concentrates on the transformation of intermediate
code (Mid-Optimization or Independent Optimization),this
optimization using the following organization:-

Source
Code

Front End

Code
Generation

Intermediate
Representation

Target
Code

High-Level
Optimization

Low-Level
Optimization

Mid-Level
Optimization

Places for Optimization

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 50

This organization has the following advantages :-

1. The operations needed to implement high-level constructs
are made explicit in the intermediate code.

2. The intermediate code can be independent of the target
machine, so the optimizer does not have to change much if
the code generator is replaced by one for different
machine.

Basic Blocks:-
 The code is typically devided into a sequence of "Basic
Blocks". A Basic Block is a sequence of straight-line code,with
no branches " In " or " Out " except a branch "In" at the top of
block and a branch "Out" at the bottom of block.

• Set of Basic Block : The following steps are used to set
the Basic Block:

1. Determine the Block beginning:
i- The First instruction
ii- Target of conditional & unconditional

Jumps.
iii- Instruction follow Jumps.

Front End

Optimizer

Code
Generation

Control
Flow

Analysis

Data
Flow

Analysis

Transformations

Organization of the Optimizer

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 51

2. Determine the Basic Blocks:
 i-There is Basic Block for each Block beginning.
 ii-The Basic Block consist of the Block beginning
 and runs until the next Block beginning or
 program end.

Example\\

1) i=0
2) t=0
3) t=t+1
4) i=i+1
5) if I < 10 then goto 3
6) x=t

1) i=0
2) t=0

3) t=t+1
4) i=i+1
5) if I < 10 then goto B2

6) x=t

B2

B3

B1

1) i=0
2) t=0

B1

6) x=t
 B3

3) t=t+1
4) i=i+1
5) if I < 10 then goto 3

B2

Basic Blocks

Control Flow

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 52

Data – Flow Analysis (DFA)
 In order to do code optimization a compiler needs to
collect information about program as a whole and to distribute
this information to each block in the flow graph. DFA provides
information about how the execution of a program may
manipulate its data , and it provides information for global
optimization .

 There are many DFA that can provide useful information
for optimizing transformations. One data-flow analysis
determines how definitions and uses are related to each other,
another estimates what value variables might have at a given
point, and so on. Most of these DFAs can be described by data
flow equations derived from nodes in the flow graph.

Reaching Definitions Analysis: All definitions of that variable,
which reach the beginning of the block, as follow:

1. Gen[B] : contains all definitions d:v=e , in block B that v
 is not defined after d in B.

2. Kill[B] : if v is assigned in B , then Kill[B] contains all
 definitions d:v=e,in block different from B.

3. In[B] : the set of definitions reaching the beginning of B.
 In[B] = ∪ Out[H] where H ∈ Pred[B]

4. Out[B] : the set of definitions reaching the end of B.
 Out[B] = Gen[B] ∪ (In[B] – Kill[B])

Example

d1 : a=
d2 : b=
d3 : c=

d4 : b=

d6 : b=
d7 : c=

d5 : c=

d8 : a=

B1

B2 B3

B4

B5

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 53

Block Gen Kill In Out

B1 d1d2d3 d4d5d6d7d8 Ø d1d2d3
B2 d4 d2d6 d1d2d3 d1d3d4
B3 d5 d3d7 d1d2d3d6d7 d1d2d5d6
B4 d6d7 d2d3d4d5 d1d2d5d6 d1d6d7
B5 d8 d1 d1d2d3d4d5d6 d2d3d4d5d6d8

Loop Information: The simple iterative loop which causes the
repetitive execution of one or more basic blocks becomes the
prime area in which optimization will be considered.Here we
determine all the loops in program and limit headers &
preheaders for every loop, for example:

Loop No. Header Preheader Blocks

1 B2 B1 2-3-4-5-2
2 B2 B1 2-2
3 B3 B2 3-3

B1

B2

B3

B4

B6 B5

Flow Graph

Loop Information

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 54

Code Optimization Methods
A transformation of program is called " Local " if it can
performed by looking only at the statements in a Basic Block,
otherwise, it is called " Global " .

Local Transformations:
1. Structure-Preserving Transformations:-

• Common Subexpression Elimination
• Dead Code Elimination

2. Algebraic Transformations:-This transformations uses to

change the set of expressions ,computed by a basic block,
with an algebraically equivalent set. The useful ones are
those that simplify expressions or replace expensive
operations by cheaper one, such as:

 x:=x+0
 x:=x*1 Eliminated
 x:=x/1

 x:= y^2 x:=y*y
Another class of algebraic transformations is Constant Folding
,that is, we can evaluate constant expressions at compiler time
and replace the constant expressions by their values, for
example, the expression 2*3.14 would be replaced by 6.28.

Global Transformations:

1. Common Subexpression Elimination

 a=b+c a=b+c
 c=b+c c=a
 d=b+c d=b+c
2. Dead Code Elimination: Variable is dead if never used

 x=y+1
 y=1 y=1
 x=2*z x=2*z

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 55

3. Copy Propagation

 Origin Copy Propagation Dead Code
 x=t3 x=t3
 a[t2]=t5 a[t2]=t5 a[t2]=t5
 a[4]=x a[4]=t3 a[4]=t3
 Goto B2 Goto B2 Goto B2

4. Constant Propagation

 Origin Copy Propagation Dead Code
 x=3 x=3
 a[t2]=t5 a[t2]=t5 a[t2]=t5
 a[4]=x a[4]=3 a[4]=3
 Goto B2 Goto B2 Goto B2

5. Loop Optimization

• Code Motion: An important modification that
decreases the amount of code in a loop is Code
Motion. If result of expression does not change
during loop(Invariant Computation),can hoist its
computation out of the loop.

 For(i=0;i<n;i++)
 A[i]=a[i]+(x*x)/(y*y);

 c=(x*x)/(y*y);
 For(i=0;i<n;i++)
 A[i]=a[i]+c;

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 56

• Strength Reduction: Replaces expensive operat-

-ions (Multiplies, Divides)by cheap ones (Adds,
Subs).For example, suppose the following
expression:

For(i=1;i<n;i++){v=4*i;s=s+v;} i is induction variable

Then:

v=0;
For(i=1;i<n;i++){ v=v+4; s=s+v; }

Induction Variable: is a variable whose value changes by a
constant amount on each loop iteration.

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 57

Code Generation

 In computer science, code generation is the process by
which a compiler's code generator converts some internal
representation of source code into a form(e.g., machine
code)that can be readily executed by a machine.
Issues in the Design of a Code Generator:-

1. Input to the Code Generator :The input to the code
generator consists of the intermediate representation of the
source program(Optimized IR),together with information
in ST that is used to determine the Run Time Addresses of
the data objects denoted by the names in IR. Finally, the
code generation phase can therefore proceed on the
assumption that its input is free of the errors.

2. Target Programs : The output of the code generator is the
target program. The output code must be Correct and of
high Quality, meaning that it should make effective use of
the resources of the target machine. Like the IR ,this
output may take on a variety of forms:

a. Absolute Machine Language // Producing this form
as output has the advantage that it can placed in a
fixed location in memory and immediately executed.
A small program can be compiled and executed
quickly.

b. Relocatable Machine Language // This form of the
output allows subprograms to be compiled
separately. A set of relocatable object modules can
be linked together and loaded for execution by
linking-loader.

3. Memory Management : Mapping names in the source
program to addresses of data objects in run time memory.
This process is done cooperatively by the Front-end &
code generator.

4. Major tasks in code generation : In addition to the basic
conversion from IR into a linear sequence of machine
instructions, a typical code generator tries to optimize the
generated code in some way. The generator may try to use

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 58

faster instructions, use fewer instructions ,exploit available
registers ,and avoid redundant computations. Tasks which
are typically part of a compiler's code generation phase
include:

i. Instruction selection: Is a compiler optimization
that transforms an internal representation of program
into the final compiled code(either Binary or
Assembly).The quality of the generated code is
determined by its Speed & Size. For example, the three
address code (x=y+z) can be translated into:

 MOV y,R0
 ADD z,R0
 MOV R0,x
If three-address code is :
 a=b+c
 d=a+e
then the target code is :
 MOV b,R0
 ADD c,R0
 MOV R0,a
 MOV a,R0
 ADD e,R0
 MOV R0,d
Finally, A target machine with "Rich" instruction set
may be provide several ways of implementing a given
operation. For example, if the target machine has an
"increment" instruction (INC) ,then the IR a=a+1
may be implemented by the single instruction (INC a)
rather than by a more obvious sequence :

 MOV a,R0
 ADD #1,R0
 MOV R0,a

ii. Instruction Scheduling : In which order to put
those instructions. Scheduling is a speed optimization.
The order in which computations are performed can

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 59

Hitch your Wagon to a Star

effect the efficiency of the target code, because some
computation orders require fewer registers to hold
intermediate results than others.

iii. Register Allocation : Is the process of
multiplexing a large number of target program
variables onto a small number of CPU registers. The
goal is to keep as many operands as possible in
registers to maximize the execution speed of software
programs (instructions involving register operands
are usually shorter and faster than those involving
operands in memory).

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

References

1. MOGENSEN, Torben Ægidius. “Introduction to compiler design”.

Springer Nature, 2024.

2. SINGH, Ajit. “Compiler Design”. Ajit Singh, 2024.

3. CAI, Shubin, et al. ComPAT: “A Compiler Principles Course Assistant.

In: International Conference on Knowledge Science”, Engineering and

Management. Singapore: Springer Nature Singapore, 2024. p. 74-83.

4. A.Aho,R.Sethi,J.D.Ullman," Compilers- Principles, Techniques and

Tools" Addison-Weseley,2007

5. J.Tremblay,P.G.Sorenson,"The Theory and Practice of Compiler

Writing ", McGRAW-HILL,1985

6. W.M.Waite,L.R.Carter,"An Introduction to Compiler Construction",

Harper Collins,New york,1993

7. A.W.Appel, "Modern Compiler Implementation in ML",

CambridgeUniversity Press,1998

With My Best Wishes Esam & Sameeh60

	titel.doc
	L1
	L2
	L3
	L4
	L5
	ß
	ß
	ß
	ß
	ß
	ß
	ß
	ß

	L6
	L7
	L8
	L9
	L10
	L11
	L12
	L13
	L14
	ref.doc

