
C++ Programming

1 Mohannad Al-Kubaisi

INTRODUCTION

A computer is a useful tool for solving a great variety of problems. To make a

computer do anything (i.e. solve a problem), you have to write a computer

program. In a computer program you tell a computer, step by step, exactly what

you want it to do. The computer then executes the program, following each step

mechanically, to accomplish the end goal.

Algorithm and flowchart are the powerful tools for learning programming. An

algorithm is a step-by-step analysis of the process, while a flowchart explains the

steps of a program in a graphical way. Algorithm and flowcharts helps to clarify all

the steps for solving the problem.

ALGORITHMS

The word “algorithm” relates to the name of the mathematician Al-khowarizmi,

which means a procedure or a technique. Software Engineer commonly uses an

algorithm for planning and solving the problems. An algorithm is a sequence of

steps to solve a particular problem or algorithm is an ordered set of unambiguous

steps that produces a result and terminates in a finite time.

Algorithm has the following characteristics

 Input: An algorithm may or may not require input.

 Output: Each algorithm is expected to produce at least one result.

 Definiteness: Each instruction must be clear and unambiguous.

 Finiteness: If the instructions of an algorithm are executed, the algorithm

should terminate after finite number of steps.

The algorithm and flowchart include following three types of control structures.

1. Sequence: In the sequence structure, statements are placed one after the

other and the execution takes place starting from up to down.

2. Branching (Selection): In branch control, there is a condition and according

to a condition, a decision of either TRUE or FALSE is achieved. Generally, the

‘IF-THEN’ is used to represent branch control.

3. Loop (Repetition): The Loop or Repetition allows a statement(s) to be

executed repeatedly based on certain loop condition e.g. WHILE, FOR loops.

C++ Programming

2 Mohannad Al-Kubaisi

HOW TO WRITE ALGORITHMS
Step 1: Define your algorithms input: Many algorithms take in data to be

processed, e.g. to calculate the area of rectangle input may be the rectangle height

and rectangle width.

Step 2: Define the variables: Algorithm's variables allow you to use it for more than

one place. We can define two variables for rectangle height and rectangle width as

HEIGHT and WIDTH (or H & W). We should use meaningful variable name.

Step 3: Outline the algorithm's operations: Use input variable for computation

purpose, e.g. to find area of rectangle multiply the HEIGHT and WIDTH variable and

store the value in new variable (say) AREA. An algorithm's operations can take the

form of multiple steps and even branch, depending on the value of the input

variables.

Step 4: Output the results of your algorithm's operations: In case of area of

rectangle output will be the value stored in variable AREA. if the input variables

described a rectangle with a HEIGHT of 2 and a WIDTH of 3, the algorithm would

output the value of 6.

FLOWCHART

The first design of flowchart goes back to 1945 which was designed by John Von

Neumann. Unlike an algorithm, Flowchart uses different symbols to design a

solution to a problem. It is another commonly used programming tool. By looking

at a Flowchart can understand the operations and sequence of operations

performed in a system. Flowchart is often considered as a blueprint of a design

used for solving a specific problem.

Flowchart is diagrammatic /Graphical representation of sequence of steps to solve

a problem. To draw a flowchart following standard symbols are use.

C++ Programming

3 Mohannad Al-Kubaisi

The language used to write algorithm is simple and similar to day-to-day life

language. The variable names are used to store the values. The value store in

variable can change in the solution steps. In addition some special symbols are used

as below.

C++ Programming

4 Mohannad Al-Kubaisi

 Assignment Symbol (← or =) is used to assign value to the variable.

e.g. to assign value 5 to the variable HEIGHT, statement is

HEIGHT ← 5 or HEIGHT = 5

The symbol ‘=’ is used in most of the programming language as an assignment

symbol, the same has been used in all the algorithms and flowcharts in the manual.

The statement C = A + B means that add the value stored in variable A and variable

B then assign/store the value in variable C.

The statement R = R + 1 means that add I to the value stored in variable R and then

assign/store the new value in variable R, in other words increase the value of

variable R by 1

Mathematical Operators

Relational Operators

C++ Programming

5 Mohannad Al-Kubaisi

Logical Operators

Selection control Statements

Loop control Statements

GO TO statement also called unconditional transfer of control statement is used to

transfer control of execution to another step/statement. . e.g. the statement GOTO

n will transfer control to step/statement n.

C++ Programming

6 Mohannad Al-Kubaisi

Note: We can use keyword INPUT or READ or GET to accept input(s) /value(s) and

keywords PRINT or WRITE or DISPLAY to output the result(s).

OR

C++ Programming

7 Mohannad Al-Kubaisi

C++ Programming

8 Mohannad Al-Kubaisi

C++ Programming

9 Mohannad Al-Kubaisi

C++ Introduction
C++ is a middle-level programming language developed by Bjarne
Stroustrup starting in 1979 at Bell Labs. C++ runs on a variety of platforms,
such as Windows, Mac OS, and the various versions of UNIX.
This C++ tutorial adopts a simple and practical approach to describe the
concepts of C++ for beginners to advanced software engineers.

Why to Learn C++

C++ is necessary for students and working professionals to become a great
Software Engineer. I will list down some of the key advantages of learning
C++:

 C++ is very close to hardware, so you get a chance to work at a low
level which gives you lot of control in terms of memory management,
better performance and finally a robust software development.

 C++ programming gives you a clear understanding about Object
Oriented Programming. You will understand low-level implementation
of polymorphism when you will implement virtual tables and virtual
table pointers, or dynamic type identification.

 C++ is one of the every green programming languages and loved by
millions of software developers. If you are a great C++ programmer,
then you will never sit without work and more importantly, you will get
highly paid for your work.

 C++ is the most widely used programming languages in application
and system programming. So you can choose your area of interest of
software development.

 C++ really teaches you the difference between compiler, linker and
loader, different data types, storage classes, variable types their
scopes etc.

There are 1000s of good reasons to learn C++ Programming. But one thing
for sure, to learn any programming language, not only C++, you just need
to code, and code and finally code until you become expert.

Applications of C++ Programming

As mentioned before, C++ is one of the most widely used programming
languages. It has it's presence in almost every area of software
development. I'm going to list few of them here:

C++ Programming

10 Mohannad Al-Kubaisi

 Application Software Development - C++ programming has been
used in developing almost all the major Operating Systems like
Windows, Mac OSX and Linux. Apart from the operating systems, the
core part of many browsers like Mozilla Firefox and Chrome have
been written using C++. C++ also has been used in developing the
most popular database system called MySQL.

 Programming Languages Development - C++ has been used
extensively in developing new programming languages like C#, Java,
JavaScript, Perl, UNIX’s C Shell, PHP and Python, and Verilog etc.

 Computation Programming - C++ is the best friends of scientists
because of fast speed and computational efficiencies.

 Games Development - C++ is extremely fast which allows
programmers to do procedural programming for CPU intensive
functions and provides greater control over hardware, because of
which it has been widely used in development of gaming engines.

 Embedded System - C++ is being heavily used in developing Medical
and Engineering Applications like software’s for MRI machines, high-
end CAD/CAM systems etc.

This list goes on, there are various areas where software developers are
happily using C++ to provide great software’s. I highly recommend you to
learn C++ and contribute great software’s to the community.

C++ Programming

11 Mohannad Al-Kubaisi

Hello World – First C++ Program
Just to give you a little excitement about C++ programming, we going to give you a
small conventional C++ Hello World program.

C++ is a super set of C programming with additional implementation of object-oriented
concepts.

C++ Program Structure

In this guide, we will write and understand the first program in

C++ programming. We are writing a simple C++ program that prints “Hello

World!” message. Let’s see the program first and then we will discuss each

and every part of it in detail.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main() {

 cout << "Hello World"; // prints Hello World

 return 0;

}

Let us look at the various parts of the above program −

 The C++ language defines several headers, which contain information
that is either necessary or useful to your program. For this program,
the header <iostream> is needed.

 The line using namespace std; tells the compiler to use the std
namespace. Namespaces are a relatively recent addition to C++.

 The next line '// main() is where program execution begins.' is a
single-line comment available in C++. Single-line comments begin
with // and stop at the end of the line.

 The line int main() is the main function where program execution
begins.

 The next line cout << "Hello World"; causes the message "Hello
World" to be displayed on the screen.

 The next line return 0; terminates main()function and causes it to
return the value 0 to the calling process.

C++ Programming

12 Mohannad Al-Kubaisi

Semicolons and Blocks in C++

In C++, the semicolon is a statement terminator. That is, each individual
statement must be ended with a semicolon. It indicates the end of one
logical entity.

For example, following are three different statements −

x = y;

y = y + 1;

add(x, y);

A block is a set of logically connected statements that are surrounded by
opening and closing braces. For example −

{

 cout << "Hello World"; // prints Hello World

 return 0;

}

C++ does not recognize the end of the line as a terminator. For this reason,
it does not matter where you put a statement in a line. For example −

x = y;

y = y + 1;

add(x, y);

is the same as

x = y; y = y + 1; add(x, y);

C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class,
module, or any other user-defined item. An identifier starts with a letter A to
Z or a to z or an underscore (_) followed by zero or more letters,
underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within
identifiers. C++ is a case-sensitive programming language.
Thus, Manpower and manpower are two different identifiers in C++.

Here are some examples of acceptable identifiers −

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Sameeh
Highlight

C++ Programming

13 Mohannad Al-Kubaisi

C++ Keywords

The following list shows the reserved words in C++. These reserved words
may not be used as constant or variable or any other identifier names.

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

Whitespace in C++

A line containing only whitespace, possibly with a comment, is known as a
blank line, and C++ compiler totally ignores it.

Whitespace is the term used in C++ to describe blanks, tabs, newline
characters and comments. Whitespace separates one part of a statement
from another and enables the compiler to identify where one element in a
statement, such as int, ends and the next element begins.

C++ Programming

14 Mohannad Al-Kubaisi

Statement 1
int age;

In the above statement there must be at least one whitespace character (usually a
space) between int and age for the compiler to be able to distinguish them.

Statement 2
fruit = apples + oranges; // Get the total fruit

In the above statement 2, no whitespace characters are necessary between
fruit and =, or between = and apples, although you are free to include some
if you wish for readability purpose.

C++ Programming

15 Mohannad Al-Kubaisi

Comments in C++
Program comments are explanatory statements that you can include in the
C++ code. These comments help anyone reading the source code. All
programming languages allow for some form of comments.

C++ supports single-line and multi-line comments. All characters available
inside any comment are ignored by C++ compiler.

C++ comments start with /* and end with */. For example −

/* This is a comment */

/* C++ comments can also

 * span multiple lines

*/

A comment can also start with //, extending to the end of the line. For
example −

#include <iostream>

using namespace std;

main() {

 cout << "Hello World"; // prints Hello World

 return 0;

}

When the above code is compiled, it will ignore // prints Hello World and
final executable will produce the following result −

Hello World

Within a /* and */ comment, // characters have no special meaning. Within
a // comment, /* and */ have no special meaning. Thus, you can "nest" one
kind of comment within the other kind. For example −

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

C++ Programming

15 Mohannad Al-Kubaisi

Variables in C++

A variable is a name which is associated with a value that can be changed.
For example when I write int num=20; here variable name is num which is
associated with value 20, int is a data type that represents that this variable
can hold integer values. We will cover the data types in the next tutorial. In
this tutorial, we will discuss about variables.

Syntax of declaring a variable in C++

data_type variable1_name = value1, variable2_name = value2;

For example:
int num1=20, num2=100;

We can also write it like this:
int num1,num2;
num1=20;
num2=100;

Types of variables

Variables can be categorised based on their data type. For example, in the
above example we have seen integer types variables. Following are the
types of variables available in C++.

int: These type of of variables holds integer value.

char: holds character value like ‘c’, ‘F’, ‘B’, ‘p’, ‘q’ etc.

bool: holds boolean value true or false.

double: double-precision floating point value.

float: Single-precision floating point value.

C++ Programming

16 Mohannad Al-Kubaisi

Types of variables based on their scope

Before going further lets discuss what is scope first. When we discussed
the Hello World Program, we have seen the curly braces in the program
like this:

int main {

//Some code

}

Any variable declared inside these curly braces have scope limited within
these curly braces, if you declare a variable in main() function and try to use
that variable outside main() function then you will get compilation error.

Now that we have understood what is scope. Lets move on to the types of
variables based on the scope.

1. Global variable
2. Local variable

Global Variable

A variable declared outside of any function (including main as well) is called
global variable. Global variables have their scope throughout the program,
they can be accessed anywhere in the program, in the main, in the user
defined function, anywhere.

Lets take an example to understand it:

Global variable example

Here we have a global variable myVar, that is declared outside of main. We
have accessed the variable twice in the main() function without any issues.

#include <iostream>
using namespace std;
// This is a global variable
char myVar = 'A';
int main()

https://beginnersbook.com/2017/08/first-cpp-program/

C++ Programming

17 Mohannad Al-Kubaisi

{
 cout <<"Value of myVar: "<< myVar<<endl;
 myVar='Z';
 cout <<"Value of myVar: "<< myVar;
 return 0;
}

Output:

Value of myVar: A
Value of myVar: Z

Local variable

Local variables are declared inside the braces of any user defined function,
main function, loops or any control statements(if, if-else etc) and have their
scope limited inside those braces.

Local variable example

#include <iostream>
using namespace std;

char myFuncn() {
// This is a local variable
char myVar = 'A';
}
int main()
{
 cout <<"Value of myVar: "<< myVar<<endl;
 myVar='Z';
 cout <<"Value of myVar: "<< myVar;
 return 0;
}

Output:
Compile time error, because we are trying to access the
variable myVar outside of its scope. The scope of myVar is limited to the body
of function myFuncn(), inside those braces.

Can global and local variable have same name in

C++?

Lets see an example having same name global and local variable.

#include <iostream>
using namespace std;

C++ Programming

18 Mohannad Al-Kubaisi

// This is a global variable
char myVar = 'A';
char myFuncn() {
 // This is a local variable
 char myVar = 'B';
 return myVar;
}
int main()
{
 cout <<"Funcn call: "<< myFuncn()<<endl;
 cout <<"Value of myVar: "<< myVar<<endl;
 myVar='Z';
 cout <<"Funcn call: "<< myFuncn()<<endl;
 cout <<"Value of myVar: "<< myVar<<endl;
 return 0;
}

Output:

Funcn call: B
Value of myVar: A
Funcn call: B
Value of myVar: Z

As you can see that when I changed the value of myVar in the main function,
it only changed the value of global variable myVar because local
variable myVar scope is limited to the function myFuncn().

C++ Programming

19 Mohannad Al-Kubaisi

C++ Data Types
Data types define the type of data a variable can hold, for example an integer
variable can hold integer data, a character type variable can hold character
data etc.

Data types in C++ are categorised in three groups: Built-in, user-
defined and Derived.

Built in data types

char: For characters. Size 1 byte.
char ch = 'A';

int: For integers. Size 2 bytes.
int num = 100;

float: For single precision floating point. Size 4 bytes.
float num = 123.78987;

double: For double precision floating point. Size 8 bytes.
double num = 10098.98899;

https://beginnersbook.com/2017/08/cpp-variables/

C++ Programming

20 Mohannad Al-Kubaisi

bool: For booleans, true or false.
bool b = true;

The following table shows the variable type, how much memory it takes to
store the value in memory, and what is maximum and minimum value which
can be stored in such type of variables.

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647

signed long int 8bytes same as long int

unsigned long int 8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1

unsigned long long int 8bytes 0 to 18,446,744,073,709,551,615

float 4bytes

double 8bytes

long double 12bytes

wchar_t 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table,
depending on the compiler and the computer you are using.

C++ Programming

21 Mohannad Al-Kubaisi

User-defined data types

We have three types of user-defined data types in C++
1. struct
2. union
3. enum

I have covered them in detail in separate tutorials. For now just remember
that these comes under user-defined data types.

Derived data types in C++

We have three types of derived-defined data types in C++
1. Array
2. Function
3. Pointer

They are wide topics of C++ and I have covered them in separate tutorials.
Just follow the tutorials in given sequence and you would be fine.

C++ Programming

22 Mohannad Al-Kubaisi

Variable Scope in C++
A scope is a region of the program and broadly speaking there are three
places, where variables can be declared −

• Inside a function or a block which is called local variables,

• In the definition of function parameters which is called formal
parameters.

• Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters.
Here let us explain what are local and global variables.

Local Variables

Variables that are declared inside a function or block are local variables.
They can be used only by statements that are inside that function or block
of code. Local variables are not known to functions outside their own.
Following is the example using local variables −

#include <iostream>

using namespace std;

int main () {

 // Local variable declaration:

 int a, b;

 int c;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c;

 return 0;

}

Global Variables

Global variables are defined outside of all the functions, usually on top of
the program. The global variables will hold their value throughout the life-
time of your program.

C++ Programming

23 Mohannad Al-Kubaisi

A global variable can be accessed by any function. That is, a global variable
is available for use throughout your entire program after its declaration.
Following is the example using global and local variables −

#include <iostream>

using namespace std;

// Global variable declaration:

int g;

int main () {

 // Local variable declaration:

 int a, b;

 // actual initialization

 a = 10;

 b = 20;

 g = a + b;

 cout << g;

 return 0;

}

A program can have same name for local and global variables but value of
local variable inside a function will take preference. For example −

#include <iostream>

using namespace std;

// Global variable declaration:

int g = 20;

int main () {

 // Local variable declaration:

 int g = 10;

 cout << g;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

10

C++ Programming

24 Mohannad Al-Kubaisi

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must
initialize it yourself. Global variables are initialized automatically by the
system when you define them as follows −

Data Type Initializer

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly, otherwise
sometimes program would produce unexpected result.

C++ Programming

25 Mohannad Al-Kubaisi

C++ Constants/Literals
Constants refer to fixed values that the program may not alter and they are
called literals.

Constants can be of any of the basic data types and can be divided into
Integer Numerals, Floating-Point Numerals, Characters, Strings and
Boolean Values.

Again, constants are treated just like regular variables except that their
values cannot be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix
specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing
for decimal.

An integer literal can also have a suffix that is a combination of U and L, for
unsigned and long, respectively. The suffix can be uppercase or lowercase
and can be in any order.

Here are some examples of integer literals −

212 // Legal

215u // Legal

0xFeeL // Legal

078 // Illegal: 8 is not an octal digit

032UU // Illegal: cannot repeat a suffix

Following are other examples of various types of Integer literals −

85 // decimal

0213 // octal

0x4b // hexadecimal

30 // int

30u // unsigned int

30l // long

30ul // unsigned long

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part,
and an exponent part. You can represent floating point literals either in
decimal form or exponential form.

While representing using decimal form, you must include the decimal point,
the exponent, or both and while representing using exponential form, you

C++ Programming

26 Mohannad Al-Kubaisi

must include the integer part, the fractional part, or both. The signed
exponent is introduced by e or E.

Here are some examples of floating-point literals −

3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

Boolean Literals

There are two Boolean literals and they are part of standard C++ keywords
−

• A value of true representing true.

• A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal
to 0.

Character Literals

Character literals are enclosed in single quotes. If the literal begins with L
(uppercase only), it is a wide character literal (e.g., L'x') and should be
stored in wchar_t type of variable . Otherwise, it is a narrow character literal
(e.g., 'x') and can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence
(e.g., '\t'), or a universal character (e.g., '\u02C0').

There are certain characters in C++ when they are preceded by a backslash
they will have special meaning and they are used to represent like newline
(\n) or tab (\t). Here, you have a list of some of such escape sequence codes

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

C++ Programming

27 Mohannad Al-Kubaisi

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show a few escape sequence characters −

#include <iostream>

using namespace std;

int main() {

 cout << "Hello\tWorld\n\n";

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

Hello World

C++ Programming

28 Mohannad Al-Kubaisi

String Literals

String literals are enclosed in double quotes. A string contains characters
that are similar to character literals: plain characters, escape sequences,
and universal characters.

You can break a long line into multiple lines using string literals and separate
them using whitespaces.

Here are some examples of string literals. All the three forms are identical
strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C++ to define constants −

• Using #define preprocessor.

• Using const keyword.

The #define Preprocessor

Following is the form to use #define preprocessor to define a constant −

#define identifier value

Following example explains it in detail −

#include <iostream>

using namespace std;

#define LENGTH 10

#define WIDTH 5

#define NEWLINE '\n'

int main() {

 int area;

 area = LENGTH * WIDTH;

 cout << area;

 cout << NEWLINE;

 return 0;

}

C++ Programming

29 Mohannad Al-Kubaisi

When the above code is compiled and executed, it produces the following
result −

50

The const Keyword

You can use const prefix to declare constants with a specific type as follows

const type variable = value;

Following example explains it in detail −

#include <iostream>

using namespace std;

int main() {

 const int LENGTH = 10;

 const int WIDTH = 5;

 const char NEWLINE = '\n';

 int area;

 area = LENGTH * WIDTH;

 cout << area;

 cout << NEWLINE;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

50

Note that it is a good programming practice to define constants in
CAPITALS.

C++ Programming

30 Mohannad Al-Kubaisi

Operators in C++
An operator is a symbol that tells the compiler to perform specific
mathematical or logical manipulations. C++ is rich in built-in operators and
provide the following types of operators −

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise,
assignment and other operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by C++ language −

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an

integer division

B % A will give 0

++ Increment operator, increases integer value by

one

A++ will give 11

-- Decrement operator, decreases integer value

by one

A-- will give 9

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm

C++ Programming

31 Mohannad Al-Kubaisi

Relational Operators

There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

== Checks if the values of two operands are

equal or not, if yes then condition becomes

true.

(A == B) is not true.

!= Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than

the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

Logical Operators

There are following logical operators supported by C++ language.

Assume variable A holds 1 and variable B holds 0, then −

https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

C++ Programming

32 Mohannad Al-Kubaisi

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two

operands is non-zero, then condition becomes

true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition is

true, then Logical NOT operator will make

false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth
tables for &, |, and ^ are as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

C++ Programming

33 Mohannad Al-Kubaisi

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following
table. Assume variable A holds 60 and variable B holds 13, then −

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result

if it exists in both operands.
(A & B) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it exists in

either operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it is set

in one operand but not both.
(A ^ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is unary

and has the effect of 'flipping' bits.

(~A) will give -61 which is 1100 0011 in 2's

complement form due to a signed binary

number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.

A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits

specified by the right operand.

A >> 2 will give 15 which is 0000 1111

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm

C++ Programming

34 Mohannad Al-Kubaisi

Assignment Operators

There are following assignment operators supported by C++ language −

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from

right side operands to left side operand.
C = A + B will assign value of A + B into C

+= Add AND assignment operator, It adds right

operand to the left operand and assign the result

to left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It subtracts

right operand from the left operand and assign

the result to left operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It multiplies

right operand with the left operand and assign the

result to left operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It divides left

operand with the right operand and assign the

result to left operand.

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator, It takes

modulus using two operands and assign the

result to left operand.

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

C++ Programming

35 Mohannad Al-Kubaisi

Misc Operators

The following table lists some other operators that C++ supports.

Sr.No Operator & Description

1
sizeof

sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is integer,
and will return 4.

2
Condition ? X : Y

Conditional operator (?). If Condition is true then it returns value of X otherwise returns
value of Y.

3
,

Comma operator causes a sequence of operations to be performed. The value of the entire
comma expression is the value of the last expression of the comma-separated list.

4
. (dot) and -> (arrow)

Member operators are used to reference individual members of classes, structures, and
unions.

5
Cast

Casting operators convert one data type to another. For example, int(2.2000) would return
2.

6
&

Pointer operator & returns the address of a variable. For example &a; will give actual
address of the variable.

7
*

Pointer operator * is pointer to a variable. For example *var; will pointer to a variable var.

Operators Precedence in C++

Operator precedence determines the grouping of terms in an expression.
This affects how an expression is evaluated. Certain operators have higher
precedence than others; for example, the multiplication operator has higher
precedence than the addition operator −

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

C++ Programming

36 Mohannad Al-Kubaisi

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator
* has higher precedence than +, so it first gets multiplied with 3*2 and then
adds into 7.

Here, operators with the highest precedence appear at the top of the table,
those with the lowest appear at the bottom. Within an expression, higher
precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm

C++ Programming

37 Mohannad Al-Kubaisi

C++ decision making statements
Decision making structures require that the programmer specify one or
more conditions to be evaluated or tested by the program, along with a
statement or statements to be executed if the condition is determined to be
true, and optionally, other statements to be executed if the condition is
determined to be false.

Following is the general form of a typical decision making structure found in
most of the programming languages −

C++ programming language provides following types of decision making
statements.

Sr.No Statement & Description

1 if statement

An ‘if’ statement consists of a boolean expression followed by one or more statements.

2 if...else statement

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when the
boolean expression is false.

3 switch statement

A ‘switch’ statement allows a variable to be tested for equality against a list of values.

4 nested if statements

You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s).

5 nested switch statements

You can use one ‘switch’ statement inside another ‘switch’ statement(s).

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm

C++ Programming

38 Mohannad Al-Kubaisi

C++ if statement
An if statement consists of a boolean expression followed by one or more
statements.

Syntax

The syntax of an if statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside
the if statement will be executed. If boolean expression evaluates to false,
then the first set of code after the end of the if statement (after the closing
curly brace) will be executed.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 10;

 // check the boolean condition

C++ Programming

39 Mohannad Al-Kubaisi

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

a is less than 20;

value of a is : 10

C++ Programming

40 Mohannad Al-Kubaisi

C++ if...else statement
An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

Syntax

The syntax of an if...else statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

} else {

 // statement(s) will execute if the boolean expression is false

}

If the boolean expression evaluates to true, then the if block of code will be
executed, otherwise else block of code will be executed.

Flow Diagram

Example
Live Demo

#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

http://tpcg.io/D0T3iP

C++ Programming

41 Mohannad Al-Kubaisi

 // check the boolean condition

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 } else {

 // if condition is false then print the following

 cout << "a is not less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

a is not less than 20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement,
which is very usefull to test various conditions using single if...else if
statement.

When using if , else if , else statements there are few points to keep in mind.

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the
else.

• Once an else if succeeds, none of he remaining else if's or else's will
be tested.

Syntax

The syntax of an if...else if...else statement in C++ is −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

} else if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

} else if(boolean_expression 3) {

 // Executes when the boolean expression 3 is true

} else {

 // executes when the none of the above condition is true.

}

C++ Programming

42 Mohannad Al-Kubaisi

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 // check the boolean condition

 if(a == 10) {

 // if condition is true then print the following

 cout << "Value of a is 10" << endl;

 } else if(a == 20) {

 // if else if condition is true

 cout << "Value of a is 20" << endl;

 } else if(a == 30) {

 // if else if condition is true

 cout << "Value of a is 30" << endl;

 } else {

 // if none of the conditions is true

 cout << "Value of a is not matching" << endl;

 }

 cout << "Exact value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

Value of a is not matching

Exact value of a is : 100

C++ Programming

43 Mohannad Al-Kubaisi

C++ switch statement
A switch statement allows a variable to be tested for equality against a list
of values. Each value is called a case, and the variable being switched on
is checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as
the variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the
flow of control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is
reached.

• A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for

C++ Programming

44 Mohannad Al-Kubaisi

performing a task when none of the cases is true. No break is needed
in the default case.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

C++ Programming

45 Mohannad Al-Kubaisi

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

This would produce the following result −

You passed

Your grade is D

C++ Programming

46 Mohannad Al-Kubaisi

C++ nested if statements
It is always legal to nest if-else statements, which means you can use one
if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

 if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

 }

}

You can nest else if...else in the similar way as you have
nested if statement.

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 // check the boolean condition

 if(a == 100) {

 // if condition is true then check the following

 if(b == 200) {

 // if condition is true then print the following

 cout << "Value of a is 100 and b is 200" << endl;

 }

 }

 cout << "Exact value of a is : " << a << endl;

 cout << "Exact value of b is : " << b << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

C++ Programming

47 Mohannad Al-Kubaisi

C++ switch statement
A switch statement allows a variable to be tested for equality against a list
of values. Each value is called a case, and the variable being switched on
is checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as
the variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the
flow of control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is
reached.

• A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed
in the default case.

C++ Programming

48 Mohannad Al-Kubaisi

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

This would produce the following result −

You passed

Your grade is D

