

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

1

VHDL

 Advanced

 Digital

 Electronics

ألألكترونيات

 الرقميةالمتقدمة
(stage BRANCH ELECTRONIC)

A U C Almaaref University Collage

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

2

1-Introduction

1.1 About VHDL

VHDL is a hardware description language. It describes the behavior of an

electronic circuit or system, from which the physical circuit or system can then be

attained (implemented).

VHDL stands for VHSIC Hardware Description Language. VHSIC is itself an

Abbreviation for Very High Speed Integrated Circuits, an initiative funded by

the United States Department of Defense in the 1980s that led to the creation of

VHDL.

Its first version was VHDL 87, later upgraded to the so-called VHDL 93. VHDL

was the original and first hardware description language to be standardized by the
Institute of Electrical and Electronics Engineers, through the IEEE1076

standard. An additional standard, the IEEE 1164, was later added to introduce a multi-

valued logic system

VHDL is a standard, technology/vendor independent language, and is there fore

Portable and reusable. The two main immediate applications of VHDL are in

the field of Programmable Logic Devices (including CPLDs—Complex

Programmable Logic Devices and FPGAs—Field Programmable Gate Arrays) and in

the field of ASICs (Application Specific Integrated Circuits). Once the VHDL code

has been written, it can be used either to implement the circuit in a programmable

device(from Altera, Xilinx, Atmel, etc.) or can be submitted to a foundry for

fabrication of an ASIC chip. Currently, many complex commercial chips

(microcontrollers, for example) are designed using such an approach.

A final note regarding VHDL is that, contrary to regular computer programs

which are sequential, its statements are inherently concurrent (parallel). For that

reason, VHDL is usually referred to as a code rather than a program. In VHDL ,only

statements placed inside a PROCESS, FUNCTION, or PROCEDURE are executed

sequentially

1.2 Design Flow
As mentioned above, one of the major utilities of VHDL is that it allows the synthesis

of a circuit or system in a programmable device (PLD or FPGA) or in an ASIC. The

steps followed during such a project are summarized in figure1.1.

We start the design by writing the VHDL code, which is saved in a file with the

extension

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

3

.

VHDL and the same name as its ENTITY’s name. The first step in the synthesis

process is compilation. Compilation is the conversion of the high-level VHDL

language, which describes the circuit at the Register Transfer Level (RTL), into a net

list at the gate level. The second step is optimization, which is performed on the

gate-level net list for speed or for area. At this stage, the design can be simulated.

Finally, a place and-route (fitter) software will generate the physical layout for a

PLD/FPGA chip or will generate the masks for an ASIC.

1.3 EDA Tools
There are several EDA (Electronic Design Automation) tools available for circuit

synthesis, implementation, and simulation using VHDL. Some tools (place and route,

for example) are oered as part of a vendor’s design suite
(e.g., Altera’s Quartus II, which allows the synthesis of VHDL code onto Altera’s

CPLD/FPGA chips)

1.4 Translation of VHDL Code into a Circuit
A full-adder unit is depicted in figure 1.2. In it, a and b represent the input bits to be

added, cin is the carry-in bit, s is the sum bit, and cout the carry-out

bit. As shown in the truth table, smust be high whenever the number of inputs that

are high is odd,

while cout must be high when two or more inputs are high. A VHDL code for

the full adder of figure 1.2 is shown in figure 1.3. As can be seen, it consists of an

ENTITY, which is a description of the pins (PORTS) of the

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

4

.

Circuit, and of an ARCHITECTURE, which describes how the circuit should

function. We see in the latter that the sum bit is computed as S=aXORbXORcin,

while cout is obtained from COUT=a.b +a.cin+ b.cin.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

5

2-Code Structure

In this chapter , we describe the fundamental sections that comprise a piece of

VHDL code: LIBRARY declarations, ENTITY, and ARCHITECTURE.

2.1 Fundamental VHDL Units
As depicted in figure 2.1, a standalone piece of VHDL code is composed of at least

three fundamental sections:

1-LIBRARY declarations: Contains a list of all libraries to be used in the design. For

example: ieee, std, work, etc.

2- ENTITY: Specifies the I/O pins of the circuit.

3-ARCHITECTURE: Contains the VHDL code proper, which describes how the

circuit should behave (function).

A LIBRARY is a collection of commonly used pieces of code. Placing such pieces

inside a library allows them to be reused or shared by other designs.

The typical structure of a library is illustrated in figure 2.2. The code is usually

Written in the form of FUNCTIONS, PROCEDURES, or COMPONENTS, which are

placed inside PACKAGES, and then compiled into the destination library.

2.2 Library Declarations

To declare a LIBRARY (that is, to make it visible to the design) two lines of codeare

needed, one containing the name of the library, and the other a use

clause, as shown in the syntax below. LIBRARY

library_name;
USE library_name.package_name.package_parts;

At least three packages, from three different libraries, are usually needed in a

design:

1-ieee.std_logic_1164(from the ieeelibrary),

2- standard(from the stdlibrary),

3-work(work library).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

6

Their declarations are as follows:

LIBRARY ieee; -- A semi-colon (;) indicates

USE ieee.std_logic_1164.all; -- the end of a statement or

LIBRARY std;-- declaration, while a double

USE std. standard. all; -- dash (--) indicates a comment.

LIBRARY work;

USE work.all;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

7

The libraries std and work shown above are made visible by default, so there is

no need to declare them; only the ieee library must be explicitly written. However,

the latter is only necessary when the STD_LOGIC (or STD_ULOGIC) data type is

employed in the design The purpose of the three packages/libraries mentioned above

is the following: the

std_logic_1164package of the ieee library specifies a multi-level logic system; std is

are source library (data types, text i/o, etc.) for the VHDL design environment; and

the work library is where we save our design (the .vhd file, plus all files created by

the compiler, simulator, etc.).Indeed, the ieee library contains several packages,

including the following:

1-std_logic_1164: Specifies the STD_LOGIC (8 levels) and STD_ULOGIC (9 levels)

multi-valued logic systems.

2-std_logic_arith: Specifies the SIGNED and UNSIGNED data types and related

arithmetic and comparison operations. It also contains several data conversion

functions, which allow one type to be converted into another: conv_integer

(p),conv_unsigned (p, b), conv_signed(p, b), conv_std_logic_vector(p, b).

3-std_logic_signed: Contains functions that allow operations with

STD_LOGIC_VECTOR data to be performed as if the data were of type SIGNED.

4-std_logic_unsigned: Contains functions that allow operations with

STD_LOGIC_VECTOR data to be performed as if the data were of type

UNSIGNED.

2.3 ENTITY

An ENTITY is a list with specifications of all input and output pins (PORTS) of the

circuit. Its syntax is shown below.

ENTITY entity_name IS

PORT (

Port_name : signal_modesignal_type;

Port_name : signal_modesignal_type;

...);

END entity_name

The mode of the signal can be IN, OUT, INOUT, or BUFFER. As illustrated in

figure 2.3, IN and OUT are truly unidirectional pins, while INOUT is bidirectional.

BUFFER, on the other hand, is employed when the output signal must be used(read)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

8

internally. The type of the signal can be BIT, STD_LOGIC, INTEGER, etc. Finally,

the name of the entity can be basically any name, except VHDL reserved

words

Example: Let us consider the NAND gate of figure 2.4. Its ENTITY can be

specified as:

ENTITY nand_gate IS

PORT (a, b : IN BIT;

x : OUT BIT);

END nand_gate;

The meaning of the ENTITY above is the following: the circuit has three

I/O pins being two inputs (a and b, mode IN) and one output (x, mode

OUT). All three signals are of type BIT. The name chosen for the entity

was nand_gate.

2.4 ARCHITECTURE

The ARCHITECTURE is a description of how the circuit should behave

(function).

Its syntax is the following:

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

9

ARCHITECTURE architecture_ name OF entity_name

IS[declarations]

BEGIN(code)

END architecture_name;

As shown above, an architecture has two parts: a declarative part

(optional), where

signals and constants (among others) are declared, and the code part

(from BEGIN down). Like in the case of an entity, the name of an

architecture can be basically any name (except VHDL reserved words),

including the same name as the entity’s.

Example: Let us consider the NAND gate of figure 2.4 once again.

ARCHITECTURE myarch OF nand_gate IS

BEGIN

x <= a NAND b;

END myarch

The meaning of the ARCHITECTURE above is the following: the circuit

must perform the NAND operation between the two input signals (a, b)

and assign (‘‘<=’’)
the result to the output pin (x). The name chosen for this architecture was

myarch. In this example, there is no declarative part, and the code

contains just a single assignment

.Example 2.1: DFF with Asynchronous Reset

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

10

Figure 2.5 shows the diagram of a D-type flip-flop (DFF), triggered at the

rising edge of the clock signal (clk), and with an asynchronous reset

input (rst). When rst=‘1’, the output must be turned low, regardless of clk.

Otherwise, the output must copy the input (that is, q <=d) at the moment

when clk changes from ‘0’ to ‘1’ (that is, when an upward event occurs on

clk). There are several ways of implementing the DFF of figure 2.5, one

being the solution presented below.

One thing to remember, however, is that

VHDL is inherently concurrent (contrary to regular computer programs,

which are sequential), so to implement any clocked circuit (flip-flops, for

example) we have to ‘‘force’’ VHDL to be sequential. This can be done

using a PROCESS, as shown below

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 ---------------------------------------

10 ARCHITECTURE behavior OF dff IS

11 BEGIN

12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst='1') THEN

15 q <= '0';

16 ELSIF (clk'EVENT AND clk='1') THEN

17 q <= d;

18 END IF;

19 END PROCESS;

20 END behavior;

21 ---------------------------------------

Comments:

Lines 2–3: Library declaration (library name and library use clause).

Recall that the other two indispensable libraries (stdand work) are made

visible by default

Lines 5–8: Entity dff.

Lines 10–20: Architecture behavior.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

11

Line 6: Input ports (input mode can only be IN). In this example, all input

signals are of type STD_LOGIC.

Line 7: Output port (output mode can be OUT, INOUT, or BUFFER).

Here, the output is also of type STD_LOGIC.

Lines 11–19: Code part of the architecture (from word BEGIN on).

Lines 12–19: A PROCESS (inside it the code is executed sequentially).

Line 12: The PROCESS is executed every time a signal declared in its

sensitivity list changes. In this example, every time rst or clk changes the

PROCESS is run.

Lines 14–15: Every time rst goes to ‘1’ the output is reset, regardless of

clk (asynchronous reset).

Lines 16–17: If rst is not active, plus clk has changed (an EVENT

occurred on clk),

plus such event was a rising edge (clk=‘1’), then the input signal (d) is

stored in the

flip-flop (q <=d).

Lines 15 and 17: The ‘‘<=’’ operator is used to assign a value to a

SIGNAL. In contrast, ‘‘:=’’ would be used for a VARIABLE. All ports in

an entity are signals by default.

Lines 1, 4, 9, and 21: Commented out (recall that ‘‘- -’’ indicates a

comment).Used only to better organize the design.

Note: VHDL is not case sensitive.

Simulation results:

Figure 2.6 presents simulation results regarding example 2.1. The graphs

can be easily interpreted. The first column shows the signal names, as

defined in the ENTITY. It also shows the mode (direction) of the signals;

notice that the arrows associated

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

12

With rst, d, and clk are inward, and contain the letter I (input) inside,

while that of qis outward and has an O (output) marked inside. The

second column has the value of each signal in the position where the

vertical cursor is placed. In the present case, the cursor is at 0ns, where

the signals have value 1, 0, 0, 0, respectively. In this example, the values

are simply ‘0’ or ‘1’, but when vectors are used, the values can be shown

in binary, decimal, or hexadecimal form.

The third column shows the simulation proper. The input signals (rst, d,

clk) can be chosen freely, and the simulator will determine

the corresponding output (q). Comparing the results of figure 2.6 with

those expected from the circuit shown previously, we notice that it works

properly.

As mentioned earlier, the designs presented in the book were synthesized

onto CPLD/FPGA devices

Example 2.2: DFF plus NAND Gate

The circuit of figure 2.4 was purely combinational,
While that of figure 2.5 was purely sequential.
The circuit of figure 2.7 is a mixture of both (without reset).

solution that follows, we have purposely introduced an unnecessary

signal (temp), just to illustrate how a signal should be declared.

Simulation results from the circuit synthesized with the code below are

shown in figure 2.8.

1 ---------------------------------------

2 ENTITY example IS

3 PORT (a, b, clk: IN BIT;

4 q: OUT BIT);

5 END examples;

6 ---------------------------------------

7 ARCHITECTURE example OF example IS

8 SIGNAL temp: BIT;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

13

9 BEGIN

10 temp <= a NAND b;

11 PROCESS (clk)

12 BEGIN

13 IF (clk'EVENT AND clk='1') THEN q<=temp;

14 END IF;

15 END PROCESS;

16 END examples;

17 ---------------------------------------

Comments:

Library declarations are not necessary in this case, because the data is of

type BIT, which is specified in the library std (recall that the libraries std

and work are made visible by default).

Lines 2–5 : Entity example.

Lines7–16: Architecture example.

Line 3: Input ports (all of type BIT).

Line 4: Output port (also of type BIT).

Line 8:Declarative part of the architecture (optional). The signal temp, of

type BIT,

Was declared. Notice that there is no mode declaration (mode is only

used in entities).

Lines9–15: Code part of the architecture (from word BEGIN on).

Lines 11–15: A PROCESS (sequential statements executed every time

the signal clk

changes).

Lines 10 and 11–15: Though within a process the execution is sequential,

the process,

as a whole, is concurrent with the other (external) statements; thus line 10

is executed

Concurrently with the block 11–15.

Line 10: Logical NAND operation. Result is assigned to signal temp.

Lines 13–14: IF statement. At the rising edge of clk the value of temp is

assigned to q.

Lines 10 and 13: The ‘‘<=’’ operator is used to assign a value to a

SIGNAL. In contrast, ‘‘:=’’ would be used for a VARIABLE.

Lines 8 and 10: Can be eliminated, changing ‘‘q <=a NAND b’’ in line 13.

Lines 1, 6, and 17: Commented out. Used only to better organize the

design.

Problem 2.1: Multiplexer

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

14

The top-level diagram of a multiplexer is shown in figure P2.1. According to the truth

table, the output should be equal to one of the inputs if sel= ‘‘01’’ (c = a) or sel= ‘‘10’’
(c = b), but it should be ‘0’ or Z (high impedance) if sel= ‘‘00’’ or sel= ‘‘11’’,
respectively.

a) Complete the VHDL code below.

b) Write relevant comments regarding your solution (as in examples 2.1 and 2.2).

c) Compile and simulate your solution, checking whether it works as expected.

Note: A solution using IF was employed in the code below, because it is more

intuitive.

However, as will be seen later, a multiplexer can also be implemented with

other statements, like WHEN or CASE.

1 ---------------------------------------

2 LIBRARY ieee;

3USE ieee.STD_LOGIC_1164.all;

4 ---------------------------------------

5 ENTITY mux IS

6 PORT (a , b : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 sel : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

8c: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END mux ;

10 ---------------------------------------

11 ARCHITECTURE example OF mux IS

12 BEGIN

13 PROCESS (a, b, sel)

14 BEGIN

15 IF (sel = "00") THEN

16 c <= "00000000";

17 ELSIF (sel=''01'') THEN

18 c <= a;

19ELSE (sel = "10") THEN

20 c <= b;

21 ELSE

22 c <= (OTHERS => '0');

23 END IF ;

24 END PROCESS ;

25 END mux ;

26 ---------------------------------------

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

15

Problem 2.2: Logic Gates
a) Write a VHDL code for the circuit of figure P2.2. Notice that it is purely

combinational, so a PROCESS is not necessary. Write an expression for d using only

logical operators (AND, OR, NAND, NOT, etc.).

b) Synthesize and simulate your circuit. After assuring that it works properly, open

the report file and check the actual expression implemented by the compiler. Compare

it with your expression.
1-……………………….;

2-LIBRARY ieee;

3-USE ieee.std_logic_1164.all;

4-………………………………………..

5-ENTITY P2-3 IS

6-PORT(

7- a,b,c :IN STD_LOGIC;

8- d :OUT STD_LOGIC);

9- END P2-3;

10-…………………………………………

11-ARCHITECTURE arc of P2-3 IS

12-BEGIN

13- d<=a NAND((a AND b)OR NOT c);

14-END arc;

15-…………………………………

Example -A simple AND gate can be modeled, as follows:
ENTITY and2 IS
 PORT (a, b : IN BIT
PORT (c : OUT BIT);
END and2;
ARCHITECTURE and2_dawah OF and2 IS
BEGIN
c <= a AND b;
END and2_dawah;

AND2

inst

VCC
a INPUT

VCC
b INPUT

cOUTPUT

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

16

 3Data Types

In order to write VHDL code efficiently, it is essential to know what data types are

allowed, and how to specify and use them. In this chapter, all fundamental data types

are described, with special emphasis on those that are synthesizable. Discussions on

data compatibility and data conversion are also included.

3.1 Pre-Defined Data Types
VHDL contains a series of pre-defined data types, specified through the IEEE 1076

and IEEE 1164 standards. More specifically, such data type definitions can be found

in the following packages / libraries:

Package_ standard of library std: Defines BIT, BOOLEAN, INTEGER, and REAL

data types.

_ Package std_logic_1164 of library ieee: Defines STD_LOGIC and STD_ULOGIC

data types.

_ Package std_logic_arith of library ieee: Defines SIGNED and UNSIGNED

data types, plus several data conversion functions, like conv_integer(p),

conv_unsigned(p, b), conv_signed(p, b), and conv_std_logic_vector(p, b).

_ Packages std_logic_signed and std_logic_unsigned of library ieee: Contain

functions that allow operations with STD_LOGIC_VECTOR data to be performed as

if the data were of type SIGNED or UNSIGNED, respectively.

All pre-defined data types (specified in the packages/libraries listed above) are

described below.

_ BIT (and BIT_VECTOR): 2-level logic (‘0’, ‘1’).

Examples:
SIGNAL x: BIT;

-- x is declared as a one-digit signal of type BIT.

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);

-- y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 7);

-- w is an 8-bit vector, with the rightmost bit being the MSB.

Based on the signals above, the following assignments would be legal (to assign a

value to a signal, the ‘‘<=’’ operator must be used):

x <= '1';

-- x is a single-bit signal (as specified above), whose value is

-- '1'. Notice that single quotes (' ') are used for a single bit.

y <= "0111";

-- y is a 4-bit signal (as specified above), whose value is "0111"

-- (MSB='0'). Notice that double quotes (" ") are used for

-- vectors.
w <= "01110001";

-- w is an 8-bit signal, whose value is "01110001" (MSB='1').

_ STD_LOGIC (and STD_LOGIC_VECTOR):8-valued logic system

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

17

introduced in the IEEE 1164 standard.
‘X’ Forcing Unknown (synthesizable unknown)

‘0’ Forcing Low (synthesizable logic ‘1’)
‘1’ Forcing High (synthesizable logic ‘0’)
‘Z’ High impedance (synthesizable tri-state buffer)

‘W’ Weak unknown

‘L’ Weak low

‘H’ Weak high

‘–’Don’t care

Examples:
SIGNAL x: STD_LOGIC;

-- x is declared as a one-digit (scalar) signal of type STD_LOGIC.

SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001";

-- y is declared as a 4-bit vector, with the leftmost bit being

-- the MSB. The initial value (optional) of y is "0001". Notice

-- that the ":=" operator is used to establish the initial value.

Most of the std_logic levels are intended for simulation only. However, ‘0’, ‘1’, and

‘Z’ are synthesizable with no restrictions. With respect to the ‘‘weak’’ values, they are

resolved in favor of the ‘‘forcing’’ values in multiply-driven nodes (see table

3.1).Indeed, if any two std_logic signals are connected to the same node, then

conflicting logic levels are automatically resolved according to table 3.1.

STD_LOGIC system described above is a subtype of STD_ULOGIC. The latter

includes an extra logic value, ‘U’, which stands for unresolved. Thus, contrary to

STD_LOGIC, conflicting logic levels are not automatically resolved here, so output

wires should never be connected together directly. However, if two output wires are

never supposed to be connected together, this logic system can be used to detect

design errors.

_ BOOLEAN: True, False.

_ INTEGER: 32-bit integers (from _2,147,483,647 to 2,147,483,647).

_ NATURAL: Non-negative integers (from 0 to 2,147,483,647).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

18

_ REAL: Real numbers ranging from _1.0E38 to 1.0E38. Not synthesizable.

_ Physical literals: Used to inform physical quantities, like time, voltage, etc. Use

fouling simulations. Not synthesizable.

_ Character literals: Single ASCII character or a string of such characters. Not

synthesizable

_ SIGNED and UNSIGNED: data types defined in the std_logic_arith package of

the ieee library. They have the appearance of STD_LOGIC_VECTOR, but accept

arithmetic operations, which are typical of INTEGER data types

Examples:

x0<= '0';-- bit, std_logic, or std_ulogic value '0'

x1<= "00011111";-- bit_vector, std_logic_vector,

-- std_ulogic_vector, signed, or unsigned

x2<= "0001_1111";-- underscore allowed to ease visualization

x3<= "101111"-- binary representation of decimal 47

x4<= B"101111" -- binary representation of decimal 47

x5<= O"57"-- octal representation of decimal 47

x6<= X"2F"-- hexadecimal representation of decimal 47

n <= 1200;-- integer

m <= 1_200;-- integer, underscore allowed

IF ready THEN...-- Boolean, executed if ready=TRUE

y <= 1.2E-5;-- real, not synthesizable

q <= d after 10 ns;-- physical, not synthesizable

Example: Legal and illegal operations between data of different types.

SIGNAL a: BIT;

SIGNAL b: BIT_VECTOR(7 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL e: INTEGER RANGE 0 TO 255;

SOLUTION:

a <= b(5); -- legal (same scalar type: BIT)

b(0) <= a; -- legal (same scalar type: BIT)

c <= d(5); -- legal (same scalar type: STD_LOGIC)

d(0) <= c; -- legal (same scalar type: STD_LOGIC)

a <= c; -- illegal (type mismatch: BIT x STD_LOGIC)

b <= d;--illegal (type mismatch: BIT_VECTOR x-- STD_LOGIC_VECTOR)

e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR)

e <= d; -- illegal (type mismatch: INTEGER x-- STD_LOGIC_VECTOR)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

19

3.2 User-Defined Data Types

VHDL also allows the user to define own data types. Two categories of user defined

data types are shown below: integer and enumerated.

User-defined integer types:
1-TYPE integer IS RANGE -2147483647 TO +2147483647;

-- This is indeed the pre-defined type INTEGER.

2-TYPE natural IS RANGE 0 TO +2147483647;

-- This is indeed the pre-defined type NATURAL.

3-TYPE my_integer IS RANGE -32 TO 32;

-- A user-defined subset of integers.

4-TYPE student_grade IS RANGE 0 TO 100;

-- A user-defined subset of integers or naturals.

User-defined enumeratedtypes:
1-TYPE bit IS ('0', '1');

-- This is indeed the pre-defined type BIT

2-TYPE my_logic IS ('0', '1', 'Z');

-- A user-defined subset of std_logic.

3-TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;

-- This is indeed the pre-defined type BIT_VECTOR.

-- RANGE <> is used to indicate that the range is unconstrained.

-- NATURAL RANGE <>, on the other hand, indicates that the only

-- Restriction is that the range must fall within the NATURAL

-- range.

4-TYPE state IS (idle, forward, backward, stop);

-- An enumerated data type, typical of finite state machines.

5-TYPE color IS (red, green, blue, white);

-- Another enumerated data type.

The encoding of enumerated types is done sequentially and automatically (unless

specified otherwise by a user-defined attribute, as will be shown in chapter 4). For

example, for the type color above, two bits are necessary (there are four states), being

‘‘00’’ assigned to the first state (red), ‘‘01’’ to the second (green),‘‘10’’ to the next

(blue), and finally ‘‘11’’ to the last state (white)

3.3 Subtypes
A SUBTYPE is a TYPE with a constraint. The main reason for using a sub type

rather than specifying a new type is that, though operations between data of different

types are not allowed, they are allowed between a subtype and its corresponding base

type.

Examples: The subtypes below were derived from the types presented in the previous

examples.

SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER'HIGH;

-- As expected, NATURAL is a subtype (subset) of INTEGER.

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO 'Z';

-- Recall that STD_LOGIC=('X','0','1','Z','W','L','H','-').

-- Therefore, my_logic=('0','1','Z').

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

20

SUBTYPE my_color IS color RANGE red TO blue;

-- Since color=(red, green, blue, white), then

-- my_color=(red, green, blue).

SUBTYPE small_integer IS INTEGER RANGE -32 TO 32;

-- A subtype of INTEGER.

Example: Legal and illegal operations between types and subtypes.
SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO '1';

SIGNAL a: BIT;

SIGNAL b: STD_LOGIC;

SIGNAL c: my_logic;

SOLUION:

b <= a; --illegal (type mismatch: BIT versus STD_LOGIC)

b <= c;--legal (same "base" type: STD_LOGIC)

3.4 –Arrays--
Arrays are collections of objects of the same type. They can be one-dimensional (1D),

two-dimensional (2D), or one-dimensional-by-one-

Dimensional(1Dx1D). They can also be of higher dimensions, but then they are

generally not synthesizable Figure 3.1 illustrates the construction of data arrays. A

single value (scalar) is shown in (a), a vector (1D array) in (b), an array of vectors

(1Dx1D array) in (c), and an array of scalars (2D array) in (d).

Indeed, the pre-defined VHDL data types (seen in section 3.1) include only thescalar

(single bit) and vector (one-dimensional array of bits) categories.

The predefined synthesizable types in each of these categories are the following:

1-Scalars: BIT, STD_LOGIC, STD_ULOGIC, and BOOLEAN.

2-Vectors: BIT_VECTOR, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,

INTEGER, SIGNED, and UNSIGNED.

As can be seen, there are no pre-defined 2D or 1Dx1D arrays, which, when

necessary must be specified by the user. To do so, the new TYPE must first be

defined ,then the new SIGNAL, VARIABLE, or CONSTANT can be declared

using that data type. The syntax below should be used.

To specify a new array type:

TYPE type_name IS ARRAY (specification) OF data_type;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

21

To make use of the new array type:

SIGNAL signal_name: type_name [:= initial_value];

In the syntax above, a SIGNAL was declared. However, it could also be a

CONSTANT or a VARIABLE. Notice that the initial value is optional (for

simulation only).

Example: 1Dx1D array.

Say that we want to build an array containing four vectors, each of size eight bits

.This is then an 1Dx1D array (see figure 3.1). Let us call each vector by row, and the

Complete array by matrix. Additionally, say that we want the leftmost bit of each

vector to be its MSB (most significant bit), and that we want the top row to be row

0.Then the array implementation would be the following (notice that a signal, called

x, of type matrix, was declared as an example):

Example
TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;-- 1D array

TYPE matrix IS ARRAY (0 TO 3) OF row; -- 1Dx1D array

SIGNAL x: matrix; -- 1Dx1D signal

Example: 1Dx1D array.

Another way of constructing the 1Dx1D array above would be the following:

TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

From a data-compatibility point of view, the latter might be advantageous over

that in the previous example (see example 3.1).

Example: 2D array.
The array below is truly two-dimensional. Notice that its construction is not basedon

vectors, but rather entirely on scalars.

TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

-- 2D array

Example: Array initialization.
As shown in the syntax above, the initial value of a SIGNAL or VARIABLE is

optional .However, when initialization is required, it can be done as in the examples

below.

……:="0001";-- for 1D array

... :=('0','0','0','1')-- for 1D array

... :=(('0','1','1','1'), ('1','1','1','0')); -- for 1Dx1D or-- 2D array

Example: Legal and illegal array assignments.
The assignments in this example are based on the following type definitions andsignal

declarations:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;-- 1D array

TYPE array1 IS ARRAY (0 TO 3) OF row;-- 1Dx1D array

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

-- 1Dx1D

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;- 2D array

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

22

SIGNAL x: row;

SIGNAL y: array1;

SIGNAL v: array2;

SIGNAL w: array3;

--------- Legal scalar assignments: ---------------

-- The scalar (single bit) assignments below are all legal,

-- because the "base" (scalar) type is STD_LOGIC for all signals-- (x,y,v,w).

x(0) <= y(1)(2); -- notice two pairs of parenthesis-- (y is 1Dx1D)

x(1) <= v(2)(3); -- two pairs of parenthesis (v is 1Dx1D)

x(2) <= w(2,1); -- a single pair of parenthesis (w is 2D)

y(1)(1) <= x(6);

y(2)(0) <= v(0)(0);

y(0)(0) <= w(3,3);

w(1,1) <= x(7);

w(3,0) <= v(0)(3);

--------- Vector assignments: ---------------------

x <= y(0);-------- -- legal (same data types: ROW)

x <= v(1);…………-- illegal (type mismatch: ROW x-- STD_LOGIC_VECTOR)

x <= w(2);……….-- illegal (w must have 2D index)

x <= w(2, 2 DOWNTO 0);…-- illegal (type mismatch: ROW x-- STD_LOGIC)

v(0) <= w(2, 2 DOWNTO 0);-- illegal (mismatch: STD_LOGIC_VECTOR-x

STD_LOGIC)

v(0) <= w(2);…………-- illegal (w must have 2D index)

y(1) <= v(3);……-- illegal (type mismatch: ROW x-- STD_LOGIC_VECTOR)

y(1)(7 DOWNTO 3) <= x(4 DOWNTO 0); -- legal (same type,-- same size)

v(1)(7 DOWNTO 3) <= v(2)(4 DOWNTO 0);-- legal (same type,-- same size)

w(1, 5 DOWNTO 1) <= v(2)(4 DOWNTO 0);-- illegal (type mismatch)

3.5 Port Array
As we have seen, there are no pre-defined data types of more than one dimension

.However, in the specification of the input or output pins (PORTS) of a circuit (which

is made in the ENTITY), we might need to specify the ports as arrays of vectors

.Since User-defined data types in a PACKAGE, which will then be visible to the

whole design
(thus including the ENTITY). An example is shown below.

------- Package: --------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE my_data_types IS

TYPE vector_array IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC_VECTOR(7 DOWNTO 0);

END my_data_types;

--

------- Main code: -------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

23

USE work.my_data_types.all; -- user-defined package

ENTITY mux IS

PORT (inp: IN VECTOR_ARRAY (0 TO 3);

...);

END mux;

--

As can be seen in the example above, a user-defined data type, called vector array,

was created, which can contain an indefinite number of vectors of size eight bits each

(NATURAL RANGE <>signifies that the range is not fixed, with the only restriction

that it must fall within the NATURAL range, which goes from 0 to 2,147,483,647).

The data type was saved in a PACKAGE called my _data_ types, and later used in an

ENTITY to specify a PORT called inp. Notice in the main code the inclusion of an

additional USE clause to make the user-defined package my _data _types visible to

the design Another option for the PACKAGE above would be that shown below,

Where a CONSTANT declaration is included (a detailed study of PACKAGES will

be presented in chapter 10).

------- Package: -------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE my_data_types IS

CONSTANT b: INTEGER:= 7;

TYPE vector_array IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC_VECTOR(b DOWNTO 0);

END my_data_types;

3.6 Records
Records are similar to arrays, with the only difference that they contain objects of

different types

Example:

TYPE birthday IS RECORD

day: INTEGER RANGE 1 TO 31;

month: month_ name;

END RECORD;

3.7 Signed and Unsigned Data Types
As mentioned earlier, these types are defined in the std _logic _arith package of the

ieee library. Their syntax is illustrated in the examples below.

Examples:
SIGNAL x: SIGNED (7 DOWNTO 0);

SIGNAL y: UNSIGNED (0 TO 3);

Notice that their syntax is similar to that of STD_LOGIC_VECTOR, not like thatof

an INTEGER, as one might have expected.

An UNSIGNED value is a number never lower than zero. For example,

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

24

‘‘0101’’represents the decimal 5, while ‘‘1101’’ signifies 13. If type SIGNED is used

instead, the value can be positive or negative (in two’s complement format).

Therefore,‘‘0101’’ would represent the decimal 5, while ‘‘1101’’ would mean(-3).

To use SIGNED or UNSIGNED data types, the std_logic_arith package, of

The ieee library, must be declared. Despite their syntax, SIGNED and UNSIGNED

data types are intended mainly for arithmetic operations, that is, contrary to

STD_LOGIC_VECTOR, they accept arithmetic operations. On the other hand ,logical

operations are not allowed. With respect to relational (comparison) operations ,there

are no restrictions.

Example: Legal and illegal operations with signed/unsigned data types.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all; -- extra package necessary

...

SIGNAL a: IN SIGNED (7 DOWNTO 0);

SIGNAL b: IN SIGNED (7 DOWNTO 0);

SIGNAL x: OUT SIGNED (7 DOWNTO 0);

SOLUTION

v <= a + b; -- legal (arithmetic operation OK)

w <= a AND b; -- illegal (logical operation not OK)

Example: Legal and illegal operations with std_logic_vector.
LIBRARY ieee;

USE ieee.std_logic_1164.all; -- no extra package required

...

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

SOLUTION:

v <= a + b; -- illegal (arithmetic operation not OK)

w <= a AND b; -- legal (logical operation OK)

Despite the constraint mentioned above, there is a simple way of allowing data of

type STD_LOGIC_VECTOR to participate directly in arithmetic operations. For that,

the ieee library provides two packages, std_logic_signed and

std_logic_unsigned,which allow operations with STD_LOGIC_VECTOR data to

be performed as if the data were of type SIGNED or UNSIGNED, respectively.

Example: Arithmetic operations with std_logic_vector.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all; -- extra package included

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

SOLUTION:

v <= a + b; -- legal (arithmetic operation OK), unsigned

w <= a AND b; -- legal (logical operation OK)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

25

3.8 Data Conversion
VHDL does not allow direct operations (arithmetic, logical, etc.) between data of

different types. Therefore, it is often necessary to convert data from one type to

another .This can be done in basically two ways: or we write a piece of VHDL code

for that, or we invoke a FUNCTION from a pre-defined PACKAGE which is capable

of doing it for us. If the data are closely related (that is, both operands have the same

base type ,despite being declared as belonging to two different type classes), then

thestd_logic_1164 of the ieee library provides straightforward conversion functions.

An example is shown below

Example: Legal and illegal operations with subsets.
TYPE long IS INTEGER RANGE -100 TO 100;

TYPE short IS INTEGER RANGE -10 TO 10;

SIGNAL x : short;

SIGNAL y : long;

SOLUTION:

y <= 2*x + 5; -- error, type mismatch

y <= long(2*x + 5); -- OK, result converted into type long

Several data conversion functions can be found in the std_logic_arith package ofthe

ieee library. They are:

-conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_

VECTOR is not included.

-conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an UNSIGNED value with size b bits.

-conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to a SIGNED value with size b bits.

-conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER,

UNSIGNED,SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value with size

bits

Example: Data conversion.
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

...

SIGNAL a: IN UNSIGNED (7 DOWNTO 0);

SIGNAL b: IN UNSIGNED (7 DOWNTO 0);

SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

...

y <= CONV_STD_LOGIC_VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an-- 8-bit

STD_LOGIC_VECTOR value, then assigned to y.

Another alternative was already mentioned in the previous section. It consists of

using the std_logic_signedor the std_logic_unsigned package from the ieee library

Such packages allow operations with STD_LOGIC_VECTOR data to be performed

as if the data were of type SIGNED or UNSIGNED, respectively .Besides the data

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

26

conversion functions described above, several others are often offered by synthesis

tool vendors.

3.9 Summary
The fundamental synthesizable VHDL data types are summarized in table 3.2.

3.10 Additional Examples We close this chapter with the presentation of additional

examples illustrating the specification and use of data types. The development of

actual designs from scratch will only be possible after we conclude laying out the

basic foundations of VHDL(chapters 1 to 4).

Example 3.1: Dealing with Data Types
The legal and illegal assignments presented next are based on the following type

definitions and signal declarations:

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D-- array

TYPE mem1 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;--2D-- array

TYPE mem2 IS ARRAY (0 TO 3) OF byte; -- 1Dx1D-- array

TYPE mem3IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(0 TO 7); -- 1Dx1D—
array

SIGNAL a: STD_LOGIC; -- scalar signal

SIGNAL b: BIT; -- scalar signal

SIGNAL x: byte; -- 1D signal

SIGNAL y: STD_LOGIC_VECTOR (7 DOWNTO 0); -- 1D signal

SIGNAL v: BIT_VECTOR (3 DOWNTO 0); -- 1D signal

SIGNAL z: STD_LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D signal

SIGNAL w1: mem1; -- 2D signal

SIGNAL w2: mem2; -- 1Dx1D signal

SIGNAL w3: mem3; -- 1Dx1D signal

-------- Legal scalar assignments: ---------------------

x(2) <= a; -- same types (STD_LOGIC), correct indexing

y(0) <= x(0); -- same types (STD_LOGIC), correct indexing

z(7) <= x(5); -- same types (STD_LOGIC), correct indexing

b <= v(3); -- same types (BIT), correct indexing

w1(0,0) <= x(3); -- same types (STD_LOGIC), correct indexing

w1(2,5) <= y(7); -- same types (STD_LOGIC), correct indexing

w2(0)(0) <= x(2); -- same types (STD_LOGIC), correct indexing

w2(2)(5) <= y(7); -- same types (STD_LOGIC), correct indexing

w1(2,5) <= w2(3)(7); -- same types (STD_LOGIC), correct indexing

------- Illegal scalar assignments: --------------------
b <= a; -- type mismatch (BIT x STD_LOGIC)

w1(0)(2) <= x(2); -- index of w1 must be 2D

w2(2,0) <= a; -- index of w2 must be 1Dx1D

------- Legal vector assignments: ----------------------
x <= "11111110";

y <= ('1','1','1','1','1','1','0','Z');

z <= "11111" & "000";

x <= (OTHERS => '1');

y <= (7 =>'0', 1 =>'0', OTHERS => '1');

z <= y;

y(2 DOWNTO 0) <= z(6 DOWNTO 4);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

27

w2(0)(7 DOWNTO 0) <= "11110000";

w3(2) <= y;

z <= w3(1);

z(5 DOWNTO 0) <= w3(1)(2 TO 7);

w3(1) <= "00000000";

w3(1) <= (OTHERS => '0');

w2 <= ((OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'));

w3 <= ("11111100", ('0','0','0','0','Z','Z','Z','Z',),

(OTHERS=>'0'), (OTHERS=>'0'));

w1 <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0'));

------ Illegal array assignments: ----------------------
x <= y; -- type mismatch

y(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y

w1 <= (OTHERS => '1'); -- w1 is a 2D array

w1(0, 7 DOWNTO 0) <="11111111"; -- w1 is a 2D array

w2 <= (OTHERS => 'Z'); -- w2 is a 1Dx1D array

w2(0, 7 DOWNTO 0) <= "11110000"; -- index should be 1Dx1D

-- Example of data type independent array initialization:

FOR i IN 0 TO 3 LOOP

FOR j IN 7 DOWNTO 0 LOOP

x(j) <= '0';

y(j) <= '0'

z(j) <= '0';

w1(i,j) <= '0';

w2(i)(j) <= '0';

w3(i)(j) <= '0';

END LOOP;

Example 3.2: Single Bit Versus Bit Vector
This example illustrates the difference between a single bit assignment and a bit

vector assignment (that is, BIT versus BIT_VECTOR, STD_LOGIC versus STD_

LOGIC_VECTOR, or STD_ULOGIC versus STD_ULOGIC_VECTOR).

Two VHDL codes are presented below. Both perform the AND operation between the

input signals and assign the result to the output signal. The only difference between

them is the number of bits in the input and output ports (one bit in the first, four bits in

the second).

The circuits inferred from these codes are shown in figure3.2.

ENTITY and2 IS

PORT (a, b: IN BIT;

x: OUT BIT);

END and2;

ENTITY and2 IS

PORT (a, b: IN BIT_VECTOR (0 TO 3);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

28

x: OUT BIT_VECTOR (0 TO 3));

END and2;

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

Example 3.3: Adder
Figure 3.3 shows the top-level diagram of a 4-bit adder. The circuit has two inputs(a,

b) and one output (sum). Two solutions are presented. In the first, all signals are of

type SIGNED, while in the second the output is of type INTEGER. Notice in solution

2 that a conversion function was used in line 13, for the type of a b does not match

that of sum. Notice also the inclusion of the std_logic_arith package (line4 of each

solution), which specifies the SIGNED data type. Recall that a SIGNED value is

represented like a vector; that is, similar to STD_LOGIC_VECTOR, not like an

INTEGER.

1 ----- Solution 1: in/out=SIGNED ----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 --

6 ENTITY adder1 IS

7 PORT (a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT SIGNED (4 DOWNTO 0));

9 END adder1;

10 --

11 ARCHITECTURE adder1 OF adder1 IS

12 BEGIN

13 sum <= a + b;

14 END adder1;

15 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

29

1 ------ Solution 2: out=INTEGER-----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 --

6 ENTITY adder2 IS

7 PORT (a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT INTEGER RANGE -16 TO 15);

9 END adder2;

10 --

11 ARCHITECTURE adder2 OF adder2 IS

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

30

12 BEGIN

13 sum <= CONV_INTEGER(a + b);

14 END adder2;

15 --

Simulation results (for either solution) are presented in figure 3.4. Notice that the

numbers are represented in hexadecimal 2’s complement form. Since the input range

is from(- 8 to 7), its representation is(7 →7), 6 →6, . . . ,, 0 →0, -1 →15, -2 →14,. . . ,

-8 →8. Likewise, the output range is from -16 to 15, so its representation is15 →15, . .

. , 0 →0, -1 →31, . . . , -16 →16. Therefore, 2H 4H =06H (that is,2 + 4 = 6), 4H + 8H =

1CH (that is, 4 + (-8) =-4), etc., where H = Hexadecimal

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

31

4 -Operators and Attributes
The purpose of this chapter, along with the preceding chapters, is to lay

the basic foundations of VHDL, so in the next chapter we can start

dealing with actual circuit designs.

It is indeed impossible—or little productive, at least—to write any code

efficiently without undertaking first the sacrifice of understanding data

types, operators, and attributes well.

Operators and attributes constitute a relatively long list of general VHDL

constructs, which are often examined only sparsely. We have collected

them together in

4.1-Operators
VHDL provides several kinds of pre-defined operators:
1- Assignment operators

2- Logical operators

3- Arithmetic operators

4- Relational operators

5- Shift operators

6- Concatenation operators

Each of these categories is described below.

1-Assignment Operators

Are used to assign values to signals, variables, and constants. They are:

<=Used to assign a value to a SIGNAL.

:=Used to assign a value to a VARIABLE, CONSTANT, or GENERIC.

Usedalso for establishing initial values.

=>Used to assign values to individual vector elements or with OTHERS.

Example: Consider the following signal and variable declarations:

SIGNAL x : STD_LOGIC;

VARIABLE y : STD_LOGIC_VECTOR(3 DOWNTO 0); -- Leftmost bit

is MSB

SIGNAL w: STD_LOGIC_VECTOR(0 TO 7); -- Rightmost bit is

-- MSB

Then the following assignments are legal:
x <= '1'; -- '1' is assigned to SIGNAL x using "<="

y := "0000"; -- "0000" is assigned to VARIABLE y using ":="

w <= "10000000"; -- LSB is '1', the others are '0'

w <= (0 =>'1', OTHERS =>'0'); -- LSB is '1', the others are '0'

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

32

Logical Operators
Used to perform logical operations. The data must be of type BIT,

STD_LOGIC,

or STD_ULOGIC (or, obviously, their respective extensions,

BIT_VECTOR,

STD_LOGIC_VECTOR, or STD_ULOGIC_VECTOR). The logical

operators are:
_ NOT

_ AND

_ OR

_ NAND

_ NOR

_ XOR

_ XNOR

Notes: The NOT operator has precedence over the others. The XNOR

operator was

introduced in VHDL93.

Examples:

y <= NOT a AND b; -- (a'.b)

y <= NOT (a AND b); -- (a.b)'

y <= a NAND b; -- (a.b)'

2-Arithmetic Operators
Used to perform arithmetic operations. The data can be of type

INTEGER,

SIGNED, UNSIGNED, or REAL (recall that the last cannot be

synthesized directly).

Also, if the std_logic_signed or the std_logic_unsigned package of the

ieeelibrary is used, then STD_LOGIC_VECTOR can also be employed

directly in addition

 + Addition
- Subtraction

 * Multiplication

 / Division

 ** Exponentiation

 MOD Modulus

 REM Remainder

 ABS Absolute value

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

33

There are no synthesis restrictions regarding addition and subtraction, and

the same is generally true for multiplication. For division, only power of

two dividers are allowed. For exponentiation, only static values of base

and exponent are accepted. Regarding the mod and rem operators, y mod

x returns the remainder of y/x with the signal of x,

while y rem x returns the remainder of y/x with the signal of y. Finally,

abs returns the absolute value. With respect to the last three operators

(mod, rem, abs),there generally is little or no synthesis support.

Comparison Operators
Used for making comparisons. The data can be of any of the types listed

above. The relational (comparison) operators are:

=Equal to

 Not equal to

<Less than

>Greater than

<=Less than or equal to

>=Greater than or equal to

Shift Operators
Used for shifting data. They were introduced in VHDL93. Their syntax is

the following:

(left operand)(shift operation)(right operand). The left operand must be

of type BIT_VECTOR, while the right operand must be an INTEGER

(+or -infront of it is accepted).

The shift operators are:

1-sll Shift left logic– positions on the right are filled with ‘0’s

2-srl Shift right logic – positions on the left are filled with ‘0’s

Data Attributes
The pre-defined, synthesizable data attributes are the following:

1-d’LOW: Returns lower array index

2-d’HIGH: Returns upper array index

3-d’LEFT: Returns leftmost array index

4-d’RIGHT: Returns rightmost array index

5-d’LENGTH: Returns vector size

6-d’RANGE: Returns vector range

7d’REVERSE_RANGE: Returns vector range in reverse order

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

34

Example: Consider the following signal:

SIGNAL d : STD_LOGIC_VECTOR (7 DOWNTO 0);

Then:

d'LOW=0, d'HIGH=7, d'LEFT=7, d'RIGHT=0, d'LENGTH=8,

d'RANGE=(7 downto 0), d'REVERSE_RANGE=(0 to 7).

Example: Consider the following signal:

SIGNAL x: STD_LOGIC_VECTOR (0 TO 7);

Then all four LOOP statements below are synthesizable and equivalent.

FOR i IN RANGE (0 TO 7) LOOP ...

FOR i IN x'RANGE LOOP ...

FOR i IN RANGE (x'LOW TO x'HIGH) LOOP...

FOR i IN RANGE (0 TO x'LENGTH-1) LOOP...

If the signal is of enumerated type, then:

-d’VAL(pos): Returns value in the position specified

-d’POS(value): Returns position of the value specified

-d’LEFTOF(value): Returns value in the position to the left of the value

specified

-d’VAL(row, column): Returns value in the position specified; etc.

There is little or no synthesis support for enumerated data type attributes.

Signal Attributes
Let us consider a signal s. Then:

-s’EVENT: Returns true when an event occurs on s

-s’STABLE: Returns true if no event has occurred on s

-s’ACTIVE: Returns true if s=‘1’
-’QUIET (time): Returns true if no event has occurred during the time specified

-s’LAST_EVENT: Returns the time elapsed since last event

-s’LAST_ACTIVE: Returns the time elapsed since last s=‘1’
-s’LAST_VALUE: Returns the value of s before the last event; etc.

Though most signal attributes are for simulation purposes only, the first two in the

list above are synthesizable, s’EVENT being the most often used of them all.

Example: All four assignments shown below are synthesizable and equivalent. They

return TRUE when an event (a change) occurs on clk, AND if such event is upward

(in other words, when a rising edge occurs on clk).

IF (clk'EVENT AND clk='1')... -- EVENT attribute used-- with IF

IF (NOT clk'STABLE AND clk='1')... -- STABLE attribute used-- with IF

WAIT UNTIL (clk'EVENT AND clk='1'); -- EVENT attribute used-- with WAIT

IF RISING_EDGE(clk)... -- call to a function

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

35

4.3 User-Defined Attributes
We saw above attributes of the type HIGH, RANGE, EVENT, etc. Those are all

pre-defined in VHDL87. However, VHDL also allows the construction of user

defined attributes To employ a user-defined attribute, it must be declared and

specified. The syntax is the following

Attribute declaration:

ATTRIBUTE attribute_name: attribute_type;

Attribute specification:

ATTRIBUTE attribute_name OF target_name: class IS

value;
where:

attribute_type:any data type (BIT, INTEGER, STD_LOGIC_VECTOR, etc.)

class: TYPE, SIGNAL, FUNCTION, etc.

value: ‘0’, 27, ‘‘00 11 10 01’’, etc.

4.4 GENERIC
As the name suggests, GENERIC is a way of specifying a generic parameter (that is,

a static parameter that can be easily modified and adapted to different applications).

The purpose is to confer the code more flexibility and reusability.

A GENERIC statement, when employed, must be declared in the ENTITY. The

specified parameter will then be truly global (that is, visible to the whole design,

including the ENTITY itself). Its syntax is shown below.

GENERIC (parameter_name : parameter_type := parameter_value);

Example: The GENERIC statement below specifies a parameter called n, of type

INTEGER, whose default value is 8. Therefore, whenever n is found in the ENTITY

itself or in the ARCHITECTURE (one or more) that follows, its value will be

assumed to be 8.

ENTITY my_entity IS

GENERIC (n : INTEGER := 8);

PORT (...);

END my_entity;

ARCHITECTURE my_architecture OF my_entity IS

……..

END my_architecture:

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

36

4.5 Examples
We show now a few complete design examples, with the purpose of further

illustrating the use of operators, attributes and GENERIC

. Recall, however, that so far we have just worked on establishing the basic

foundations of VHDL, with the formal discussion

the student must return and reexamine later

Example 4.1: Generic Decoder
Figure 4.1 shows the top-level diagram of a generic m-by-n decoder. The circuit has

two inputs, sel (m bits) and ena (single bit), and one output, x (n bits). We assume

that n is a power of two, so m =log2n. If ena =‘0’, then all bits of x should be high;

otherwise, the output bit selected by sel should be low, as illustrated in the truth table

of figure 4.1. The ARCHITECTURE below is totally generic, for the only changes

needed to operate with different values of m and n are in the ENTITY (through sel,

line 7, and x, line 8, respectively). In this example, we have used m =3 and n =8.

However, though this works fine, the use of GENERIC would have made it clearer

that m andn are indeed generic parameters. That is indeed the procedure that we will

adopt inthe other examples that follow (please refer to problem 4.4).

Notice in the code below the use of the following operators:''+'' (line 22), ‘‘*’’
(lines 22 and 24), ‘‘:=’’ (lines 17, 18, 22, 24, and 27), ‘‘<=’’ (line 29), and ‘‘=>’’ (line

17). Notice also the use of the following attributes: HIGH (lines 14–15) and RANGE

(line 20).

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY decoder IS

6 PORT (ena : IN STD_LOGIC;

7 sel : IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 x : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END decoder;

10 ---

11 ARCHITECTURE generic_decoder OF decoder IS

12 BEGIN

13 PROCESS (ena, sel)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

37

14 VARIABLE temp1 : STD_LOGIC_VECTOR (x'HIGH DOWNTO 0);

15 VARIABLE temp2 : INTEGER RANGE 0 TO x'HIGH;

16 BEGIN

17 temp1 := (OTHERS => '1');

18 temp2 := 0;

19 IF (ena='1') THEN

20 FOR i IN sel'RANGE LOOP -- sel range is 2 downto 0

21 IF (sel(i)='1') THEN -- Bin-to-Integer conversion

22 temp2:=2*temp2+1;

23 ELSE

24 temp2 := 2*temp2;

25 END IF;

26 END LOOP;

27 temp1(temp2):='0';

28 END IF;

29 x <= temp1;

30 END PROCESS;

31 END generic_decoder;

32 ---

The functionality of the encoder above can be verified in the simulation results of

figure 4.2. As can be seen, all outputs are high, that is, x =‘‘11111111’’ (decimal

255), when ena =‘0’. After ena has been asserted, only one output bit (that selected

by sel) is turned low. For example, when sel =‘‘000’’ (decimal 0), x =‘‘11111110’’
(decimal 254); when sel =‘‘001’’ (decimal 1), x =‘‘11111101’’ (decimal 253); when

sel =‘‘010’’ (decimal 2), x =‘‘11111011’’ (decimal 251); and so on.

Example 4.2: Generic Parity Detector
Figure 4.3 shows the top-level diagram of a parity detector. The circuit must provide

output =‘0’ when the number of ‘1’s in the input vector is even, or output =‘1’
otherwise. Notice in the VHDL code below that the ENTITY contains a GENERIC

statement (line 3), which defines n as 7. This code would work for any other vector

size, being only necessary to change the value of n in that line. You are invited to

highlight the operators and attributes that appear in this design.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

38

1 --

2 ENTITY parity_det IS

3 GENERIC (n : INTEGER := 7);

4 PORT (input: IN BIT_VECTOR (n DOWNTO 0);

5 output: OUT BIT);

6 END parity_det;

7 --

8 ARCHITECTURE parity OF parity_det IS

9 BEGIN

10 PROCESS (input)

11 VARIABLE temp: BIT;

12 BEGIN

13 temp := '0';

14 FOR i IN input'RANGE LOOP

15 temp := temp XOR input(i);

16 END LOOP;

17 output <= temp;

18 END PROCESS;

19 END parity;

20 --

Simulation results from the circuit synthesized with the code above are shown in

figure 4.4. Notice that when input =‘‘00000000’’ (decimal 0), the output is ‘0’, because

the number of ‘1’s is even; when input =‘‘00000001’’ (decimal 1), the output is‘1’,

because the number of ‘1’s is odd; and so on.

Example 4.3: Generic Parity Generator
The circuit of figure 4.5 must add one bit to the input vector (on its left). Such bit

must be a ‘0’ if the number of ‘1’s in the input vector is even, or a ‘1’ if it is odd, such

that the resulting vector will always contain an even number of ‘1’s (even parity).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

39

A VHDL code for the parity generator is shown below. Once again, you

are invited to highlight the operators and attributes used in the design.

1 ---

2 ENTITY parity_gen IS

3 GENERIC (n : INTEGER := 7);

4 PORT (input: IN BIT_VECTOR (n-1 DOWNTO 0);

5 output: OUT BIT_VECTOR (n DOWNTO 0));

6 END parity_gen;

7 ---

8 ARCHITECTURE parity OF parity_gen IS

9 BEGIN

10 PROCESS (input)

11 VARIABLE temp1: BIT;

12 VARIABLE temp2: BIT_VECTOR (output' RANGE);

13 BEGIN

14 temp1 := '0';

15 FOR i IN input' RANGE LOOP

16 temp1 := temp1 XOR input(i);

17 temp2(i) := input(i);

18 END LOOP;

19 temp2(output' HIGH) := temp1;

20 output <= temp2;

21 END PROCESS;

22 END parity;

23 -------------------------------------

input (n-1:0) PARITY GENERATOR

output (n:0)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

40

Simulation results are presented in figure 4.6. As can be seen, when input =

‘‘0000000’’ (decimal 0, with seven bits), output =‘‘00000000’’ (decimal 0, with eight

bits); when input =‘‘0000001’’ (decimal 1, with seven bits), output =‘‘10000001’’
(decimal 129, with eight bits); and so on.

Operators.

Operator type Operators Data types

Assignment <=, :=, =>Any

Logical NOT, AND, NAND, BIT, BIT_VECTOR,

OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,

STD_ULOGIC, STD_ULOGIC_VECTOR

Arithmetic ,- , *, /, ** INTEGER, SIGNED, UNSIGNED

(mod, rem, abs))

Comparison =, , <, >, <=, >= All above

Shift sll, srl, sla, sra, rol, ror BIT_VECTOR

Concatenation &, (, , ,) Same as for logical operators, plus

 SIGNED and UNSIGNED

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

41

5-Concurrent Code

The concurrent statements in VHDL are WHEN and GENERATE. Besides them,

assignments using only operators (AND, NOT,+ , *, sll, etc.) can also be used to

construct concurrent code. Finally, a special kind of assignment, called BLOCK, can

also be employed in this kind of code.

5.1 Concurrent versus Sequential
We start this chapter by reviewing the fundamental differences between

combinational logic and sequential logic, and by contrasting them with the

differences between concurrent code and sequential code.

Combinational versus Sequential Logic

By definition, combinational logic is that in which the output of the circuit

depends only on the current inputs

 (figure 5.1(a))., the system requires no memory and can be implemented using

conventional logic gates.

sequential logic is defined as that in which the output does depend on

previous inputs (figure 5.1(b)).Therefore, storage elements are

required,
the output of the circuit. a common mistake is to think that any circuit that possesses

storage elements(flip-flops) is sequential

.A RAM (Random Access Memory) can be modeled as in figure 5.2. Notice that the

storage elements appear in a forward path rather than in a feedback loop.

The memory-read operation depends only on the address vector presently applied to

the RAM input, with the retrieved value

Concurrent versus Sequential Code

VHDL code is inherently concurrent (parallel). Only statements placed inside a

PROCESS, FUNCTION, or PROCEDURE are sequential. Still, though within

these blocks the execution is sequential, the block, as a whole, is concurrent with any

other (external) statements. Concurrent code is also called dataflow code.

Example, let us consider a code with three concurrent statements (stat1,

stat2, stat3). Then any of the alternatives below will render the same physical circuit:

stat1 stat3 stat1

stat2 stat2 stat3 etc.

stat3stat1 stat2

It is then clear that, since the order does not matter, purely concurrent code can

not be used to implement synchronous circuits (the only exception is when a

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

42

Example, let us consider a code with three concurrent statements (stat1,

stat2, stat3). Then any of the alternatives below will render the same physical circuit:

stat1 stat3 stat1

stat2 stat2 stat3 etc.

stat3stat1 stat2

In general we can only build combinational logic circuits with concurrent code. obtain

We will discuss concurrent code, that is, we will study the statements

That can only be used outside PROCESSES, FUNCTIONS, or PROCEDURES.

They are the WHEN statement and the GENERATE statement. Besides

them, assignments using only operators (logical, arithmetic, etc) can obviously also

be used to create combinational circuits. Finally, a special kind of statement, called

BLOCK, can also be employed In summary, in concurrent code the following can be

used:

1-Operators;

2-The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);

3-The GENERATE statement;

4-The BLOCK statement.

Each of these cases is described below.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

43

5.2 Using Operators
This is the most basic way of creating concurrent code. Operators (AND, OR, , _.

*, sll, sra, etc.) were discussed in section 4.1, being a summary repeated in table 5.1

below.

Operators can be used to implement any combinational circuit. However, as will

become apparent later, complex circuits are usually easier to write using

sequential code,
even if the circuit does not contain sequential logic. In the example that follows,

a design using only logical operators is presented.

Table 5.1

Operators.

Operator type Operators Data types
Logical NOT, AND, NAND, BIT, BIT_VECTOR,

OR, NOR, XOR, XNOR STD_LOGIC,STD_LOGIC_VECTOR

 STD_ULOGIC,STD_ULOGIC_VECTOR

Arithmetic , _, *, /, ** INTEGER, SIGNED, UNSIGNED

 (mod, rem, abs)

Comparison=, , <, >, <=, >=All above

Shiftsll, srl, sla, sra, rol, ror BIT_VECTOR

Concatenation &, (, , ,)Same as for logical operators, plus SIGNED and UNSIGNED

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

44

Example 5.1: Multiplexer #1

Write the VHDL code for the circuit in the figure(5-3)by using the logic ?
Figure 5.3 shows a 4-input, one bit per input multiplexer. The output must be equal

to the input selected by the selection bits, s1-s0. Its implementation, using only logical

operators, can be done as follows:
1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY mux IS

6 PORT (a, b, c, d, s0, s1: IN STD_LOGIC;

7 y: OUT STD_LOGIC);

8 END mux;

9 ---------------------------------------

10 ARCHITECTURE pure_logic OF mux IS

11 BEGIN

12 y <= (a AND NOT s1 AND NOT s0) OR

13 (b AND NOT s1 AND s0) OR

14 (c AND s1 AND NOT s0) OR

15 (d AND s1 AND s0);

16 END pure_logic;

17 ---------------------------------------

Simulation results, confirming the functionality of the circuit, are shown in figure5.4

.

5.3 WHEN (Simple and Selected)
As mentioned above, WHEN is one of the fundamental concurrent statements

(along with operators and GENERATE). It appears in two forms: WHEN / ELSE

(simple WHEN) and WITH / SELECT / WHEN (selected WHEN). Its syntax is

shown below.

WHEN / ELSE:

assignment WHEN condition ELSE

assignment WHEN condition ELSE
...;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

45

WITH / SELECT / WHEN:

WITH identifier SELECT

assignment WHEN value,

assignment WHEN value,

...;

Whenever WITH/ SELECT/WHEN is used, all permutations must be tested,

so the keyword OTHERS is often useful. Another important keyword is

UNAFFECTED, which should be used when no action is to take place.

Example
:

------ With WHEN/ELSE -------------------------

outp <= "000" WHEN (inp='0' OR reset='1') ELSE

"001" WHEN ctl='1' ELSE

"010";

---- With WITH/SELECT/WHEN --------------------

WITH control SELECT

output <= "000" WHEN reset,

"111" WHEN set,

UNAFFECTED WHEN OTHERS;

Another important aspect related to the WHEN statement is that the ‘‘WHEN

value’’ shown in the syntax above can indeed take up three forms:

1-WHEN value -- single value

2-WHEN value1 to value2 -- range, for enumerated data types-- only

3-WHEN value1 | value2 |... -- value1 or value2 or ...

Example 5.2: Multiplexer #2

This example shows the implementation of the same multiplexer of example 5.1, but

with a slightly different representation for the sel input (figure 5.5). However, in it

WHEN was employed instead of logical operators. Two solutions are presented: one

using WHEN/ELSE (simple WHEN) and the other with WITH/SELECT/WHEN

(selected WHEN). The experimental results are obviously similar to those obtained

in example 5.1.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

46

1 ------- Solution 1: with WHEN/ELSE--------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY mux IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

8 y: OUT STD_LOGIC);

9 END mux;

10 ---

11 ARCHITECTURE mux1 OF mux IS

12 BEGIN

13 y <= a WHEN sel="00" ELSE

14 b WHEN sel="01" ELSE

15 c WHEN sel="10" ELSE

16 d;

17 END mux1;

18 ---

1 --- Solution 2: with WITH/SELECT/WHEN-----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY mux IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

8 y: OUT STD_LOGIC);

9 END mux;

10 ---

11 ARCHITECTURE mux2 OF mux IS

12 BEGIN

13 WITH sel SELECT

14 y <= a WHEN "00", -- notice "," instead of ";"

15 b WHEN "01",

16 c WHEN "10",

17 d WHEN OTHERS; -- cannot be "d WHEN "11" "

18 END mux2;

19 --

In the solutions above, sel could have been declared as an INTEGER, in which

case the code would be the following:

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY mux IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN INTEGER RANGE 0 TO 3;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

47

8 y: OUT STD_LOGIC);

9 END mux;

10 ---- Solution 1: with WHEN/ELSE ---------------

11 ARCHITECTURE mux1 OF mux IS

12 BEGIN

13 y <= a WHEN sel=0 ELSE

14 b WHEN sel=1 ELSE

15 c WHEN sel=2 ELSE

16 d;

17 END mux1;

18 -- Solution 2: with WITH/SELECT/WHEN --------

19 ARCHITECTURE mux2 OF mux IS

20 BEGIN

21 WITH sel SELECT

22 y <= a WHEN 0,

23 b WHEN 1,

24 c WHEN 2,

25 d WHEN 3; -- here, 3 or OTHERS are equivalent,

26 END mux2; -- for all options are tested anyway

27 ---

Note: Only one ARCHITECTURE can be synthesized at a time. Therefore, whenever

we show more than one solution within the same overall code (like above), it is

implicit that all solutions but one must be commented out (with ‘‘- -’’), or a synthesis

script must be used, in order to synthesize the remaining solution. In simulations, the

CONFIGURATION statement can be used to select a specific architecture.

Note: For a generic mux, please refer to problem 5.1.

Example 5.3: Tri-state Buffer
This is another example that illustrates the use of WHEN. The 3-state buffer of

figure 5.6 must provide output =input when ena (enable) is low, or output =

‘‘ZZZZZZZZ’’(high impedance) otherwise.

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.all;

3 --

4 ENTITY tri_state IS

5 PORT (ena: IN STD_LOGIC;

6 input: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

48

7 output: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

8 END tri_state;

9 --

10 ARCHITECTURE tri_state OF tri_state IS

11 BEGIN

12 output <= input WHEN (ena='0') ELSE

13 (OTHERS => 'Z');

14 END tri_state;

15 --

Simulation results from the circuit synthesized with the code above are shown in

figure 5.7. As expected, the output stays in the high-impedance state while ena is

high, being a copy of the input when ena is turned low.

Example 5.4: Encoder

The top-level diagram of an n-by-m encoder is shown in figure 5.8. We assume that n

is a power of two, so m =log2n. One and only one input bit is expected to be high at

a time, whose address must be encoded at the output. Two solutions are presented,
one using WHEN / ELSE, and the other with WITH / SELECT / WHEN.

1 ---- Solution 1: with WHEN/ELSE -------------
2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY encoder IS

6 PORT (x: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 y: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

8 END encoder;

9 ---

10 ARCHITECTURE encoder1 OF encoder IS

11 BEGIN

12 y <= "000" WHEN x="00000001" ELSE

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

49

13 "001" WHEN x="00000010" ELSE

14 "010" WHEN x="00000100" ELSE

15 "011" WHEN x="00001000" ELSE

16 "100" WHEN x="00010000" ELSE

17 "101" WHEN x="00100000" ELSE

18 "110" WHEN x="01000000" ELSE

19 "111" WHEN x="10000000" ELSE

20 "ZZZ";

21 END encoder1;

22 ---

1 ---- Solution 2: with WITH/SELECT/WHEN------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY encoder IS

6 PORT (x: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 y: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

8 END encoder;

9 ---

10 ARCHITECTURE encoder2 OF encoder IS

11 BEGIN

12 WITH x SELECT

13 y <= "000" WHEN "00000001",

14 "001" WHEN "00000010",

15 "010" WHEN "00000100",

16 "011" WHEN "00001000",

17 "100" WHEN "00010000",

18 "101" WHEN "00100000",

19 "110" WHEN "01000000",

20 "111" WHEN "10000000",

21 "ZZZ" WHEN OTHERS;

22 END encoder2;

23 ---

Simulation results (from either solution) are shown in figure 5.9

Example 5.5: ALU

An ALU (Arithmetic Logic Unit) is shown in figure 5.10. As the name says, it is a

circuit capable of executing both kinds of operations, arithmetic as well as logical. Its

operation is described in the truth table of figure 5.10. The output (arithmetic or

logical) is selected by the MSB of sel, while the specific operation is selected by sel’s

other three bits.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

50

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

51

The solution presented below, besides using only concurrent code, also illustrates

the use of the same data type to perform both arithmetic and logical operations. That

is possible due to the presence of the std_logic_unsigned package of the ieee library

Two signals, arith and logic, are used to hold the results

from the arithmetic and logic units, respectively, being the value passed to the output

selected by the multiplexer. Simulation results are shown in figure 5.11.

1 --

2 LIBRARY ieee;

3USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 --

6 ENTITY ALU IS

7 PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

8 sel: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

9 cin: IN STD_LOGIC;

10 y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

11 END ALU;

12 --

13 ARCHITECTURE dataflow OF ALU IS

14 SIGNAL arith, logic: STD_LOGIC_VECTOR (7 DOWNTO 0);

15 BEGIN

16 ----- Arithmetic unit: ------

17 WITH sel(2 DOWNTO 0) SELECT

18 arith <= a WHEN "000",

19 a+1 WHEN "001",

20 a-1 WHEN "010",

21 b WHEN "011",

22 b+1 WHEN "100",

23 b-1 WHEN "101",

24 a+b WHEN "110",

25 a+b+cin WHEN OTHERS;

26 ----- Logic unit: -----------

27 WITH sel(2 DOWNTO 0) SELECT

28 logic <= NOT a WHEN "000",

29 NOT b WHEN "001",

30 a AND b WHEN "010",

31 a OR b WHEN "011",

32 a NAND b WHEN "100",

33 a NOR b WHEN "101",

34 a XOR b WHEN "110",

35 NOT (a XOR b) WHEN OTHERS;

36 -------- Mux: ---------------

37 WITH sel(3) SELECT

38 y <= arith WHEN '0',

39 logic WHEN OTHERS;

40 END dataflow;

41 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

52

5.4 GENERATE
GENERATE is another concurrent statement (along with operators and WHEN). It

is equivalent to the sequential statement LOOP

the same assignments. Its regular form is the FOR / GENERATE construct, with

the syntax shown below. Notice that GENERATE must be labeled.

FOR / GENERATE:

label: FOR identifier IN range GENERATE(concurrent assignments)

END GENERATE;

An irregular form is also available, which uses IF/GENERATE (with an IF

equivalent; recall that originally IF is a sequential statement). Here ELSE is not

allowed. In the same way that IF/GENERATE can be nested inside FOR/

GENERATE (syntax below), the opposite can also be done.

IF / GENERATE nested inside FOR / GENERATE:

Example:
SIGNAL x: BIT_VECTOR (7 DOWNTO 0);

SIGNAL y: BIT_VECTOR (15 DOWNTO 0);

SIGNAL z: BIT_VECTOR (7 DOWNTO 0);

...

G1: FOR i IN x'RANGE GENERATE

z(i) <= x(i) AND y(i+8);

END GENERATE;

One important remark about GENERATE (and the same is true for LOOP,

which will be seen in chapter 6) is that both limits of the range must be static. As

an example, let us consider the code below, where choice is an input (non-static)

parameter. This kind of code is generally not synthesizable.

NotOK: FOR i IN 0 TO choice GENERATE(concurrent statements)

END GENERATE;

We also must to be aware of multiply-driven (unresolved) signals. For example,

OK: FOR i IN 0 TO 7 GENERATE

output(i)<='1' WHEN (a(i) AND b(i))='1' ELSE '0';

END GENERATE;

label1: FOR identifier IN range GENERATE

...

label2: IF condition GENERATE

(concurrent assignments)

END GENERATE;

...

END GENERATE;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

53

is fine. However, the compiler will complain that accum is multiply driven (and stop

compilation) in either of the following two cases:

Not OK: FOR i IN 0 TO 7 GENERATE

accum <="11111111" WHEN (a(i) AND b(i))='1' ELSE "00000000";

END GENERATE;

Not OK: For i IN 0 to 7 GENERATE

accum <= accum + 1 WHEN x(i)='1';

END GENERATE;

Example 5.6: Vector Shifter

This example illustrates the use of GENERATE. In it, the output vector must be a

shifted version of the input vector, with twice its width and an amount of shift

specified by another input. For example, if the input bus has width 4, and the present

value is ‘‘1111’’, then the output should be one of the lines of the following matrix

(the original vector is underscored):

row(0): 0 0 0 0 1 1 1 1

row(1): 0 0 0 1 1 1 1 0

row(2): 0 0 1 1 1 1 0 0

row(3): 0 1 1 1 1 0 0 0

row(4): 1 1 1 1 0 0 0 0

The first row corresponds to the input itself, with no shift and the most significant

bits filled with ‘0’s. Each successive row is equal to the previous row shifted one

position to the left.

The solution below has input inp, output outp, and shift selection sel. Each row of

the array above (called matrix, line 14) is defined as subtype vector (line 12).

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY shifter IS

6 PORT (inp: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

7 sel: IN INTEGER RANGE 0 TO 4;

8 outp: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END shifter;

10 --

11 ARCHITECTURE shifter OF shifter IS

12 SUBTYPE vector IS STD_LOGIC_VECTOR (7 DOWNTO 0);

13 TYPE matrix IS ARRAY (4 DOWNTO 0) OF vector;

14 SIGNAL row: matrix;

15 BEGIN

16 row(0) <= "0000" & inp;

17 G1: FOR i IN 1 TO 4 GENERATE

18 row(i) <= row(i-1)(6 DOWNTO 0) & '0';

19 END GENERATE;

20 outp <= row(sel);

21 END shifter;

22 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

54

Simulation results are presented in figure 5.12. As can be seen, inp =‘‘0011’’
(decimal 3) was applied to the circuit. The result was outp =‘‘00000011’’ (decimal 3)

When sel =0 (no shift), outp=‘‘00000110’’ (decimal 6) when sel =1 (one shift to the

left), outp =‘‘00001100’’ (decimal 12) when sel =2 (two shifts to the left), and so on.

5.5 BLOCK
There are two kinds of BLOCK statements: Simple and Guarded.

Simple BLOCK

The BLOCK statement, in its simple form, represents only a way of locally

partitioning

the code. It allows a set of concurrent statements to be clustered into a

BLOCK, with the purpose of turning the overall code more readable and more

manageable Its syntax is shown below.

label: BLOCK

[declarative part]

BEGIN

(concurrent statements)

END BLOCK label;
Example:
b1: BLOCK

SIGNAL a: STD_LOGIC;

BEGIN

a <= input_sig WHEN ena='1' ELSE 'Z';

END BLOCK b1;

A BLOCK (simple or guarded) can be nested inside another BLOCK. The

corresponding

syntax is shown below.

label1: BLOCK

[declarative part of top block]

BEGIN

[concurrent statements of top block]

label2: BLOCK

[declarative part nested block]

BEGIN

(concurrent statements of nested block)

END BLOCK label2;

[more concurrent statements of top block]

END BLOCK label1;

Guarded BLOCK
A guarded BLOCK is a special kind of BLOCK, which includes an additional

expression, called guard expression.

A guarded statement in a guarded BLOCK is executedonly when the guard expression

is TRUE.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

55

Guarded BLOCK:

label: BLOCK (guard expression) [declarative part]

BEGIN(concurrent guarded and unguarded statements)

END BLOCK label;
As the examples below illustrate, even though only concurrent statements can be

written within a BLOCK, with a guarded BLOCK even sequential circuits can be

constructed. This, however, is not a usual design approach.

Example 5.7: Latch Implemented with a Guarded BLOCK

The example presented below implements a transparent latch. In it, clk='1' (line

12) is the guard expression, while q<=GUARDED d (line 14) is a guarded statement.

Therefore, q<=d will only occur if clk='1'.

1 -------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------

5 ENTITY latch IS

6 PORT (d, clk: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END latch;

9 -------------------------------

10 ARCHITECTURE latch OF latch IS

11 BEGIN

12 b1: BLOCK (clk='1')

13 BEGIN

14 q <= GUARDED d;

15 END BLOCK b1;

16 END latch;

17 -------------------------------

Example 5.8: DFF Implemented with a Guarded BLOCK
Here, a positive-edge sensitive D-type flip-flop, with synchronous reset, is designed.

The interpretation of the code is similar to that in the example above. In it,

clk'EVENT AND clk='1' (line 12) is the guard expression, while q <= GUARDED '0'

WHEN rst='1' (line 14) is a guarded statement. Therefore, q<='0' will occur when

the guard expression is true and rst is ‘1’.
1 -------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 -------------------------------

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

56

10 ARCHITECTURE dff OF dff IS

11 BEGIN

12 b1: BLOCK (clk'EVENT AND clk='1')

13 BEGIN

14 q <= GUARDED '0' WHEN rst='1' ELSE d;

15 END BLOCK b1;

16 END dff;

17 ------------------------------

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

57

6-Sequential Code
As mentioned in chapter 5, VHDL code is inherently concurrent .PROCESSES,

FUNCTIONS, and PROCEDURES are the only sections of code that are executed

sequentially.

One important aspect of sequential code is that it is not limited to sequential logic.

Indeed, with it we can build sequential circuits as well as combinational circuits.

Sequential code is also called behavioral code.

The statements discussed are all sequential, that is, allowed only inside

PROCESSES, FUNCTIONS, or PROCEDURES. They are: IF, WAIT,

CASE, and LOOP.

VARIABLES are also restricted to be used in sequential code only (that is, inside

a PROCESS, FUNCTION, or PROCEDURE). Thus, contrary to a SIGNAL, a

VARIABLE can never be global, so its value can not be passed out directly.

We will concentration PROCESSES here. FUNCTIONS and PROCEDURES

6.1 PROCESS
A PROCESS is a sequential section of VHDL code. It is characterized by the

presence of IF, WAIT, CASE, or LOOP, and by a sensitivity list (except when WAIT

is used).

A PROCESS must be installed in the main code, Itssyntax is shown below.

[label:] PROCESS (sensitivity list)

[VARIABLE name type [range] [:= initial_value;]]

BEGIN

(sequential code)

END PROCESS [label];

VARIABLES are optional. If used, they must be declared in the declarative part

of the PROCESS (before the word BEGIN, as indicated in the syntax above). The

initial value is not synthesizable, being only taken into consideration in simulations.

The use of a label is also optional. Its purpose is to improve code readability. The

label can be any word, except VHDL reserved words .

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

58

To construct a synchronous circuit, monitoring a signal (clock, for example) is

necessary. A common way of detecting a signal change is by means of the EVENT

attribute For instance, if clk is a signal to be monitored, then

clk’EVENT returns TRUE when a change on clk occurs (rising or falling edge).

Example 6.1: DFF with Asynchronous Reset #1
A D-type flip-flop (DFF, figure 6.1) is the most basic building block in sequential

logic circuits. In it, the output must copy the input at either the positive or negative

transition of the clock signal (rising or falling edge).

In the code presented below, we make use of the IF statement to design a DFF with

asynchronous reset.

If rst = ‘1’, then the output must be q = ‘0’ (lines 14–15), regardless of the status of

clk Otherwise, the output must copy the input (that is, q = d) at the positive edge of

clk (lines 16–17).

The EVENT attribute is used in line 16 to detect a clock transition.

The PROCESS (lines 12–19) is run every time any of the signals that appear in its

sensitivity list (clk and rst, line 12)changes.

Simulation results, confirming the functionality of the synthesized circuit,

are presented in figure 6.2

1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 --------------------------------------

10 ARCHITECTURE behavior OF dff IS

11 BEGIN

12 PROCESS (clk, rst)

13 BEGIN

14 IF (rst='1') THEN

15 q <= '0';

16 ELSIF (clk'EVENT AND clk='1') THEN

17 q <= d;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

59

18 END IF;

19 END PROCESS;

20 END behavior;

21 --------------------------------------

6.2 Signals and Variables
VHDL provides two objects for dealing with non-static data values: SIGNAL

and VARIABLE. It also provides means for establishing default (static) values:

CONSTANT and GENERIC.

 CONSTANT and SIGNAL can be global (that is, seen by the whole code), and

can be used in either type of code, concurrent or sequential. A VARIABLE, on

the other hand, is local, for it can only be used inside a piece of sequential code

(that is, in a PROCESS, FUNCTION, or PROCEDURE) and its value can

never be passed out directly.

Constant

CONSTANT serves to establish default values. Its syntax is shown below.

A CONSTANT can be declared in a PACKAGE, ENTITY, or

ARCHITECTURE. When declared in a package, it is truly global, for the

package can be used by several entities. When declared in an entity (after

PORT), it is global to all architectures that follow that entity. Finally, when

declared in an architecture (in its declarative part), it is global only to that

architecture’s code. The most common places to find a CONSTANT

declaration is in an ARCHITECTURE or in a PACKAGE.

Signal

 SIGNAL serves to pass values in and out the circuit, as well as between its

internal units. In other words, a signal represents circuit interconnects (wires).

For instance, all PORTS of an ENTITY are signals by default. Its syntax is the

following:

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

60

The declaration of a SIGNAL can be made in the same places as the

declaration of a CONSTANT.

A very important aspect of a SIGNAL, when used inside a section of sequential

code (PROCESS, for example), is that its update is not immediate. In other

words, its new value should not be expected to be ready before the conclusion

of the corresponding

PROCESS, FUNCTION or PROCEDURE.

Recall that the assignment operator for a SIGNAL is ‘‘<=’’ (Ex.: count <= 35;).

Example 9.1: Count Ones #1 (not OK)

Design a circuit that counts the number of ‘1’s in a binary vector.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

61

 VARIABLE

Contrary to CONSTANT and SIGNAL, a VARIABLE represents only local

information.

It can only be used inside a PROCESS, FUNCTION, or PROCEDURE (that is,

in sequential code), and its value cannot be passed out directly. On the other

hand, its update is immediate, so the new value can be promptly used in the

next line of code.

To declare a VARIABLE, the following syntax should be used:

 Since a VARIABLE can only be used in sequential code, its declaration can

only be done in the declarative part of a PROCESS, FUNCTION, or

PROCEDURE.

Recall that the assignment operator for a VARIABLE is ‘‘ := ’’ (Ex.:

count:=35;).

Example 9.2: Count Ones #2 (OK)

Design a circuit that counts the number of ‘1’s in a binary vector

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

62

SIGNAL versus VARIABLE

choosing between a SIGNAL or a VARIABLE is not always straightforward.

Their main differences are summarized in table 9.1.

Table 9.1

Comparison between SIGNAL and VARIABLE.

Example 9.3: Bad versus Good Multiplexer

Figure 9.1: Multiplexer of example 9.3.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

63

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

64

Figure 9.2: Simulation results of example 9.3.

 Example 9.4: DFF with q and qbar #1

Implementing the DFF of figure 9.3.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

65

Figure 9.3: DFF of example 9.4.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

66

Figure 9.4: Simulation results of example 9.4.

Example 9.5: Frequency Divider

This example implements a circuit that divides the clock frequency by 6.

Figure 9.5: Frequency divider of example 9.5.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

67

Figure 9.6: Simulation results of example 9.5.

6.3 IF statement
As mentioned earlier, IF, WAIT, CASE, and LOOP are the statements intended for

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

68

sequential code. Therefore, they can only be used inside a PROCESS,

FUNCTION, or PROCEDURE.

The syntax of IF isshown below.

IF conditions THEN assignments;

ELSIF conditions THEN assignments;

...

ELSE assignments;

END IF;

Example:
IF (x<y) THEN temp:="11111111";

ELSIF (x=y AND w='0') THEN temp:="11110000";

ELSE temp:=(OTHERS =>'0');

Example 6.2: One-digit Counter #1

The code below implements a progressive 1-digit decimal counter (0 9 0). A

top-level diagram of the circuit is shown in figure 6.3. It contains a single-bit input

(clk) and a 4-bit output (digit). The IF statement is used in this example. A variable,

temp, was employed to create the four flip-flops necessary to store the 4-bit output

signal. Simulation results, confirming the correct operation of the synthesized circuit,

are shown in figure 6.4.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY counter IS

6 PORT (clk : IN STD_LOGIC;

7 digit : OUT INTEGER RANGE 0 TO 9);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

69

8 END counter;

9 ---

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 count: PROCESS (clk)

13 VARIABLE temp : INTEGER RANGE 0 TO 10;

14 BEGIN

15 IF (clk' EVENT AND clk ='1') THEN

16 temp := temp + 1;

17 IF (temp=10) THEN temp := 0;

18 END IF;

19 END IF;

20 digit <= temp;

21 END PROCESS count;

22 END counter;

23 ---

temp in the physical circuit can be any 4-bit value. If such value is below 10 (see line

17), the circuit will count correctly from there. On the other hand, if the value is

above 10, a number of clock cycles will be used until temp reaches full count (that is,

15, or ‘‘1111’’), being thus automatically reset to zero, from where the correct

operation

then starts. The possibility of wasting a few clock cycles in the beginning is

generally not a problem. Still, if one does want to avoid that, temp =10, in line 17,

can be changed to temp =>10, but this will increase the hardware. However, if

starting exactly from 0 is always necessary, then a reset input should be included (as

in example 6.7).Notice in the code above that we increment temp and compare it to

10,with the

purpose of resetting temp once 10 is reached. This is a typical approach used in

counters. Notice that 10 is a constant, so a comparator to a constant is inferred by

the compiler, which is a relatively simple circuit to construct. However, if instead of a

constant we were using a programmable parameter, then a full comparator would

need to be implemented, which requires substantially more logic than a comparator

to a constant. In this case, a better solution would be to load temp with such a

parameter,and then decrement it, reloading temp when the 0 value is reached. In this

case,our comparator would compare temp to 0 (a constant), thus avoiding the

generationof a full comparator.

Example 6.3: Shift Register

Figure 6.5 shows a 4-bit shift register. The output bit (q) must be four

positive clock edges behind the input bit (d). It also contains an

asynchronous reset, which must force all flip-flop outputs to ‘0’ when

asserted. In this example, the IF statement is again employed.
1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

70

5 ENTITY shiftreg IS

6 GENERIC (n: INTEGER := 4); -- # of stages

7 PORT (d, clk, rst: IN STD_LOGIC;

8 q: OUT STD_LOGIC);

9 END shiftreg;

10 --

11 ARCHITECTURE behavior OF shiftreg IS

12 SIGNAL internal: STD_LOGIC_VECTOR (n-1 DOWNTO 0);

13 BEGIN

14 PROCESS (clk, rst)

15 BEGIN

16 IF (rst='1') THEN

17 internal <= (OTHERS => '0');

18 ELSIF (clk'EVENT AND clk='1') THEN

19 internal <= d & internal(internal'LEFT DOWNTO 1);

20 END IF;

21 END PROCESS;

22 q <= internal(0);

23 END behavior;

24 --
clock edges behind d.

used, the PROCESS cannot have a sensitivity list when WAIT is employed. Its

syntax(there are three forms of WAIT) is shown below.

WAIT UNTIL signal_condition;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

71

WAIT ON signal1 [, signal2, ...];

WAIT FOR time;

The WAIT UNTIL statement accepts only one signal, thus being more appropriate

for synchronous code than asynchronous. Since the PROCESS has no sensitivity

list in this case, WAIT UNTIL must be the first statement in the PROCESS.

Example: 8-bit register with synchronous reset.

PROCESS -- no sensitivity list

BEGIN

WAIT UNTIL (clk'EVENT AND clk='1');

IF (rst='1') THEN

output <= "00000000";

ELSIF (clk'EVENT AND clk='1') THEN

output <= input;

END IF;

END PROCESS;

WAIT ON, on the other hand, accepts multiple signals. The PROCESS is put on

hold until any of the signals listed changes. In the example below, the PROCESS will

continue execution whenever a change in rst or clk occurs.

Example: 8-bit register with asynchronous reset.

PROCESS
BEGIN

WAIT ON clk, rst;

IF (rst='1') THEN

output <= "00000000";

ELSIF (clk'EVENT AND clk='1') THEN

output <= input;

END IF;

END PROCESS;

Finally, WAIT FOR is intended for simulation only (waveform generation for

testbenches). Example: WAIT FOR 5ns;

Example 6.4: DFF with Asynchronous Reset #2

The code below implements the same DFF of example 6.1 (figures 6.1 and 6.2).

However, here WAIT ON is used instead of IF only.

1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

72

8 END dff;

9 --------------------------------------

10 ARCHITECTURE dff OF dff IS

11 BEGIN

12 PROCESS

13 BEGIN

14 WAIT ON rst, clk;

15 IF (rst='1') THEN

16 q <= '0';

17 ELSIF (clk'EVENT AND clk='1') THEN

18 q <= d;

19 END IF;

20 END PROCESS;

21 END dff;

22 --------------------------------------

Example 6.5: One-digit Counter #2

The code below implements the same progressive 1-digit decimal counter of example

6.2 (figures 6.3 and 6.4). However, WAIT UNTIL was used instead of IF only.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY counter IS

6 PORT (clk : IN STD_LOGIC;

7 digit : OUT INTEGER RANGE 0 TO 9);

8 END counter;

9 ---

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 PROCESS -- no sensitivity list

13 VARIABLE temp : INTEGER RANGE 0 TO 10;

14 BEGIN

15 WAIT UNTIL (clk'EVENT AND clk='1');

16 temp := temp + 1;

17 IF (temp=10) THEN temp := 0;

18 END IF;

19 digit <= temp;

20 END PROCESS;

21 END counter;

22 ---

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

73

6.5 CASE

CASE is another statement intended exclusively for sequential code (along with IF,

LOOP, and WAIT). Its syntax is shown below.

CASE identifier IS

WHEN value => assignments;

WHEN value => assignments;

...

END CASE;

Example:
CASE control IS

WHEN "00" => x<=a; y<=b;

WHEN "01" => x<=b; y<=c;

WHEN OTHERS => x<="0000"; y<="ZZZZ";

END CASE;

The CASE statement (sequential) is very similar to WHEN (combinational).

should be used when no action is to take place. For example, WHEN OTHERS =>

NULL;. However, CASE allows multiple assignments for each test condition (as

shown in the example above), while WHEN allows only one.

Like in the case of WHEN (section 5.3), here too ‘‘WHEN value’’ can take up

three forms:

1-WHEN value -- single value

2-WHEN value1 to value2 -- range, for enumerated data types only

3-WHEN value1 | value2 |... -- value1 or value2 or .

..

Example 6.6: DFF with Asynchronous Reset #3
The code below implements the same DFF of example 6.1 (figures 6.1 and 6.2).

However, here CASE was used instead of IF only. Notice that a few unnecessary

declarations were intentionally included in the code to illustrate their usage.

1 --

2 LIBRARY ieee; -- Unnecessary declaration,

3 -- because

4 USE ieee.std_logic_1164.all; -- BIT was used instead of

5 -- STD_LOGIC

6 --

7 ENTITY dff IS

8 PORT (d, clk, rst: IN BIT;

9 q: OUT BIT);

10 END dff;

11 --

12 ARCHITECTURE dff3 OF dff IS

13 BEGIN

14 PROCESS (clk, rst)

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

74

15 BEGIN

16 CASE rst IS

17 WHEN '1' => q<='0';

18 WHEN '0' =>

19 IF (clk'EVENT AND clk='1') THEN

20 q <= d;

21 END IF;

22 WHEN OTHERS => NULL; -- Unnecessary, rst is of type

23 -- BIT

24 END CASE;

25 END PROCESS;

26 END dff3;

27 --

Example 6.7: Two-digit Counter with SSD Output

The code below implements a progressive 2-digit decimal counter (0 99 0), with

external asynchronous reset plus binary-coded decimal (BCD) to seven-segment

display

(SSD) conversion. Diagrams of the circuit and SSD are shown in figure 6.7. The

CASE statement (lines 31–56) was employed to determine the output signals that will

feed the SSDs. Notice that we have chosen the following connection between the

circuit and the SSD: xabcdefg (that is, the MSB feeds the decimal point, while the

LSB feeds segment g).

As can be seen, this circuit is a straight extension of that presented in example 6.2,

with the differences that now two digits are necessary rather than one, and that the

outputs must be connected to SSD displays. The operation of the circuit can be

verified in the simulation results of figure 6.8.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

75

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY counter IS

6 PORT (clk, reset : IN STD_LOGIC;

7 digit1, digit2 : OUT STD_LOGIC_VECTOR (6 DOWNTO 0));

8 END counter;

9 --

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 PROCESS(clk, reset)

13 VARIABLE temp1: INTEGER RANGE 0 TO 10;

14 VARIABLE temp2: INTEGER RANGE 0 TO 10;

15 BEGIN

16 ---- counter: ----------------------

17 IF (reset='1') THEN

18 temp1 := 0;

19 temp2 := 0;

20 ELSIF (clk'EVENT AND clk='1') THEN

21 temp1 := temp1 + 1;

22 IF (temp1=10) THEN

23 temp1 := 0;

24 temp2 := temp2 + 1;

25 IF (temp2=10) THEN

26 temp2 := 0;

27 END IF;

28 END IF;

29 END IF;

30 ---- BCD to SSD conversion: --------

31 CASE temp1 IS

32 WHEN 0 => digit1 <= "1111110"; --7E

33 WHEN 1 => digit1 <= "0110000"; --30

34 WHEN 2 => digit1 <= "1101101"; --6D

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

76

35 WHEN 3 => digit1 <= "1111001"; --79

36 WHEN 4 => digit1 <= "0110011"; --33

37 WHEN 5 => digit1 <= "1011011"; --5B

38 WHEN 6 => digit1 <= "1011111"; --5F

39 WHEN 7 => digit1 <= "1110000"; --70

40 WHEN 8 => digit1 <= "1111111"; --7F

41 WHEN 9 => digit1 <= "1111011"; --7B

42 WHEN OTHERS => NULL;

43 END CASE;

44 CASE temp2 IS

45 WHEN 0 => digit2 <= "1111110"; --7E

46 WHEN 1 => digit2 <= "0110000"; --30

47 WHEN 2 => digit2 <= "1101101"; --6D

48 WHEN 3 => digit2 <= "1111001"; --79

49 WHEN 4 => digit2 <= "0110011"; --33

50 WHEN 5 => digit2 <= "1011011"; --5B

51 WHEN 6 => digit2 <= "1011111"; --5F

52 WHEN 7 => digit2 <= "1110000"; --70

53 WHEN 8 => digit2 <= "1111111"; --7F

54 WHEN 9 => digit2 <= "1111011"; --7B

55 WHEN OTHERS => NULL;

56 END CASE;

57 END PROCESS;

58 END counter;

59 --

Comment: Notice above that the same routine was repeated twice (using CASE

statements).

6.6 LOOP

LOOP is useful when a piece of code must be instantiated several

times. Like IF, WAIT, and CASE,LOOP is intended exclusively for sequential

code, so it too can only be used inside a PROCESS, FUNCTION, or PROCEDURE.

Example of WHILE / LOOP: In this example, LOOP will keep repeating while

i <10.

WHILE (i < 10) LOOP

WAIT UNTIL clk'EVENT AND clk='1';

(other statements)

END LOOP;

Example with EXIT:

FOR i IN data'RANGE LOOP

CASE data(i) IS

WHEN '0' => count:=count+1;

WHEN OTHERS => EXIT;

END CASE;

END LOOP;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

77

Example with NEXT:

when i =skip.

FOR i IN 0 TO 15 LOOP

NEXT WHEN i=skip; -- jumps to next iteration

(...)

END LOOP;

Example 6.8: Carry Ripple Adder
Figure 6.9 shows an 8-bit unsigned carry ripple adder. The top-level diagram shows

the inputs and outputs of the circuit: a and b are the input vectors to be added, cin

is the carry-inbit, s is the sum vector, and cout is the carry-out bit. top diagram

shows how the carry bits propagate (ripple).

Each section of the latter diagram is a full-adder unit Thus its outputs

can be computed by means of:

sj =aj XOR bj XOR cj

cj 1 =(aj AND bj) OR (aj AND cj) OR (bj AND cj)

Two solutions are presented, being one generic and the other specific for 8-bit

numbers.

Simulation results from either solution are shown in figure 6.10.

1 ----- Solution 1: Generic, with VECTORS--------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

78

5 ENTITY adder IS

6 GENERIC (length : INTEGER := 8);

7 PORT (a, b: IN STD_LOGIC_VECTOR (length-1 DOWNTO 0);

8 cin: IN STD_LOGIC;

9 s: OUT STD_LOGIC_VECTOR (length-1 DOWNTO 0);

10 cout: OUT STD_LOGIC);

11 END adder;

12 --

13 ARCHITECTURE adder OF adder IS

14 BEGIN

15 PROCESS (a, b, cin)

16 VARIABLE carry : STD_LOGIC_VECTOR (length DOWNTO 0);

17 BEGIN

18 carry(0) := cin;

19 FOR i IN 0 TO length-1 LOOP

20 s(i) <= a(i) XOR b(i) XOR carry(i);

21 carry(i+1) := (a(i) AND b(i)) OR (a(i) AND

22 carry(i)) OR (b(i) AND carry(i));

23 END LOOP;

24 cout <= carry(length);

25 END PROCESS;

26 END adder;

27 --

1 ---- Solution 2: non-generic, with INTEGERS----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY adder IS

6 PORT (a, b: IN INTEGER RANGE 0 TO 255;

7 c0: IN STD_LOGIC;

8 s: OUT INTEGER RANGE 0 TO 255;

9 c8: OUT STD_LOGIC);

10 END adder;

11 --

12 ARCHITECTURE adder OF adder IS

13 BEGIN

14 PROCESS (a, b, c0)

15 VARIABLE temp : INTEGER RANGE 0 TO 511;

16 BEGIN

17 IF (c0='1') THEN temp:=1;

18 ELSE temp:=0;

19 END IF;

20 temp := a + b + temp;

21 IF (temp > 255) THEN

22 c8 <= '1';

23 temp := temp---256;

24 ELSE c8 <= '0';

25 END IF;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

79

26 s <= temp;

27 END PROCESS;

28 END adder;

29 --

Example 6.9: Simple Barrel Shifter

Figure 6.11 shows the diagram of a very simple barrel shifter. In this case, the circuit

must shift the input vector (of size 8) either 0 or 1 position to the left. When actually

shifted (shift =1), the LSB bit must be filled with ‘0’ (shown in the bottom left corner

of the diagram). If shift =0, then outp =inp; if shift =1, then outp(0) =‘0’ and

outp(i) =inp(i -1), for 1 i 7.

A complete VHDL code is presented below, which illustrates the use of FOR/

LOOP. Simulation results appear in figure 6.12.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY barrel IS

6 GENERIC (n: INTEGER := 8);

7 PORT (inp: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

8 shift: IN INTEGER RANGE 0 TO 1;

9 outp: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0));

10 END barrel;

11 ---

12 ARCHITECTURE RTL OF barrel IS

13 BEGIN

14 PROCESS (inp, shift)

15 BEGIN

16 IF (shift=0) THEN

17 outp <= inp;

18 ELSE

19 outp(0) <= '0';

20 FOR i IN 1 TO inp'HIGH LOOP

21 outp(i) <= inp(i-1);

22 END LOOP;

23 END IF;

24 END PROCESS;

25 END RTL;

26 ---

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

80

Figure 6-11- simple barrel shifter

Example 6.10: Leading Zeros
The design below counts the number of leading zeros in a binary vector, starting

from the left end. The solution illustrates the use of LOOP / EXIT. Recall that EXIT

implies not a escape from the current iteration of the loop, but rather a definite exit

from it (that is, even if i is still within the specified range, the LOOP statement will be

considered as concluded). In this example, the loop will end as soon as a ‘1’ is found

in the data vector. Therefore, it is appropriate for counting the number of zeros that

precedes the first one.

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY Leading Zeros IS

6 PORT (data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

81

7 zeros: OUT INTEGER RANGE 0 TO 8);

8 END LeadingZeros;

9 --

10 ARCHITECTURE behavior OF Leading Zeros IS

11 BEGIN

12 PROCESS (data)

13 VARIABLE count: INTEGER RANGE 0 TO 8;

14 BEGIN

15 count := 0;

16 FOR i IN data 'RANGE LOOP

17 CASE data(i) IS

18 WHEN '0' => count := count + 1;

19 WHEN OTHERS => EXIT;

20 END CASE;

21 END LOOP;

22 zeros <= count;

23 END PROCESS;

24 END behavior;

25 --

Simulation results, verifying the functionality of the circuit, are shown in figure

6.13. With data =‘‘00000000’’ (decimal 0), eight zeros are detected; when data =

‘‘00000001’’ (decimal 1), seven zeros are encountered; etc.

Example 6.11: RAM
Below is another example using sequential code, particularly the IF statement. We

show the implementation of a RAM (random access memory).

As can be seen in figure 6.14(a), the circuit has a data input bus (data_in), a data

output bus (data _out), an address bus (addr), plus clock (clk) and write enable

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

82

wr_ena) pins. When wr_ena is asserted, at the next rising edge of clk the vector

present at data_in must be stored in the position specified by addr. The output,

data_out, on the other hand, must constantly display the data selected by addr.

From the register point-of-view, the circuit can be summarized as in figure 6.14(b).

When wr_ena is low, q is connected to the input of the flip-flop, and terminal d is

open, so no new data will be written into the memory. However, when wr_ena is

turned high, d is connected to the input of the register, so at the next rising edge of

clk d will overwrite its previous value.

A VHDL code that implements the circuit of figure 6.14 is shown below. The

capacity chosen for the RAM is 16 words of length 8 bits each. Notice that the code

is totally generic.

Note: Other memory implementations will be presented in section 9.10 of chapter 9.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY ram IS

6 GENERIC (bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the memory

8 PORT (wr_ena, clk: IN STD_LOGIC;

9 addr: IN INTEGER RANGE 0 TO words-1;

10 data_in: IN STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

11 data_out: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

12 END ram;

13 ---

14 ARCHITECTURE ram OF ram IS

15 TYPE vector_array IS ARRAY (0 TO words-1) OF

16 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

17 SIGNAL memory: vector_array;

18 BEGIN

19 PROCESS (clk, wr_ena)

20 BEGIN

21 IF (wr_ena='1') THEN

22 IF (clk'EVENT AND clk='1') THEN

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

83

23 memory(addr) <= data_in;

24 END IF;

25 END IF;

26 END PROCESS;

27 data_out <= memory(addr);

28 END ram;

29 ---

Simulation results from the circuit synthesized with the code above are shown in

figure 6.15.

6.10 Using Sequential Code to Design Combinational Circuits
We have already seen that sequential code can be used to implement either sequential

or combinational circuits.

In order to satisfy the criteria above, the following rules should be observed:

Rule 1: Make sure that all input signals used (read) in the PROCESS appear in its

sensitivity list.

Rule 2: Make sure that all combinations of the input/output signals are included in

the code;

With respect to rule 2, however, the consequences can be more serious because

incomplete specifications of the output signals might cause the synthesizer to infer

latches in order to hold their previous values. This fact is illustrated in the example

below.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

84

Example 6.12: Bad Combinational Design
Let us consider the circuit of figure 6.16, for which the following specifications have

been provided: x should behave as a multiplexer; that is, should be equal to the input

selected by sel; y, on the other hand, should be equal to ‘0’ when sel =‘‘00’’, or ‘1’ if
sel =‘‘01’’. These specifications are summarized in the truth-table of figure 6.16(b).

Notice that this is a combinational circuit. However, the specifications provided

for y are incomplete, as can be observed in the truth-table of figure 6.16(b). Using

just these specifications, the code could be the following:

1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY example IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN INTEGER RANGE 0 TO 3;

8 x, y: OUT STD_LOGIC);

9 END example;

10 --------------------------------------

11 ARCHITECTURE example OF example IS

12 BEGIN

13 PROCESS (a, b, c, d, sel)

14 BEGIN

15 IF (sel=0) THEN

16 x<=a;

17 y<='0';

18 ELSIF (sel=1) THEN

19 x<=b;

20 y<='1';

21 ELSIF (sel=2) THEN

22 x<=c;

23 ELSE

24 x<=d;

25 END IF;

26 END PROCESS;

27 END example;

28 --------------------------------------

After compiling this code, the report files show that no flip-flops were inferred (as

expected). However, when we look at the simulation results (figure 6.17), we notice

something peculiar about y. Observe that, for the same value of the input

(sel =3 =‘‘11’’), two different results are obtained for y (when sel =3 is preceded by

sel =0, y =‘0’ results, while y =‘1’ is obtained when sel =3 is preceded by sel =1).

This signifies that some sort of memory was indeed implemented by the compiler.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

85

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

86

8-State Machines
Finite state machines (FSM) constitute a special modeling technique for sequential

logic circuits. Such a model can be very helpful in the design of certain types of

systems, particularly those whose tasks form a well-defined sequence (digital

controllers,

8.1 Introduction
Figure 8.1 shows the block diagram of a single-phase state machine. the lower

section contains the sequential logic (flip-flops),the upper section contains the

combinational logic.
The combinational (upper) section has two inputs, being one pr_state (present

state) and the other the external input proper. It has also two outputs, nx_state (next

state) and the external output proper.

The sequential (lower) section has three inputs (clock, reset, and nx_state), and

one output (pr_state). Since all flip-flops are in this part of the system, clock and

reset must be connected to it.

If the output of the machine depends not only on the present state but also on the

current input, then it is called a Mealy machine. Otherwise, if it depends only on

the current state, it is called a Moore machine.

The separation of the circuit into two sections (figure 8.1) allows the part, being

sequential, will require a PROCESS, while the upper part, being combinational,

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

87

8.2 Design Style #1
Several approaches can be conceived to design a FSM. We will describe in detail one

style that is well structured and easily applicable. In it, the design of the lower

section of the state machine (figure 8.1) is completely separated from that of the

upper section.

storage perspective, in order to further understand and refine its construction, which

will lead to design style #2.

Design of the Lower (Sequential) Section
In figure 8.1, the flip-flops are in the lower section, so clock and reset are connected

to it. The other lower section’s input is nx_state (next state), while pr_state (present

state) is its only output. Being the circuit of the lower section sequential, a PROCESS

is required, in which any of the sequential statements (IF, WAIT, CASE, or LOOP,)

can be employed. A typical design template for the lower section is the following:

PROCESS (reset, clock)

BEGIN

IF (reset='1') THEN

pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN

pr_state <= nx_state;

END IF;

END PROCESS;
The code shown above is very simple. It consists of an asynchronous reset, which

Determines the initial state of the system (state0), followed by the synchronous

storage of nx_state (at the positive transition of clock),which will produce pr_state

at the

design of the lower section is basically standard.

Another advantage of this design style is that the number of registers is minimum.

we know that the number of flip-flops inferred from the code above is simply equal to

the number of bits needed to encode all states of the FSM (because the only signal to

which a value is assigned at the transition of another signal is pr_state). Therefore, if

the default (binary) encoding style (section8.4) is used, just [log2n]flip-flops will then

be needed, where n is the number of states.

Design of the Upper (Combinational) Section
In figure 8.1, the upper section is fully combinational, so its code does not need to be

sequential; concurrent code can be used as well.

PROCESS (input, pr_state)

BEGIN

CASE pr_state IS

WHEN state0 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state1;

ELSE ...

END IF;

WHEN state1 =>

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

88

IF (input = ...) THEN

output <= <value>;

nx_state <= state2;

ELSE ...

END IF;

WHEN state2 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state2;

ELSE ...

END IF;

...

END CASE;

END PROCESS;

As can be seen, this code is also very simple, and does two things: (a) it assigns the

output value and (b) it establishes the next state. the design of combinational circuits

using sequential statements ,for all input signals are present in the sensitivity list and

all input/output combinations are specified. Finally, observe that no signal assignment

is made at the transition of another signal, so no flip-flops will be inferred

State Machine Template for Design Style #1
A complete template is shown below. Notice that, in addition to the two processes

presented above, it also contains a user-defined enumerated data type (here called

state), which lists all possible states of the machine.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY <entity_name> IS

PORT (input: IN <data_type>;

reset, clock: IN STD_LOGIC;

output: OUT <data_type>);

END <entity_name>;

ARCHITECTURE <arch_name> OF <entity_name> IS

TYPE state IS (state0, state1, state2, state3, ...);

SIGNAL pr_state, nx_state: state;

BEGIN

---------- Lower section: ------------------------

PROCESS (reset, clock)

BEGIN

IF (reset='1') THEN

pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN

pr_state <= nx_state;

END IF;

END PROCESS;

---------- Upper section: ------------------------

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

89

PROCESS (input, pr_state)

BEGIN

CASE pr_state IS

WHEN state0 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state1;

ELSE ...

END IF;

WHEN state1 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state2;

ELSE ...

END IF;

WHEN state2 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state3;

ELSE ...

END IF;

...

END CASE;

END PROCESS;

END <arch_name>;

Example 8.1: BCD Counter

A counter is an example of Moore machine, for the output depends only on the

stored (present) state. As a simple registered circuit and as a sequencer, it can be

easily implemented in either approach: The problem with the latter is that when the

number of states is large it becomes cumbersome to enumerate them all, a problem

easily avoided using the LOOP statement in a conventional approach.

The state diagram of a 0-to-9 circular counter is shown in figure 8.2. The states

were called zero, one, . . . , nine, each name corresponding to the decimal value of the

output.

A VHDL code, directly resembling the design style #1 template, is presented below.

An enumerated data type (state) appears in lines 11–12. The design of the lower

(clocked) section is presented in lines 16–23, and that of the upper (combinational)

section, in lines 25–59. In this example, the number of registers is [log210]=4.

Simulation results are shown in figure 8.3. As can be seen, the output (count)

grows from 0 to 9, and then restarts from 0 again.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

90

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY counter IS

6 PORT (clk, rst: IN STD_LOGIC;

7 count: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

8 END counter;

9 ---

10 ARCHITECTURE state_machine OF counter IS

11 TYPE state IS (zero, one, two, three, four,

12 five, six, seven, eight, nine);

13 SIGNAL pr_state, nx_state: state;

14 BEGIN

15 ------------- Lower section: -----------------

16 PROCESS (rst, clk)

17 BEGIN

18 IF (rst='1') THEN

19 pr_state <= zero;

20 ELSIF (clk'EVENT AND clk='1') THEN

21 pr_state <= nx_state;

22 END IF;

23 END PROCESS;

24 ------------- Upper section: -----------------

25 PROCESS (pr_state)

26 BEGIN

27 CASE pr_state IS

28 WHEN zero =>

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

91

29 count <= "0000";

30 nx_state <= one;

31 WHEN one =>

32 count <= "0001";

33 nx_state <= two;

34 WHEN two =>

35 count <= "0010";

36 nx_state <= three;

37 WHEN three =>

38 count <= "0011";

39 nx_state <= four;

40 WHEN four =>

41 count <= "0100";

42 nx_state <= five;

43 WHEN five =>

44 count <= "0101";

45 nx_state <= six;

46 WHEN six =>

47 count <= "0110";

48 nx_state <= seven;

49 WHEN seven =>

50 count <= "0111";

51 nx_state <= eight;

52 WHEN eight =>

53 count <= "1000";

54 nx_state <= nine;

55 WHEN nine =>

56 count <= "1001";

57 nx_state <= zero;

58 END CASE;

59 END PROCESS;

60 END state_machine;

61 ---

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

92

Example 8.2: Simple FSM #1

Figure 8.4 shows the states diagram of a very simple FSM. The system has two states

(state A and state B), and must change from one to the other every time d =‘1’ is

received. The desired output is x =a when the machine is in state A, or x =b when in

state B. The initial (reset) state is state A.

A VHDL code for this circuit, employing design style #1, is shown below.

1 --

2 ENTITY simple_fsm IS

3 PORT (a, b, d, clk, rst: IN BIT;

4 x: OUT BIT);

5 END simple_fsm;

6 --

7 ARCHITECTURE simple_fsm OF simple_fsm IS

8 TYPEstate IS (stateA, stateB);

9 SIGNAL pr_state, nx_state: state;

10 BEGIN

11 ----- Lower section: ----------------------

12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst='1') THEN

15 pr_state <= stateA;

16 ELSIF (clk'EVENT AND clk='1') THEN

17 pr_state <= nx_state;

18 END IF;

19 END PROCESS;

20 ---------- Upper section: -----------------

21 PROCESS (a, b, d, pr_state)

22 BEGIN

23 CASE pr_state IS

24 WHEN stateA =>

25 x <= a;

26 IF (d='1') THEN nx_state <= stateB;

27 ELSE nx_state <= stateA;

28 END IF;

29 WHEN stateB =>

30 x <= b;

31 IF (d='1') THEN nx_state <= stateA;

32 ELSE nx_state <= stateB;

33 END IF;

34 END CASE;

35 END PROCESS;

36 END simple_fsm;

37 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

93

Simulation results relative to the code above are shown in figure 8.5. Notice that

the circuit works as expected. Indeed, looking at the report files, one will verify that,

as expected, only one flip-flop was required to implement this circuit because there

are only two states to be encoded. Notice also that the upper section is indeed

combinational for the output (x), which in this case does depend on the inputs (a or b,

depending on which state the machine is in), varies when a or b vary, regardless of

clk. If a synchronous output were required, then design style #2 should be employed.

8.3 Design Style #2 (Stored Output)
As we have seen, in design style #1 only pr-state is stored. Therefore, the overall

circuit can be summarized as in figure 8.6(a). Notice that in this case, if it is a Mealy

machine (one whose output is dependent on the current input), the output might

change when the input changes (asynchronous output). In many applications,

the signals are required to be synchronous, so the output should be updated only when

the proper clock edge occurs. To make Mealy machines synchronous,

the output must be stored as well, as shown in figure 8.6(b).

This structure is the object of design style #2.

To implement this new structure, very few modifications are needed. For example,

we can use an additional signal (say, temp) to compute the output value (upper sec-
tion), but only pass its value to the actual output signal when a clock event occurs

(lower section). These modifications can be observed in the template shown below.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

94

State Machine Template for Design Style #2
LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY <ent_name> IS

PORT (input: IN <data_type>;

reset, clock: IN STD_LOGIC;

output: OUT <data_type>);

END <ent_name>;

ARCHITECTURE <arch_name> OF <ent_name> IS

TYPE states IS (state0, state1, state2, state3, ...);

SIGNAL pr_state, nx_state: states;

SIGNAL temp: <data_type>;

BEGIN

---------- Lower section: --------------------------

PROCESS (reset, clock)

BEGIN

IF (reset='1') THEN

pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN

output <= temp;

pr_state <= nx_state;

END IF;

END PROCESS;

---------- Upper section: --------------------------

PROCESS (pr_state)

BEGIN

CASE pr_state IS

WHEN state0 =>

temp <= <value>;

IF (condition) THEN nx_state <= state1;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

95

...

END IF;

WHEN state1 =>

temp <= <value>;

IF (condition) THEN nx_state <= state2;

...

END IF;

WHEN state2 =>

temp <= <value>;

IF (condition) THEN nx_state <= state3;

...

END IF;

...

END CASE;

END PROCESS;

END <arch_name>;

Comparing the template of design style #2 with that of design style #1, we verify

that the only differences are those related to the introduction of the internal signal

temp. This signal will cause the output of the state machine to be stored, for its value

is passed to the output only when clk’EVENT occurs.

Example 8.3: Simple FSM #2

Let us consider the design of example 8.2 once again. However, let us say that now

we want the output to be synchronous (to change only when clock rises). Since this

isa Mealy machine, design style #2 is required.

1 --

2 ENTITY simple_fsm IS

3 PORT (a, b, d, clk, rst: IN BIT;

4 x: OUT BIT);

5 END simple_fsm;

6 --

7 ARCHITECTURE simple_fsm OF simple_fsm IS

8 TYPE state IS (stateA, stateB);

9 SIGNAL pr_state, nx_state: state;

10 SIGNAL temp: BIT;

11 BEGIN

12 ----- Lower section: ----------------------

13 PROCESS (rst, clk)

14 BEGIN

15 IF (rst='1') THEN

16 pr_state <= stateA;

17 ELSIF (clk'EVENT AND clk='1') THEN

18 x <= temp;

19 pr_state <= nx_state;

20 END IF;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

96

21 END PROCESS;

22 ---------- Upper section: -----------------

23 PROCESS (a, b, d, pr_state)

24 BEGIN

25 CASE pr_state IS

26 WHEN stateA =>

27 temp <= a;

28 IF (d='1') THEN nx_state <= stateB;

29 ELSE nx_state <= stateA;

30 END IF;

31 WHEN stateB =>

32 temp <= b;

33 IF (d='1') THEN nx_state <= stateA;

34 ELSE nx_state <= stateB;

35 END IF;

36 END CASE;

37 END PROCESS;

38 END simple_fsm;

39 --

Looking at the report files produced by the compiler, we observe that two flip-flops

were now inferred, one to encode the states of the machine, and the other to store the

output.

Simulation results are shown in figure 8.7. Recall that when a signal is stored, its

value will necessarily remain static between two consecutive clock edges. Therefore,

if the input (a or b in the example above) changes during this interval, the change

might not be observed by the circuit; moreover, when observed, it will be delayed

with respect to the input (which is proper of synchronous circuits).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

97

Example 8.4: String Detector
We want to design a circuit that takes as input a serial bit stream and outputs a ‘1’
whenever the sequence ‘‘111’’ occurs. Overlaps must also be considered, that is, if . .

0111110 . . . occurs, than the output should remain active for three consecutive clock

cycles. The state diagram of our machine is shown in figure 8.8. There are four states,

which we called zero, one, two, and three, with the name corresponding to the number

of consecutive ‘1’s detected. The solution shown below utilizes design style#1.

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY string_detector IS

6 PORT (d, clk, rst: IN BIT;

7 q: OUT BIT);

8 END string_detector;

9 --

10 ARCHITECTURE my_arch OF string_detector IS

11 TYPE state IS (zero, one, two, three);

12 SIGNAL pr_state, nx_state: state;

13 BEGIN

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

98

14 ----- Lower section: --------------------

15 PROCESS (rst, clk)

16 BEGIN

17 IF (rst='1') THEN

18 pr_state <= zero;

19 ELSIF (clk'EVENT AND clk='1') THEN

20 pr_state <= nx_state;

21 END IF;

22 END PROCESS;

23 ---------- Upper section: ---------------

24 PROCESS (d, pr_state)

25 BEGIN

26 CASE pr_state IS

27 WHEN zero =>

28 q <= '0';

29 IF (d='1') THEN nx_state <= one;

30 ELSE nx_state <= zero;

31 END IF;

32 WHEN one =>

33 q <= '0';

34 IF (d='1') THEN nx_state <= two;

35 ELSE nx_state <= zero;

36 END IF;

37 WHEN two =>

38 q <= '0';

39 IF (d='1') THEN nx_state <= three;

40 ELSE nx_state <= zero;

41 END IF;

42 WHEN three =>

43 q <= '1';

44 IF (d='0') THEN nx_state <= zero;

45 ELSE nx_state <= three;

46 END IF;

47 END CASE;

48 END PROCESS;

49 END my_arch;

50 --

Notice that in this example the output does not depend on the current input. This

fact can be observed in lines 28, 33, 38, and 43 of the code above, which show that all

assignments to q are unconditional (that is, do not depend on d). Therefore, the

output is automatically synchronous (a Moore machine), so the use of design style

#2 is unnecessary. The circuit requires two flip-flops, which encode the four states of

the state machine, from which q is computed.

Simulation results are shown in figure 8.9. As can be seen, the data sequence

d =‘‘011101100’’ was applied to the circuit, resulting the response q =‘‘000100000’’
at the output.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

99

Example 8.5: Traffic Light Controller (TLC)
As mentioned earlier, digital controllers are good examples of circuits that can be

efficiently implemented when modeled as state machines. In the present example, we

want to design a TLC with the characteristics summarized in the table of figure 8.10,

that is:

1-Three modes of operation: Regular, Test, and Standby.

2-Regular mode: four states, each with an independent, programmable time, passed

to the circuit by means of a CONSTANT.

3-Test mode: allows all pre-programmed times to be overwritten (by a manual

switch) with a small value, such that the system can be easily tested during

maintenance

(1 second per state). This value should also be programmable and passed to

the circuit using a CONSTANT.

4-Standby mode: if set (by a sensor accusing malfunctioning, for example, or a

manual switch) the system should activate the yellow lights in both directions and

remain so while the standby signal is active

5-Assume that a 60 Hz clock (obtained from the power line itself) is available.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

100

Here, design style #1 can be employed, as shown in the code below.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY tlc IS

6 PORT (clk, stby, test: IN STD_LOGIC;

7 r1, r2, y1, y2, g1, g2: OUT STD_LOGIC);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

101

8 END tlc;

9 ---

10 ARCHITECTURE behavior OF tlc IS

11 CONSTANT timeMAX : INTEGER := 2700;

12 CONSTANT timeRG : INTEGER := 1800;

13 CONSTANT timeRY : INTEGER := 300;

14 CONSTANT timeGR : INTEGER := 2700;

15 CONSTANT timeYR : INTEGER := 300;

16 CONSTANT timeTEST : INTEGER := 60;

17 TYPE state IS (RG, RY, GR, YR, YY);

18 SIGNAL pr_state, nx_state: state;

19 SIGNAL time : INTEGER RANGE 0 TO timeMAX;

20 BEGIN

21 -------- Lower section of state machine: ----

22 PROCESS (clk, stby)

23 VARIABLE count : INTEGER RANGE 0 TO timeMAX;

24 BEGIN

25 IF (stby='1') THEN

26 pr_state <= YY;

27 count := 0;

28 ELSIF (clk'EVENT AND clk='1') THEN

29 count := count + 1;

30 IF (count = time) THEN

31 pr_state <= nx_state;

32 count := 0;

33 END IF;

34 END IF;

35 END PROCESS;

36 -------- Upper section of state machine: ----

37 PROCESS (pr_state, test)

38 BEGIN

39 CASE pr_state IS

40 WHEN RG =>

41 r1<='1'; r2<='0'; y1<='0'; y2<='0'; g1<='0'; g2<='1';

42 nx_state <= RY;

43 IF (test='0') THEN time <= timeRG;

44 ELSE time <= timeTEST;

45 END IF;

46 WHEN RY =>

47 r1<='1'; r2<='0'; y1<='0'; y2<='1'; g1<='0'; g2<='0';

48 nx_state <= GR;

49 IF (test='0') THEN time <= timeRY;

50 ELSE time <= timeTEST;

51 END IF;

52 WHEN GR =>

53 r1<='0'; r2<='1'; y1<='0'; y2<='0'; g1<='1'; g2<='0';

54 nx_state <= YR;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

102

55 IF (test='0') THEN time <= timeGR;

56 ELSE time <= timeTEST;

57 END IF;

58 WHEN YR =>

59 r1<='0'; r2<='1'; y1<='1'; y2<='0'; g1<='0'; g2<='0';

60 nx_state <= RG;

61 IF (test='0') THEN time <= timeYR;

62 ELSE time <= timeTEST;

63 END IF;

64 WHEN YY =>

65 r1<='0'; r2<='0'; y1<='1'; y2<='1'; g1<='0'; g2<='0';

66 nx_state <= RY;

67 END CASE;

68 END PROCESS;

69 END behavior;

70 --

The expected number of flip-flops required to implement this circuit is 15; three

to store pr _state (the machine has five states, so three bits are needed to encode

them), plus twelve for the counter (it is a 12-bit counter, for it must count up to

time MAX =2700).

Simulation results are shown in figure 8.11. In order for the results to fit properly

in the graphs, we adopted small time values, with all CONSTANTS equal to 3 except

time TEST, which was made equal to 1. Therefore, the system is expected to change

state every three clock cycles when in Regular operation, or every clock cycle if in

Test mode. These two cases can be observed in the first two graphs of figure 8.11,

respectively. The third graph shows the Standby mode being activated. As expected,

stby is asynchronous and has higher priority than test, causing the system to stay in

state YY (state 4) while st by is active. The test signal, on the other hand, is

synchronous,

but does not need to wait for the current state timing to finish to be activated,

as can be observed in the second graph.

Example 8.6: Signal Generator
We want to design a circuit that, from a clock signal clk, gives origin to the signal

outp shown in figure 8.12(a). Notice that the circuit must operate at both edges

(rising and falling) of clk.

To circumvent the two-edge aspect (section 6.9), one alternative is to implement

two machines, one that operates exclusively at the positive transition of clk and

another

that operates exclusively at the negative edge, thus generating the intermediate

signals out1 and out2 presented in figure 8.12(b). These signals can then be ANDed

to give origin to the desired signal outp. Notice that this circuit has no external

inputs (except for clk, of course), so the output can only change when clk changes

(synchronous output).

1 ---

2 ENTITY signal_gen IS

3 PORT (clk: IN BIT;

4 outp: OUT BIT);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

103

5 END signal_gen;

6 ---

7 ARCHITECTURE fsm OF signal_gen IS

8 TYPE state IS (one, two, three);

9 SIGNAL pr_state1, nx_state1: state;

10 SIGNAL pr_state2, nx_state2: state;

11 SIGNAL out1, out2: BIT;

12 BEGIN

13 ----- Lower section of machine #1: ---

14 PROCESS(clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 pr_state1 <= nx_state1;

18 END IF;

19 END PROCESS;

20 ----- Lower section of machine #2: ---

21 PROCESS(clk)

22 BEGIN

23 IF (clk'EVENT AND clk='0') THEN

24 pr_state2 <= nx_state2;

25 END IF;

26 END PROCESS;

27 ---- Upper section of machine #1: -----

28 PROCESS (pr_state1)

29 BEGIN

30 CASE pr_state1 IS

31 WHEN one =>

32 out1 <= '0';

33 nx_state1 <= two;

34 WHEN two =>

35 out1 <= '1';

36 nx_state1 <= three;

37 WHEN three =>

38 out1 <= '1';

39 nx_state1 <= one;

40 END CASE;

41 END PROCESS;

42 ---- Upper section of machine #2: -----

43 PROCESS (pr_state2)

44 BEGIN

45 CASE pr_state2 IS

46 WHEN one =>

47 out2 <= '1';

48 nx_state2 <= two;

49 WHEN two =>

50 out2 <= '0';

51 nx_state2 <= three;

52 WHEN three =>

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

104

53 out2 <= '1';

54 nx_state2 <= one;

55 END CASE;

56 END PROCESS;

57 outp <= out1 AND out2;

58 END fsm;

59 --

Simulation results from the circuit synthesized with the code above are shown in

figure 8.13.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

105

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

106

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

107

9-AdditionalCircuit Designs
In the preceding chapters, we saw a series of complete design examples utilizing

VHDL code. Each design included:

1-Top-level diagram of the circuit, with description;

2-Review of basic concepts whenever necessary;

3-Complete VHDL code;

4-Simulation results; and

5-Additional comments when needed.

The designs presented in this chapter are the following:

1-Barrel shifter (section 9.1)

2-Signed and unsigned comparators (section 9.2)

3-Carry ripple and carry look ahead adders (section 9.3)

4-Fixed-point division (section 9.4)

5-Vending machine controller (section 9.5)

6-Serial data receiver (section 9.6)

7-Parallel-to-serial converter (section 9.7)

8-Playing with a SSD (section 9.8)

9-Signal generators (section 9.9)

10-Memories (section 9.10)

9.1 Barrel Shifter

The diagram of a barrel shifter is shown in figure 9.1. The input is an 8-bit vector.

The output is a shifted version of the input, with the amount of shift defined by the

‘‘shift’’ input (from 0 to 7). The circuit consists of three individual barrel shifters,

each similar to that seen in example 6.9. Notice that the first barrel has only one ‘0’
connected to one of the multiplexers (bottom left corner), while the second has two,

and the third has four. For larger vectors, we would just keep doubling the number

of ‘0’ inputs. If shift =‘‘001’’, for example, then only the first barrel should cause a

shift; on the other hand, if shift =‘‘111’’, then all barrels should cause a shift.

A VHDL code for the circuit of figure 9.1 is presented below. Simulation results,

verifying the functionality of the circuit, are shown in figure 9.2. As can be seen in

the latter, the output is equal to the input when shift =0 (that is, shift =‘‘000’’). It
can also be seen that, as long as no bit of value ‘1’ is shifted out of the barrel, the

output is equal to the input multiplied by 2 (1 shift) when shift =1 (‘‘001’’), multiplied

by 4 (2 shifts) when shift =2 (‘‘010’’), multiplied by 8 (3 shifts) when shift =3

(‘‘011’’), and so on.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

108

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

109

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY barrel IS

6 PORT (inp: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 shift: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 outp: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END barrel;

10 ---

11 ARCHITECTURE behavior OF barrel IS

12 BEGIN

13 PROCESS (inp, shift)

14 VARIABLE temp1: STD_LOGIC_VECTOR (7 DOWNTO 0);

15 VARIABLE temp2: STD_LOGIC_VECTOR (7 DOWNTO 0);

16 BEGIN

17 ---- 1st shifter -----

18 IF (shift(0)='0') THEN

19 temp1 := inp;

20 ELSE

21 temp1(0) := '0';

22 FOR i IN 1 TO inp'HIGH LOOP

23 temp1(i) := inp(i-1);

24 END LOOP;

25 END IF;

26 ---- 2nd shifter -----

27 IF (shift(1)='0') THEN

28 temp2 := temp1;

29 ELSE

30 FOR i IN 0 TO 1 LOOP

31 temp2(i) := '0';

32 END LOOP;

33 FOR i IN 2 TO inp'HIGH LOOP

34 temp2(i) := temp1(i-2);

35 END LOOP;

36 END IF;

37 ---- 3rd shifter -----

38 IF (shift(2)='0') THEN

39 outp <= temp2;

40 ELSE

41 FOR i IN 0 TO 3 LOOP

42 outp(i) <= '0';

43 END LOOP;

44 FOR i IN 4 TO inp'HIGH LOOP

45 outp(i) <= temp2(i-4);

46 END LOOP;

47 END IF;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

110

48 END PROCESS;

49 END behavior;

50 ---

9.2 Signed and Unsigned Comparators

Figure 9.3 shows the top-level diagram of a comparator. The size of the vectors to be

compared is generic (n +1). Three outputs must be provided: one corresponding to

a >b, another to a =b, and finally one relative to a <b. Three solutions are presented:

the first considers a and b as signed numbers, while the other two consider

them as unsigned values. Simulation results are also included.

9.2-1Signed Comparator

Notice the presence of the std_logic_arith package in the code below (line 4), which

is necessary to operate with SIGNED (or UNSIGNED) data types (a and b were

declared as SIGNED numbers in line 8).

1 ---- Signed Comparator: ----------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- necessary!

5 --

6 ENTITY comparator IS

7 GENERIC (n: INTEGER := 7);

8 PORT (a, b: IN SIGNED (n DOWNTO 0);

9 x1, x2, x3: OUT STD_LOGIC);

10 END comparator;

11 --

12 ARCHITECTURE signed OF comparator IS

13 BEGIN

14 x1 <= '1' WHEN a > b ELSE '0';

15 x2 <= '1' WHEN a = b ELSE '0';

16 x3 <= '1' WHEN a < b ELSE '0';

17 END signed;

18 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

111

Simulation results are shown in figure 9.4. As can be seen, 127 >0, but 128 <0

and also 255 <0 (because in 2’s complement notation 127 is the decimal 127 itself,

but 128 is the decimal _128, and 255 is indeed -1).

9.2-2Unsigned Comparator #1

The VHDL code below is the counterpart of the code just presented (signed

comparator).

Notice again the presence of the std_logic_arith package (line 4), which is

necessary to operate with UNSIGNED (or SIGNED) data types (a and b were

declared as UNSIGNED numbers in line 8).

1 ---- Unsigned Comparator #1: -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- necessary!

5 --

6 ENTITY comparator IS

7 GENERIC (n: INTEGER := 7);

8 PORT (a, b: IN UNSIGNED (n DOWNTO 0);

9 x1, x2, x3: OUT STD_LOGIC);

10 END comparator;

11 --

12 ARCHITECTURE unsigned OF comparator IS

13 BEGIN

14 x1 <= '1' WHEN a > b ELSE '0';

15 x2 <= '1' WHEN a = b ELSE '0';

16 x3 <= '1' WHEN a < b ELSE '0';

17 END unsigned;

18 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

112

9.3Carry Ripple and Carry Look Ahead Adders
Carry ripple and carry look ahead are two classical approaches to the design of

Adders . The former has the advantage of requiring less hardware, while the latter is

Faster . Both approaches are discussed below.

Carry Ripple Adder

Figure 9.6 shows a 4-bit unsigned carry ripple adder. For each bit, a full adder unit

(FAU, section 1.4) is employed. The truth table of the FAU is also shown. In it, a

and b represent the input bits, cin is the carry-in bit, s is the sum bit, and cout is the

carry-out bit. s must be high whenever the number of inputs that are high is odd

(parity function), while cout must be high when two or more inputs are high

(majority function).

s = a XOR b XOR cin

cout = (a AND b) OR (a AND cin) OR (b AND cin)

Therefore, a VHDL implementation of the carry ripple adder is straightforward.

The solution shown below works for any number (n) of input bits, defined by means

of a GENERIC statement in line 5. Simulation results from the circuit synthesized

with the code below are shown in figure 9.7.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

113

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.all;

3 ---

4 ENTITY adder_cripple IS

5 GENERIC (n: INTEGER := 4);

6 PORT (a, b: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

7 cin: IN STD_LOGIC;

8 s: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0);

9 cout: OUT STD_LOGIC);

10 END adder_cripple;

11 ---

12 ARCHITECTURE adder OF adder_cripple IS

13 SIGNAL c: STD_LOGIC_VECTOR (n DOWNTO 0);

14 BEGIN

15 c(0) <= cin;

16 G1: FOR i IN 0 TO n-1 GENERATE

17 s(i) <= a(i) XOR b(i) XOR c(i);

18 c(i+1) <= (a(i) AND b(i)) OR

19 (a(i) AND c(i)) OR

20 (b(i) AND c(i));

21 END GENERATE;

22 cout <= c(n);

23 END adder;

24 ---

Carry Look Ahead Adder
A diagram of a 4-bit carry look ahead adder is shown in figure 9.8. Its implementation

is based on the generate and propagate concept, which gives the circuit higher

speed than its carry ripple adder counterpart (at the expense of more silicon area).

Consider two input bits, a and b. The generate (g) and propagate (p) signals are

defined as:

g =a AND b

p =a XOR b
Notice that such signals can be computed in advance, because neither depends on

the carry bit.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

114

If we consider now two input vectors, a =a(n -1) . . . a(1)a(0) and b =b(n -1)

. . . b(1)b(0), then the corresponding generate and propagate vectors are g =g(n -1)

. . . g(1)g(0) and p =p(n -1) . . . p(1)p(0), where

g(j) =a(j) AND b(j)

p(j) =a(j) XOR b(j)

Let us consider now the carry vector, c =c(n -1) . . . c(1)c(0). The carry bits can

be computed from g and p:

c(0)=cin

c(1) =c(0)p(0) +g(0)

c(2) = c(0)p(0)p(1) + g(0)p(1) + g(1)

c(3) = c(0)p(0)p(1)p(2) + g(0)p(1)p(2) + g(1)p(2) + g(2), etc.

Independently; that is, none of the expressions above depends on preceding carry

Computations, and that is the reason why this circuit is faster. On the other hand, the

Hardware complexity grows very fast, limiting this approach to just a few bits

(typically four). Larger carry look ahead adders can be implemented by associating

such4-bit-or-so units.

The implementation of the adder of figure 9.8 is now straightforward. The PGU

(Propagate—Generate Unit) computes p and g (four units are required), plus the

Actual sum (s), while the CLAU (Carry Look Ahead Unit) computes the carry bits.

Note: In order to construct bigger carry look ahead adders, the CLAU block of

figure 9.8 must posses Group Propagate (GP) and Group Generate (GG) outputs,

Which were omitted in the figure because this implementation is intended for four bits

Only.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY CLA_Adder IS

6 PORT (a, b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

7 cin: IN STD_LOGIC;

8 s: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

9 cout: OUT STD_LOGIC);

10 END CLA_Adder;

11 ---

12 ARCHITECTURE CLA_Adder OF CLA_Adder IS

13 SIGNAL c: STD_LOGIC_VECTOR (4 DOWNTO 0);

14 SIGNAL p: STD_LOGIC_VECTOR (3 DOWNTO 0);

15 SIGNAL g: STD_LOGIC_VECTOR (3 DOWNTO 0);

16 BEGIN

17 ---- PGU: ---------------------------------

18 G1: FOR i IN 0 TO 3 GENERATE

19 p(i) <= a(i) XOR b(i);

20 g(i) <= a(i) AND b(i);

21 s(i) <= p(i) XOR c(i);

22 END GENERATE;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

115

23 ---- CLAU: --------------------------------

24 c(0) <= cin;

25 c(1) <= (cin AND p(0)) OR

26 g(0);

27 c(2) <= (cin AND p(0) AND p(1)) OR

28 (g(0) AND p(1)) OR

29 g(1);

30 c(3) <= (cin AND p(0) AND p(1) AND p(2)) OR

31 (g(0) AND p(1) AND p(2)) OR

32 (g(1) AND p(2)) OR

33 g(2);

34 c(4) <= (cin AND p(0) AND p(1) AND p(2) AND p(3)) OR

35 (g(0) AND p(1) AND p(2) AND p(3)) OR

36 (g(1) AND p(2) AND p(3)) OR

37 (g(2) AND p(3)) OR

38 g(3);

39 cout <= c(4);

40 END CLA_Adder;

41 ---

Qualitatively, the simulation results obtained from the circuit synthesized with the

code above are similar to those from the carry ripple adder presented in figure 9.7.

9.4 Fixed-Point Division
We saw in chapter 4 that the pre-defined ‘‘/’’ (division) operator accepts only power

of two divisors, that is, it is indeed a ‘‘shift’’ operator. In this section, we will discuss

the implementation of generic division, in which the dividend and divisor can be any

integer. We start by describing the division algorithm, then we present two VHDL

solutions followed by simulation results.

Division Algorithm

Say that we want to calculate y =a/b, where a, b, and y have the same number

(n + 1) of bits. The algorithm is illustrated in figure 9.9, for a =‘‘1011’’ (decimal 11)

and b =‘‘0011’’ (decimal 3), from which we expect y =‘‘0011’’ (decimal 3) and

remainder‘‘0010’’ (decimal 2). We first create a shifted version of b, whose length is

2n +1 bits (shown in the b-related column in figure 9.9). b_inp (i) is simply b shifted

to the left by i positions (notice the underscored characters in the b-related column).

Index

(i)
a-related

input (a_inp)
Comparison b-related

input (b_inp)
y (quotient) Operation on 1st

column
3

2

1

0

1011

1011

1011

0101

<

<

>

>

0011000

0001100

0000110

0000011

0

0

1

1

none

none

a_inp(i)-

b_inp(i)

a_inp(i)-

b_inp(i)
 0010(rem)

The computation of the quotient is performed as follows. Starting from the top of

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

116

the table, we compare(a-inp(i)) with (b-inp(i).) If the former is bigger than or

equal to the latter, than y(i) =‘1’ and b-inp(i) is subtracted from a-inp(i);

otherwise, y(i) =‘0’ and we simply proceed to the next line. After n + 1 iterations, the

computation is completed and the value left in a-inp is the remainder.

Note: It is obvious that, to subtract b-inp from a-inp, the number of bits of a-inp

cannot be less than that of b-inp, so the actual length of a-inp must be increased,

which is attained by simply filling a-inp with n ‘0’s on its left-hand side (‘0’s not

shown in figure 9.9).

Another way of presenting the division algorithm is the following. We multiply b

by 2**n, where n + 1 is the number of bits. This, of course, corresponds to shifting b

n positions to the left, but without throwing out any of its bits (so the new b-vector

must be n bits longer than the original vector). If a is bigger than the new b, then

y(n) = ‘1’, and b (the new value) must be subtracted from a; otherwise, y(n) =‘0’.
Now we move to the next iteration. We multiply b (the original value) by 2**(n -1),

which is equivalent to shifting the original vector n -1 positions to the left, or shifting

the value of b just used in the previous computation back one position to the

right. Then we compare it to a, as we did before, to decide whether y(n -1) should

be ‘1’ or ‘0’, and so on.

VHDL Dividers

Below are two solutions for the division problem. Both use sequential code: IF is

used in the first, while LOOP plus IF are employed in the second. The first solution is

a step-by-step code, so the division algorithm described above can be clearly

observed. The second is more compact and is also generic (notice that n was defined

by means of a GENERIC statement in line 6). The solutions include also a b =0

check routine. Simulation results are shown in figure 9.10.

1 ----- Solution 1: step-by-step-------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY divider IS

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

117

6 PORT (a, b: IN INTEGER RANGE 0 TO 15;

7 y: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

8 rest: OUT INTEGER RANGE 0 TO 15;

9 err : OUT STD_LOGIC);

10 END divider;

11 --

12 ARCHITECTURE rtl OF divider IS

13 BEGIN

14 PROCESS (a, b)

15 VARIABLE temp1: INTEGER RANGE 0 TO 15;

16 VARIABLE temp2: INTEGER RANGE 0 TO 15;

17 BEGIN

18 ----- Error and initialization: -------

19 temp1 := a;

20 temp2 := b;

21 IF (b=0) THEN err <= '1';

22 ELSE err <= '0';

23 END IF;

24 ----- y(3): ---------------------------

25 IF (temp1 >= temp2 * 8) THEN

26 y(3) <= '1';

27 temp1 := temp1 - temp2*8;

28 ELSE y(3) <= '0';

29 END IF;

30 ----- y(2): ---------------------------

31 IF (temp1 >= temp2 * 4) THEN

32 y(2) <= '1';

33 temp1 := temp1 - temp2 * 4;

34 ELSE y(2) <= '0';

35 END IF;

36 ----- y(1): ---------------------------

37 IF (temp1 >= temp2 * 2) THEN

38 y(1) <= '1';

39 temp1 := temp1 - temp2 * 2;

40 ELSE y(1) <= '0';

41 END IF;

42 ----- y(0): ---------------------------

43 IF (temp1 >= temp2) THEN

44 y(0) <= '1';

45 temp1 := temp1 - temp2;

46 ELSE y(0) <= '0';

47 END IF;

48 ----- Remainder: ----------------------

49 rest <= temp1;

50 END PROCESS;

51 END rtl;

52 --

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

118

1 ------ Solution 2: compact and generic-----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY divider IS

6 GENERIC(n: INTEGER := 3);

7 PORT (a, b: IN INTEGER RANGE 0 TO 15;

8 y: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

9 rest: OUT INTEGER RANGE 0 TO 15;

10 err : OUT STD_LOGIC);

11 END divider;

12 --

13 ARCHITECTURE rtl OF divider IS

14 BEGIN

15 PROCESS (a, b)

16 VARIABLE temp1: INTEGER RANGE 0 TO 15;

17 VARIABLE temp2: INTEGER RANGE 0 TO 15;

18 BEGIN

19 ----- Error and initialization: -------

20 temp1 := a;

21 temp2 := b;

22 IF (b=0) THEN err <= '1';

23 ELSE err <= '0';

24 END IF;

25 ----- y: ------------------------------

26 FOR i IN n DOWNTO 0 LOOP

27 IF(temp1 >= temp2 * 2**i) THEN

28 y(i) <= '1';

29 temp1 := temp1 - temp2 * 2**I;

30 ELSE y(i) <= '0';

31 END IF;

32 END LOOP;

33 ----- Remainder: ----------------------

34 rest <= temp1;

35 END PROCESS;

36 END rtl;

37 --

9.5 Vending-Machine Controller

The inputs and outputs of the controller are shown in figure 9.11. The input signals

nickel-in, dime-in, and quarter-in indicate that a corresponding coin has been

deposited. Two additional inputs, clk (clock) and rst (reset), are also necessary. The

controller responds with three outputs: candy-out, to dispense a candy bar, plus

nickel-out and dime-out, asserted when change is due.

Figure 9.11 also shows the states of the corresponding FSM. The numbers inside

the circles represent the total amount deposited by the customer (only nickels, dimes,

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

119

and quarters are accepted). State 0 is the idle state. From it, if a nickel is deposited,

the machine moves to state 5; if a dime, to state 10; or if a quarter, to state 25. Similar

situations are repeated for all states, up to state 20. If state 25 is reached, then a

candy bar is dispensed, with no change. However, if state 40 is reached, for example,

then a nickel is delivered, passing therefore the system to state 35, from which a dime

is delivered and a candy bar dispensed. The three states marked with double circles

are those from which a candy bar is delivered and the machine returns to state 0.

This problem will be divided into two parts: in the first, the fundamental aspects

related to the design of the vending machine controller (figure 9.11) are treated; in

the second, additional (and indispensable) features are added. The first part is studied

in this section, while the second is proposed as a problem (problem 9.3). The

introduction of such additional features is necessary for safety reasons; since we are

dealing with money, we must assure that none of the parts (machine or customer) will

be hurt in the transaction

A VHDL code, treating only the basic features of the problem depicted in figure

9.11, is presented below. We have assumed that the additional features proposed in

problem 9.3 will indeed be implemented, in which case glitches are acceptable in the

first part of the solution. Therefore, design style #1 (section 8.2) can be employed.

The enumerated type state (line 12) contains a list of all states shown in the FSM

diagram of figure 9.11. There are ten states, so four bits are necessary to encode them

(so four flip-flops will be inferred). Recall that the compiler encodes such states in the

order that they are listed, so st0 = ‘‘0000’’ (decimal 0), st5 = ‘‘0001’’ (decimal 1), . . . ,

st45 =‘‘1001’’ (decimal 9). Therefore, in the simulations, such numbers are shown

instead of the state names.

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY vending_machine IS

6 PORT (clk, rst: IN STD_LOGIC;

7 nickel_in, dime_in, quarter_in: IN BOOLEAN;

8 candy_out, nickel_out, dime_out: OUT STD_LOGIC);

9 END vending_machine;

10 --

11 ARCHITECTURE fsm OF vending_machine IS

12 TYPE state IS (st0, st5, st10, st15, st20, st25,

13 st30, st35, st40, st45);

14 SIGNAL present_state, next_state: STATE;

15 BEGIN

16 ---- Lower section of the FSM (Sec. 8.2): ---------

17 PROCESS (rst, clk)

18 BEGIN

19 IF (rst='1') THEN

20 present_state <= st0;

21 ELSIF (clk'EVENT AND clk='1') THEN

22 present_state <= next_state;

23 END IF;

24 END PROCESS;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

120

25 ---- Upper section of the FSM (Sec. 8.2): ---------

26 PROCESS (present_state, nickel_in, dime_in, quarter_in)

27 BEGIN

28 CASE present_state IS

29 WHEN st0 =>

30 candy_out <= '0';

31 nickel_out <= '0';

32 dime_out <= '0';

33 IF (nickel_in) THEN next_state <= st5;

34 ELSIF (dime_in) THEN next_state <= st10;

35 ELSIF (quarter_in) THEN next_state <= st25;

36 ELSE next_state <= st0;

37 END IF;

38 WHEN st5 =>

39 candy_out <= '0';

40 nickel_out <= '0';

41 dime_out <= '0';

42 IF (nickel_in) THEN next_state <= st10;

43 ELSIF (dime_in) THEN next_state <= st15;

44 ELSIF (quarter_in) THEN next_state <= st30;

45 ELSE next_state <= st5;

46 END IF;

47 WHEN st10 =>

48 candy_out <= '0';

49 nickel_out <= '0';

50 dime_out <= '0';

51 IF (nickel_in) THEN next_state <= st15;

52 ELSIF (dime_in) THEN next_state <= st20;

53 ELSIF (quarter_in) THEN next_state <= st35;

54 ELSE next_state <= st10;

55 END IF;

56 WHEN st15 =>

57 candy_out <= '0';

58 nickel_out <= '0';

59 dime_out <= '0';

60 IF (nickel_in) THEN next_state <= st20;

61 ELSIF (dime_in) THEN next_state <= st25;

62 ELSIF (quarter_in) THEN next_state <= st40;

63 ELSE next_state <= st15;

64 END IF;

65 WHEN st20 =>

66 candy_out <= '0';

67 nickel_out <= '0';

68 dime_out <= '0';

69 IF (nickel_in) THEN next_state <= st25;

70 ELSIF (dime_in) THEN next_state <= st30;

71 ELSIF (quarter_in) THEN next_state <= st45;

72 ELSE next_state <= st20;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

121

73 END IF;

74 WHEN st25 =>

75 candy_out <= '1';

76 nickel_out <= '0';

77 dime_out <= '0';

78 next_state <= st0;

79 WHEN st30 =>

80 candy_out <= '1';

81 nickel_out <= '1';

82 dime_out <= '0';

83 next_state <= st0;

84 WHEN st35 =>

85 candy_out <= '1';

86 nickel_out <= '0';

87 dime_out <= '1';

88 next_state <= st0;

89 WHEN st40 =>

90 candy_out <= '0';

91 nickel_out <= '1';

92 dime_out <= '0';

93 next_state <= st35;

94 WHEN st45 =>

95 candy_out <= '0';

96 nickel_out <= '0';

97 dime_out <= '1';

98 next_state <= st35;

99 END CASE;

100 END PROCESS;

101

102 END fsm;

103 --

Simulation results are presented in figure 9.12. As can be seen, three nickels and

one quarter were deposited. Notice that, at the first positive clock edge after the first

nickel was deposited, the FSM moves from state st0 (decimal 0) to st5 (decimal 1);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

122

after de second nickel, to state st10 (decimal 2); after de third, to state st15 (decimal

3); and, after de quarter has been deposited, to state st40 (decimal 8). After that, a

nickel is returned to the customer (nickel-out =‘1’), causing the FSM to move to

state st35 (decimal 7), at which a dime is delivered (dime-out =‘1’) and a candy bar

is dispensed (candy-out =‘1’). The system returns then to its idle state (st0).

As mentioned above, additional features (like handshake) are necessary to increase

the security of the transactions. Please refer to problem 9.3 for a continuation of this

design.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

123

9.6Serial Data Receiver

The diagram of a serial data receiver is shown in figure 9.13. It contains a serial data

input, din, and a parallel data output, data(6:0). A clock signal is also needed at the

input. Two supervision signals are generated by the circuit: err (error) and data-valid.

The input train consists of ten bits. The first bit is a start bit, which, when high,

must cause the circuit to start receiving data. The next seven are the actual data bits.

The ninth bit is a parity bit, whose status must be ‘0’ if the number of ones in data is

even, or ‘1’ otherwise. Finally, the tenth is a stop bit, which must be high if the

transmission is correct. An error is detected when either the parity does not check or

the stop bit is not a ‘1’. When reception is concluded and if no error has been

detected, then the data stored in the internal registers (reg) is transferred to data(6:0)

and the data_valid output is asserted.

A VHDL code for this circuit is presented below. A few variables were used:

count, to determine the number of bits received; reg, which stores the data; and temp,

to compute the error. Notice in line 37 that reg(0) =din was used instead of

reg(0) =‘0’, because we want the time slot immediately after the stop bit to be

considered as possibly containing a start bit for the next input train.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY receiver IS

6 PORT (din, clk, rst: IN BIT;

7 data: OUT BIT_VECTOR (6 DOWNTO 0);

8 err, data_valid: OUT BIT);

9 END receiver;

10 ---

11 ARCHITECTURE rtl OF receiver IS

12 BEGIN

13 PROCESS (rst, clk)

14 VARIABLE count: INTEGER RANGE 0 TO 10;

15 VARIABLE reg: BIT_VECTOR (10 DOWNTO 0);

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

124

16 VARIABLE temp : BIT;

17 BEGIN

18 IF (rst='1') THEN

19 count:=0;

20 reg := (reg'RANGE => '0');

21 temp := '0';

22 err <= '0';

23 data_valid <= '0';

24 ELSIF (clk'EVENT AND clk='1') THEN

25 IF (reg(0)='0' AND din='1') THEN

26 reg(0) := '1';

27 ELSIF (reg(0)='1') THEN

28 count := count + 1;

29 IF (count < 10) THEN

30 reg(count) := din;

31 ELSIF (count = 10) THEN

32 temp := (reg(1) XOR reg(2) XOR reg(3) XOR

33 reg(4) XOR reg(5) XOR reg(6) XOR

34 reg(7) XOR reg(8)) OR NOT reg(9);

35 err <= temp;

36 count := 0;

37 reg(0) := din;

38 IF (temp = '0') THEN

39 data_valid <= '1';

40 data <= reg(7 DOWNTO 1);

41 END IF;

42 END IF;

43 END IF;

44 END IF;

45 END PROCESS;

46 END rtl;

47 ---

Simulation results are presented in figure 9.14. The input sequence is din =

{start =1, din =0111001, parity =0, stop =1}. As can be seen in the upper graph,

no error was detected in this case, because the parity and stop bits are correct. Hence,

after count reaches 9, the data is made available, that is, data =0111001, from

data(0) to data(6), which corresponds to the decimal 78, and the data-valid bit is

Figure

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

125

9.7 PARALLEL-TO-SERIAL CONVERTER

A parallel-to-serial converter is a typical application of shift registers. It consists of

sending out a block of data serially. The need for such converters arises, for example,

in ASIC chips when there are not enough pins available to output all data bits

simultaneously.

A diagram of a parallel-to-serial converter is presented in figure 9.15. d(7:0) is the

data vector to be sent out, while dout is the actual output. There are also two other

inputs: clk and load. When load is asserted, d is synchronously stored in the shift

register reg. While load stays high, the MSB, d(7), remains available at the output.

Once load is returned to ‘0’, the subsequent bits are presented at the output at each

positive edge of clk. After all eight bits have been sent out, the output remains low

until the next transmission.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY serial_converter IS

6 PORT (d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 clk, load: IN STD_LOGIC;

8 dout: OUT STD_LOGIC);

9 END serial_converter;

10 ---

11 ARCHITECTURE serial_converter OF serial_converter IS

12 SIGNAL reg: STD_LOGIC_VECTOR (7 DOWNTO 0);

13 BEGIN

14 PROCESS (clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 IF (load='1') THEN reg <= d;

18 ELSE reg <= reg(6 DOWNTO 0) & '0';

19 END IF;

20 END IF;

21 END PROCESS;

22 dout <= reg(7);

23 END serial_converter;

24 ---

Simulation results from the circuit synthesized with the code above are shown in

figure 9.16. d =‘‘11011011’’ (decimal 219) was chosen. As can be seen, d(7) =‘1’ is

presented at the output at the first rising edge of clk after load has been asserted,

staying there while load remains high (to illustrate this fact, load was kept high

during two clock cycles). The other bits follow as soon as load returns to ‘0’. Notice

that after all bits have been transmitted, the output stays low.

9.8 Playing with a Seven-Segment Display

We want to design a little game with an SSD (seven-segment display). The top-level

diagram of the circuit is shown in figure 9.17. It contains two inputs, clk and stop,

and one output, dout(6:0), which feeds the SSD. Assume that fclk =1 kHz.

Our circuit should cause a continuous clockwise movement of the SSD segments.

Also, in order to make the circulatory movement more realistic, we want to momentarily

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

126

overlap neighboring segments. Consequently, the sequence should be

a ab b bc c cd d de e ef f fa a, with the combined

states (ab, bc, etc.) lasting only a few milliseconds. If stop is asserted, then the circuit

should return to state a and remain so until stop is turned low again.

From chapter 8, it is clear that this is a circuit for which the FSM approach is

appropriate. The states diagram is presented in figure 9.18. We want the system to

remain in states a, b, c, etc. for time1 =80 ms, and in the combined states, ab, bc,

etc., for time2 =30 ms. Therefore, a counter counting up to 80 (the clock period is

1 ms) or up to 30 can be employed to determine when to move to the next state.

A VHDL solution is shown below. Notice that it is a straight implementation of

the FSM template seen in section 8.2. In lines 11–12, time1 and time2 were declared

as two constants. Small values (4 and 2, respectively) were here used in order for the

simulation results to fit well in one plot, but 80 and 30, respectively, were used in the

actual physical implementation. A signal called flip was used to switch from time1 to

time2, and vice-versa. Notice that the corresponding decimals are marked beside

each value of dout, so they can be easily verified in the simulation results.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

127

1 --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --

5 ENTITY ssd_game2 IS

6 PORT (clk, stop: IN BIT;

7 dout: OUT BIT_VECTOR (6 DOWNTO 0));

8 END ssd_game2;

9 --

10 ARCHITECTURE fsm OF ssd_game2 IS

11 CONSTANT time1: INTEGER := 4; -- actual value is 80

12 CONSTANT time2: INTEGER := 2; -- actual value is 30

13 TYPE states IS (a, ab, b, bc, c, cd, d, de, e, ef, f, fa);

14 SIGNAL present_state, next_state: STATES;

15 SIGNAL count: INTEGER RANGE 0 TO 5;

16 SIGNAL flip: BIT;

17 BEGIN

18 ------- Lower section of FSM (Sec. 8.2): ------------

19 PROCESS (clk, stop)

20 BEGIN

21 IF (stop='1') THEN

22 present_state <= a;

23 ELSIF (clk'EVENT AND clk='1') THEN

24 IF ((flip='1' AND count=time1) OR

25 (flip='0' AND count=time2)) THEN

26 count <= 0;

27 present_state <= next_state;

28 ELSE count <= count + 1;

29 END IF;

30 END IF;

31 END PROCESS;

32 ------- Upper section of FSM (Sec. 8.2): ------------

33 PROCESS (present_state)

34 BEGIN

35 CASE present_state IS

36 WHEN a =>

37 dout <= "1000000"; -- Decimal 64

38 flip<='1';

39 next_state <= ab;

40 WHEN ab =>

41 dout <= "1100000"; -- Decimal 96

42 flip<='0';

43 next_state <= b;

44 WHEN b =>

45 dout <= "0100000"; -- Decimal 32

46 flip<='1';

47 next_state <= bc;

48 WHEN bc =>

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

128

49 dout <= "0110000"; -- Decimal 48

50 flip<='0';

51 next_state <= c;

52 WHEN c =>

53 dout <= "0010000"; -- Decimal 16

54 flip<='1';

55 next_state <= cd;

56 WHEN cd =>

57 dout <= "0011000"; -- Decimal 24

58 flip<='0';

59 next_state <= d;

60 WHEN d =>

61 dout <= "0001000"; -- Decimal 8

62 flip<='1';

63 next_state <= de;

64 WHEN de =>

65 dout <= "0001100"; -- Decimal 12

66 flip<='0';

67 next_state <= e;

68 WHEN e =>

69 dout <= "0000100"; -- Decimal 4

70 flip<='1';

71 next_state <= ef;

72 WHEN ef =>

73 dout <= "0000110"; -- Decimal 6

74 flip<='0';

75 next_state <= f;

76 WHEN f =>

77 dout <= "0000010"; -- Decimal 2

78 flip<='1';

79 next_state <= fa;

80 WHEN fa =>

81 dout <= "1000010"; -- Decimal 66

82 flip<='0';

83 next_state <= a;

84 END CASE;

85 END PROCESS;

86 END fsm;

87 --

Simulation results are presented in figure 9.19. As can be seen, the system stays in

the single states, a, b, etc., for four clock cycles (time1 = 4 here) and in the combined

states, ab, bc, etc., for two clock cycles (time2 = 2). Observe also that the decimals

detected by the simulator match the decimals listed in the VHDL code.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

129

9.9-Signal Generators

The signal of figure 9.20 can be modeled as an 8-state FSM. Using a counter from

0 to 7, we can establish that wave ¼‘0’ (1st pulse) when count ¼0, wave ¼‘1’ (2nd

pulse) when count ¼1, and so on, thus creating the signal shown in the figure. This

implementation requires a total of four flip-flops: three to store count (three bits),

plus one to store wave (one bit). Recall from chapter 8, sections 8.2–8.3, that the

output of a FSM will only be registered if design style #2 is employed, which is

necessaryhere, because glitches are not acceptable in a signal generator.

The corresponding VHDL code, using design style #2 (section 8.3), is shown below.

Simulation results appear in figure 9.21. Checking the report file created by the

synthesis tool, we verify that a total of four flip-flops were indeed inferred from this

code.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY signal_gen IS

6 PORT (clk: IN STD_LOGIC;

7 wave: OUT STD_LOGIC);

8 END signal_gen;

9 ---

10 ARCHITECTURE fsm OF signal_gen IS

11 TYPE states IS (zero, one, two, three, four, five, six,

12 seven);

13 SIGNAL present_state, next_state: STATES;

14 SIGNAL temp: STD_LOGIC;

15 BEGIN

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

130

16

17 --- Lower section of FSM (Sec. 8.3): ---

18 PROCESS (clk)

19 BEGIN

20 IF (clk'EVENT AND clk='1') THEN

21 present_state <= next_state;

22 wave <= temp;

23 END IF;

24 END PROCESS;

25

26 --- Upper section of FSM (Sec. 8.3): ---

27 PROCESS (present_state)

28 BEGIN

29 CASE present_state IS

30 WHEN zero => temp<='0'; next_state <= one;

31 WHEN one => temp<='1'; next_state <= two;

32 WHEN two => temp<='0'; next_state <= three;

33 WHEN three => temp<='1'; next_state <= four;

34 WHEN four => temp<='1'; next_state <= five;

35 WHEN five => temp<='1'; next_state <= six;

36 WHEN six => temp<='0'; next_state <= seven;

37 WHEN seven => temp<='0'; next_state <= zero;

38 END CASE;

39 END PROCESS;

40 END fsm;

41 ---

Conventional Approach
A conventional design, with the IF statement, is shown next. Notice that count and

wave are both assigned at the transition of another signal (clk). Therefore, according

to what you saw in section 7.5, both will be stored (that is, four flip-flops will be

inferred,three for count and one for wave).

Simulation results are shown in figure 9.22.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

131

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY signal_gen1 IS

6 PORT (clk: IN BIT;

7 wave: OUT BIT);

8 END signal_gen1;

9 ---------------------------------------

10 ARCHITECTURE arch1 OF signal_gen1 IS

11 BEGIN

12 PROCESS

13 VARIABLE count: INTEGER RANGE 0 TO 7;

14 BEGIN

15 WAIT UNTIL (clk'EVENT AND clk='1');

16 CASE count IS

17 WHEN 0 => wave <= '0';

18 WHEN 1 => wave <= '1';

19 WHEN 2 => wave <= '0';

20 WHEN 3 => wave <= '1';

21 WHEN 4 => wave <= '1';

22 WHEN 5 => wave <= '1';

23 WHEN 6 => wave <= '0';

24 WHEN 7 => wave <= '0';

25 END CASE;

26 count := count + 1;

27 END PROCESS;

28 END arch1;

29 ---------------------------------------

9.10 Memory Design

In this section, the design of the following memory circuits is presented:

-ROM

-RAM with separate in/out data buses

- RAM with bidirectional in/out data bus

ROM (Read Only Memory)

Figure 9.23 shows the diagram of a ROM. Since it is a read-only memory, no clock

signal or write-enable pin is necessary. As can be seen, the circuit contains a pile of

pre-stored words, being the one selected by the address input (addr) presented at the

output (data). In the code shown below, words (line 7) represents the number

of words stored in the memory,

while bits (line 6) represents the size of each word. To create a ROM,

an array of CONSTANT values can be used (lines 15–22). First, a new TYPE, called

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

132

vector_array, was defined (lines 13–14), which was then used in the declaration of a

CONSTANT named memory (line 15). An 8 *8 ROM is illustrated in this example,

with the following (decimal) values stored in addresses 0 to 7: 0, 2, 4, 8, 16, 32, 64,

and 128 (lines 15–22). Line 24 shows an example of call to the memory; the output

(data) is equal to the word stored at address addr. When implementing a ROM, no

data registers are inferred, because no signal assignment occurs at the transition of

another signal. Logical gates forming an LUT (lookup table), are used instead.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY rom IS

6 GENERIC (bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 8); -- # of words in the memory

8 PORT (addr: IN INTEGER RANGE 0 TO words-1;

9 data: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

10 END rom;

11 ---

12 ARCHITECTURE rom OF rom IS

13 TYPE vector_array IS ARRAY (0 TO words-1) OF

14 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

15 CONSTANT memory: vector_array := ("00000000",

16 "00000010",

17 "00000100",

18 "00001000",

19 "00010000",

20 "00100000",

21 "01000000",

22 "10000000");

23 BEGIN

24 data <= memory(addr);

25 END rom;

26 ---

Simulation results are shown in figure 9.24. As can be seen, the address changes

from 0 to 7, then restarts from 0, with the outputs matching the values listed in the

code above.

RAM with Separate Input and Output Data Buses
A RAM (Random Access Memory), with separate input and output data buses, is

illustrated in figure 9.25.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

133

As can be seen in figure 9.25(a), the circuit has a data input bus (data_in), a data

output bus (data_out), an address bus (addr), plus clock (clk) and write enable

(wr_ena) pins. When wr_enable is asserted, at the next rising edge of clk the vector

present at data_in must be stored in the position specified by addr. data_out, on the

other hand, must constantly display the data selected by addr.

From the register point-of-view, the circuit can be summarized as in figure 9.25(b).

When wr_ena is low, q is connected to the input of the flip-flop, and terminal d is

open, so no new data will be written into the memory. However, when wr_ena is

turned high, d is connected to the input of the register, so at the next rising edge of

clk d will be stored.

A VHDL code that implements the circuit of figure 9.25 is shown below. The

chosen capacity was 16 words of length eight bits each. Notice that the code is totally

generic. Simulation results are shown in figure 9.26.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY ram IS

6 GENERIC (bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the

8 -- memory

9 PORT (wr_ena, clk: IN STD_LOGIC;

10 addr: IN INTEGER RANGE 0 TO words-1;

11 data_in: IN STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

12 data_out: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

13 END ram;

14 ---

15 ARCHITECTURE ram OF ram IS

16 TYPE vector_array IS ARRAY (0 TO words-1) OF

17 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

18 SIGNAL memory: vector_array;

19 BEGIN

20 PROCESS (clk, wr_ena)

21 BEGIN

22 IF (wr_ena='1') THEN

23 IF (clk'EVENT AND clk='1') THEN

24 memory(addr) <= data_in;

25 END IF;

26 END IF;

27 END PROCESS;

28 data_out <= memory(addr);

29 END ram;

30 ---

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

134

RAM with Bidirectional In/Out Data
Bus

A RAM with bidirectional in/out data bus is illustrated in figure 9.27. The overall

structure is similar to that of figure 9.25, except for the fact that now the same bus

(bidir) is used to write data into the memory as well to read data from it.

From the register point-of-view, the circuit can be summarized as in figure 9.27(b).

When wr-ena is low, the output of the register is connected to its input, so no change

on the store data will occur. On the other hand, when wr-ena is asserted, q is

connected to d, allowing new data to be stored at the next rising edge of clk.

A VHDL code that implements the circuit of figure 9.27 is shown below. The

chosen capacity was 16 words of length eight bits each. Notice that this code is also

totally generic. Simulation results are shown in figure 9.28.

1 ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---

5 ENTITY ram4 IS

6 GENERIC (bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the

8 -- memory

9 PORT (clk, wr_ena: IN STD_LOGIC;

10 addr: IN INTEGER RANGE 0 TO words-1;

11 bidir: INOUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

12 END ram4;

13 ---

14 ARCHITECTURE ram OF ram4 IS

15 TYPE vector_array IS ARRAY (0 TO words-1) OF

16 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

17 SIGNAL memory: vector_array;

18 BEGIN

19 PROCESS (clk, wr_ena)

20 BEGIN

21 IF (wr_ena='0') THEN

22 bidir <= memory(addr);

23 ELSE

24 bidir <= (OTHERS => 'Z');

25 IF (clk'EVENT AND clk='1') THEN

26 memory(addr) <= bidir;

27 END IF;

28 END IF;

29 END PROCESS;

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

135

30 END ram;

31 ---

10-Packages and Components
Packages and Components Introduction we will simply add new building

blocks to the material already presented. These new building blocks are

intended mainly for library allocation, being shown on the right-hand side

of figure 10.1. They are: „h Packages „h Components „h Functions „h

Procedures

Figure 10.1: Fundamental units of VHDL code.

PACKAGE
frequently used pieces of VHDL code are usually written in the form of

COMPONENTS, FUNCTIONS, or PROCEDURES. Such codes are then

placed inside a PACKAGE and compiled into the destination LIBRARY. The

importance of this technique is that it allows code partitioning, code sharing,

and code reuse.

Packages syntax is presented below. the syntax is composed of two parts:

PACKAGE and PACKAGE BODY. The first part is mandatory and contains

all declarations, while the second part is necessary only when one or more

subprograms (FUNCTION or PROCEDURE) are declared in the upper part, in

which case it must contain the descriptions (bodies) of the subprograms.

PACKAGE and PACKAGE BODY must have the same name.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

136

The declarations list can contain the following: COMPONENT, FUNCTION,

PROCEDURE, TYPE, CONSTANT, etc.

Example 10.1: Simple Package
The example below shows a PACKAGE called my_package. It contains only

TYPE and CONSTANT declarations, so a PACKAGE BODY is not necessary

Example 10.2: Package with a Function
This example contains, besides TYPE and CONSTANT declarations, a

FUNCTION. Therefore, a PACKAGE BODY is now needed. This function

returns TRUE when a positive edge occurs on clk.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

137

Any of the PACKAGES above (example 10.1 or example 10.2) can now

be compiled, becoming then part of our work LIBRARY (or any other).

To make use of it in a VHDL code, we have to add a new USE clause to

the main code (USE work .my_ package .all), as shown below.

COMPONENT

A COMPONENT is simply a piece of conventional code (that is, LIBRARY

declarations + ENTITY + ARCHITECTURE). However, by declaring such

code as being a COMPONENT, it can then be used within another circuit,

thus allowing the construction of hierarchical designs A COMPONENT is

also another way of partitioning a code and providing code sharing and

code reuse. For example, commonly used circuits, like flip-flops,

multiplexers ,adders, basic gates, etc., can be placed in a LIBRARY, so any

project can make use of them without having to explicitly rewrite such

codes. To use (instantiate) a COMPONENT, it must first be declared. The

corresponding syntaxes are shown below COMPONENT declaration:

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

138

COMPONENT instantiation:

Example 10.3: Components Declared in the Main Code We want to
implement the circuit of figure 10.3 employing only COMPONENTS
(inverter, nand_2, and nand_3), but without creating a specific PACKAGE
to declare them thus as in figure 10.2(a).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

139

Figure 10.2: Basic ways of declaring COMPONENTS: (a) declarations in

the main code itself, (b) declarations in a PACKAGE

Figure 10.3: Circuit of example 10.3.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

140

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

141

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

142

Figure 10.4: Experimental results of example 10.3.

Example 10.4: Components Declared in a Package We want to

implement the same project of the previous example (figure 10.3)

However, we will now create a PACKAGE where all the COMPONENTS

(inverter ,nand_2, and nand_3) will be declared, like in figure 10.2(b).

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

143

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

144

.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

145

Example 10.5: ALU Made of COMPONENTS In the present

example, however, we will assume that our library contains the three

components (logic_unit, arith_unit, and mux) with which the ALU can be

constructed

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

146

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

147

11

Figure 10.5: ALU constructed from three COMPONENTS.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

148

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

149

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

150

Simulation results are shown in figure 10.6.

Figure 10.6: Simulation results of example 10.6.

 Advanced Digital Electronics

 MCA. Eng. K. DAWAH

 فرع الالكترونيات -بعة الراالمرحلة -قسم هندسة تقنيات الحاسوب -كلية المعارف الجامعة
Department of Computer Engineering and Technology

BY:K.DAWAH .ABBAS

151

Reference :Circuit Design with VHDL

Volnei A. Pedroni(Massachusetts Institute of Technology)

