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We have significantly revised this edition of Thomas’ Calculus: Early Transcendentals to
meet the changing needs of today’s instructors and students. The result is a book with more
examples, more mid-level exercises, more figures, better conceptual flow, and increased
clarity and precision. As with previous editions, this new edition provides a modern intro-
duction to calculus that supports conceptual understanding but retains the essential ele-
ments of a traditional course. These enhancements are closely tied to an expanded version
of MyMathLab® for this text (discussed further on), providing additional support for stu-
dents and flexibility for instructors. 

In this twelfth edition early transcendentals version, we introduce the basic transcen-
dental functions in Chapter 1. After reviewing the basic trigonometric functions, we pres-
ent the family of exponential functions using an algebraic and graphical approach, with
the natural exponential described as a particular member of this family. Logarithms are
then defined as the inverse functions of the exponentials, and we also discuss briefly the
inverse trigonometric functions. We fully incorporate these functions throughout our de-
velopments of limits, derivatives, and integrals in the next five chapters of the book, in-
cluding the examples and exercises. This approach gives students the opportunity to work
early with exponential and logarithmic functions in combinations with polynomials, ra-
tional and algebraic functions, and trigonometric functions as they learn the concepts, oper-
ations, and applications of single-variable calculus. Later, in Chapter 7, we revisit the defi-
nition of transcendental functions, now giving a more rigorous presentation. Here we define
the natural logarithm function as an integral with the natural exponential as its inverse.

Many of our students were exposed to the terminology and computational aspects of
calculus during high school. Despite this familiarity, students’ algebra and trigonometry
skills often hinder their success in the college calculus sequence. With this text, we have
sought to balance the students’ prior experience with calculus with the algebraic skill de-
velopment they may still need, all without undermining or derailing their confidence. We
have taken care to provide enough review material, fully stepped-out solutions, and exer-
cises to support complete understanding for students of all levels.

We encourage students to think beyond memorizing formulas and to generalize con-
cepts as they are introduced. Our hope is that after taking calculus, students will be confi-
dent in their problem-solving and reasoning abilities. Mastering a beautiful subject with
practical applications to the world is its own reward, but the real gift is the ability to think
and generalize. We intend this book to provide support and encouragement for both. 

Changes for the Twelfth Edition

CONTENT In preparing this edition we have maintained the basic structure of the Table of
Contents from the eleventh edition, yet we have paid attention to requests by current users
and reviewers to postpone the introduction of parametric equations until we present polar
coordinates. We have made numerous revisions to most of the chapters, detailed as follows:

ix
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• Functions We condensed this chapter to focus on reviewing function concepts and in-
troducing the transcendental functions. Prerequisite material covering real numbers, in-
tervals, increments, straight lines, distances, circles, and parabolas is presented in Ap-
pendices 1–3.

• Limits To improve the flow of this chapter, we combined the ideas of limits involving
infinity and their associations with asymptotes to the graphs of functions, placing them
together in the final section of Chapter 3.

• Differentiation While we use rates of change and tangents to curves as motivation for
studying the limit concept, we now merge the derivative concept into a single chapter.
We reorganized and increased the number of related rates examples, and we added new
examples and exercises on graphing rational functions. L’Hôpital’s Rule is presented as
an application section, consistent with our early coverage of the transcendental functions.

• Antiderivatives and Integration We maintain the organization of the eleventh edition
in placing antiderivatives as the final topic of Chapter 4, covering applications of 
derivatives. Our focus is on “recovering a function from its derivative” as the solution
to the simplest type of first-order differential equation. Integrals, as “limits of Riemann
sums,” motivated primarily by the problem of finding the areas of general regions with
curved boundaries, are a new topic forming the substance of Chapter 5. After carefully
developing the integral concept, we turn our attention to its evaluation and connection
to antiderivatives captured in the Fundamental Theorem of Calculus. The ensuing ap-
plications then define the various geometric ideas of area, volume, lengths of paths, and
centroids, all as limits of Riemann sums giving definite integrals, which can be evalu-
ated by finding an antiderivative of the integrand. We return later to the topic of solving
more complicated first-order differential equations.

• Differential Equations Some universities prefer that this subject be treated in a course
separate from calculus. Although we do cover solutions to separable differential equations
when treating exponential growth and decay applications in Chapter 7 on integrals and
transcendental functions, we organize the bulk of our material into two chapters (which
may be omitted for the calculus sequence). We give an introductory treatment of first-
order differential equations in Chapter 9, including a new section on systems and 
phase planes, with applications to the competitive-hunter and predator-prey models. We
present an introduction to second-order differential equations in Chapter 17, which is in-
cluded in MyMathLab as well as the Thomas’ Calculus: Early Transcendentals Web site,
www.pearsonhighered.com/thomas.

• Series We retain the organizational structure and content of the eleventh edition for the
topics of sequences and series. We have added several new figures and exercises to the
various sections, and we revised some of the proofs related to convergence of power se-
ries in order to improve the accessibility of the material for students. The request stated
by one of our users as, “anything you can do to make this material easier for students
will be welcomed by our faculty,” drove our thinking for revisions to this chapter.

• Parametric Equations Several users requested that we move this topic into Chapter
11, where we also cover polar coordinates and conic sections. We have done this, realiz-
ing that many departments choose to cover these topics at the beginning of Calculus III,
in preparation for their coverage of vectors and multivariable calculus.

• Vector-Valued Functions We streamlined the topics in this chapter to place more em-
phasis on the conceptual ideas supporting the later material on partial derivatives, the
gradient vector, and line integrals. We condensed the discussions of the Frenet frame
and Kepler’s three laws of planetary motion.

• Multivariable Calculus We have further enhanced the art in these chapters, and we
have added many new figures, examples, and exercises. We reorganized the opening
material on double integrals, and we combined the applications of double and triple 
integrals to masses and moments into a single section covering both two- and three-
dimensional cases. This reorganization allows for better flow of the key mathematical
concepts, together with their properties and computational aspects. As with the

x Preface
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eleventh edition, we continue to make the connections of multivariable ideas with their
single-variable analogues studied earlier in the book.

• Vector Fields We devoted considerable effort to improving the clarity and mathemati-
cal precision of our treatment of vector integral calculus, including many additional ex-
amples, figures, and exercises. Important theorems and results are stated more clearly
and completely, together with enhanced explanations of their hypotheses and mathe-
matical consequences. The area of a surface is now organized into a single section, and
surfaces defined implicitly or explicitly are treated as special cases of the more general
parametric representation. Surface integrals and their applications then follow as a sep-
arate section. Stokes’ Theorem and the Divergence Theorem are still presented as gen-
eralizations of Green’s Theorem to three dimensions.

EXERCISES AND EXAMPLES We know that the exercises and examples are critical com-
ponents in learning calculus. Because of this importance, we have updated, improved, and
increased the number of exercises in nearly every section of the book. There are over 700
new exercises in this edition. We continue our organization and grouping of exercises by
topic as in earlier editions, progressing from computational problems to applied and theo-
retical problems. Exercises requiring the use of computer software systems (such as
Maple® or Mathematica®) are placed at the end of each exercise section, labeled Com-
puter Explorations. Most of the applied exercises have a subheading to indicate the kind
of application addressed in the problem. 

Many sections include new examples to clarify or deepen the meaning of the topic be-
ing discussed and to help students understand its mathematical consequences or applica-
tions to science and engineering. At the same time, we have removed examples that were a
repetition of material already presented.

ART Because of their importance to learning calculus, we have continued to improve exist-
ing figures in Thomas’ Calculus: Early Transcendentals, and we have created a significant
number of new ones. We continue to use color consistently and pedagogically to enhance the
conceptual idea that is being illustrated. We have also taken a fresh look at all of the figure
captions, paying considerable attention to clarity and precision in short statements.

FIGURE 2.50, page 104 The geometric FIGURE 16.9, page 926 A surface in a 
explanation of a finite limit as . space occupied by a moving fluid.

MYMATHLAB AND MATHXL The increasing use of and demand for online homework
systems has driven the changes to MyMathLab and MathXL® for Thomas’ Calculus:
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Early Transcendentals. The MyMathLab course now includes significantly more exer-
cises of all types.

Continuing Features

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think
starting with a more intuitive, less formal, approach helps students understand a new or diffi-
cult concept so they can then appreciate its full mathematical precision and outcomes. We pay
attention to defining ideas carefully and to proving theorems appropriate for calculus students,
while mentioning deeper or subtler issues they would study in a more advanced course. Our
organization and distinctions between informal and formal discussions give the instructor a de-
gree of flexibility in the amount and depth of coverage of the various topics. For example, while
we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for continu-
ous functions on , we do state these theorems precisely, illustrate their meanings in
numerous examples, and use them to prove other important results. Furthermore, for those in-
structors who desire greater depth of coverage, in Appendix 6 we discuss the reliance of the
validity of these theorems on the completeness of the real numbers.

WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of
each chapter contains a list of questions for students to review and summarize what they
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after
each section, each chapter culminates with review questions, practice exercises covering
the entire chapter, and a series of Additional and Advanced Exercises serving to include
more challenging or synthesizing problems. Most chapters also include descriptions of
several Technology Application Projects that can be worked by individual students or
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the
Internet at www.pearsonhighered.com/thomas and in MyMathLab.

WRITING AND APPLICATIONS As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand
examples and is then reinforced by its application to real-world problems of immediate in-
terest to students. A hallmark of this book has been the application of calculus to science
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY In a course using the text, technology can be incorporated according to the
taste of the instructor. Each section contains exercises requiring the use of technology;
these are marked with a if suitable for calculator or computer use, or they are labeled
Computer Explorations if a computer algebra system (CAS, such as Maple or Mathe-
matica) is required. 

Text Versions

THOMAS’ CALCULUS: EARLY TRANSCENDENTALS, Twelfth Edition
Complete (Chapters 1–16), ISBN 0-321-58876-2 | 978-0-321-58876-0
Single Variable Calculus (Chapters 1–11), 0-321-62883-7 | 978-0-321-62883-1
Multivariable Calculus (Chapters 10–16), ISBN 0-321-64369-0 | 978-0-321-64369-8

T

a … x … b
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The early transcendentals version of Thomas’ Calculus introduces and integrates transcen-
dental functions (such as inverse trigonometric, exponential, and logarithmic functions)
into the exposition, examples, and exercises of the early chapters alongside the algebraic
functions. The Multivariable book for Thomas’ Calculus: Early Transcendentals is the
same text as Thomas’ Calculus, Multivariable.

THOMAS’ CALCULUS, Twelfth Edition
Complete (Chapters 1–16), ISBN 0-321-58799-5 | 978-0-321-58799-2
Single Variable Calculus (Chapters 1–11), ISBN 0-321-63742-9 | 978-0-321-63742-0
Multivariable Calculus (Chapters 10–16), ISBN 0-321-64369-0 | 978-0-321-64369-8

Instructor’s Editions
Thomas’Calculus: Early Transcendentals, ISBN 0-321-62718-0 | 978-0-321-62718-6
Thomas’ Calculus, ISBN 0-321-60075-4 | 978-0-321-60075-2
In addition to including all of the answers present in the student editions, the Instructor’s
Editions include even-numbered answers for Chapters 1–6.

University Calculus (Early Transcendentals)
University Calculus: Alternate Edition (Late Transcendentals)
University Calculus: Elements with Early Transcendentals
The University Calculus texts are based on Thomas’ Calculus and feature a streamlined
presentation of the contents of the calculus course. For more information about these titles,
visit www.pearsonhighered.com.

Print Supplements

INSTRUCTOR’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-62717-2 | 978-0-321-62717-9
Multivariable Calculus (Chapters 10–16), ISBN 0-321-60072-X | 978-0-321-60072-1
The Instructor’s Solutions Manual by William Ardis, Collin County Community College,
contains complete worked-out solutions to all of the exercises in Thomas’ Calculus: Early
Transcendentals.

STUDENT’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-65692-X | 978-0-321-65692-6
Multivariable Calculus (Chapters 10–16), ISBN 0-321-60071-1 | 978-0-321-60071-4
The Student’s Solutions Manual by William Ardis, Collin County Community College, is
designed for the student and contains carefully worked-out solutions to all the odd-
numbered exercises in Thomas’ Calculus: Early Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR EARLY TRANSCENDENTALS
CALCULUS, Third Edition
ISBN 0-321-32050-6 | 978-0-321-32050-6
Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in
the order in which students will need them as they study calculus.

CALCULUS REVIEW CARDS
The Calculus Review Cards (one for Single Variable and another for Multivariable) are a
student resource containing important formulas, functions, definitions, and theorems that
correspond precisely to the Thomas’ Calculus series. These cards can work as a reference
for completing homework assignments or as an aid in studying, and are available bundled
with a new text. Contact your Pearson sales representative for more information.

Preface xiii

7001_ThomasET_FM_SE_pi-xvi.qxd  4/7/10  10:13 AM  Page xiii



Media and Online Supplements

TECHNOLOGY RESOURCE MANUALS
Maple Manual by James Stapleton, North Carolina State University 
Mathematica Manual by Marie Vanisko, Carroll College
TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University
These manuals cover Maple 13, Mathematica 7, and the TI-83 Plus/TI-84 Plus and TI-89,
respectively. Each manual provides detailed guidance for integrating a specific software
package or graphing calculator throughout the course, including syntax and commands.
These manuals are available to qualified instructors through the Thomas’ Calculus: Early
Transcendentals Web site, www.pearsonhighered.com/thomas, and MyMathLab.

WEB SITE www.pearsonhighered.com/thomas 
The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the expanded
historical biographies and essays referenced in the text. Also available is a collection of Maple
and Mathematica modules, the Technology Resource Manuals, and the Technology Applica-
tion Projects, which can be used as projects by individual students or groups of students.

MyMathLab Online Course (access code required)
MyMathLab is a text-specific, easily customizable online course that integrates interactive
multimedia instruction with textbook content. MyMathLab gives you the tools you need to
deliver all or a portion of your course online, whether your students are in a lab setting or
working from home.

• Interactive homework exercises, correlated to your textbook at the objective level, are
algorithmically generated for unlimited practice and mastery. Most exercises are free-
response and provide guided solutions, sample problems, and learning aids for extra
help.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

• Personalized Study Plan, generated when students complete a test or quiz, indicates
which topics have been mastered and links to tutorial exercises for topics students have
not mastered.

• Multimedia learning aids, such as video lectures, Java applets, animations, and a
complete multimedia textbook, help students independently improve their understand-
ing and performance. 

• Assessment Manager lets you create online homework, quizzes, and tests that are
automatically graded. Select just the right mix of questions from the MyMathLab exer-
cise bank and instructor-created custom exercises. 

• Gradebook, designed specifically for mathematics and statistics, automatically tracks
students’ results and gives you control over how to calculate final grades. You can also
add offline (paper-and-pencil) grades to the gradebook. 

• MathXL Exercise Builder allows you to create static and algorithmic exercises for
your online assignments. You can use the library of sample exercises as an easy starting
point. 

• Pearson Tutor Center (www.pearsontutorservices.com) access is automatically in-
cluded with MyMathLab. The Tutor Center is staffed by qualified math instructors who
provide textbook-specific tutoring for students via toll-free phone, fax, email, and in-
teractive Web sessions.
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MyMathLab is powered by CourseCompass™, Pearson Education’s online teaching and
learning environment, and by MathXL, our online homework, tutorial, and assessment
system. MyMathLab is available to qualified adopters. For more information, visit
www.mymathlab.com or contact your Pearson sales representative.

Video Lectures with Optional Captioning
The Video Lectures with Optional Captioning feature an engaging team of mathematics in-
structors who present comprehensive coverage of topics in the text. The lecturers’ pres-
entations include examples and exercises from the text and support an approach that em-
phasizes visualization and problem solving. Available only through MyMathLab and
MathXL.

MathXL Online Course (access code required)
MathXL is an online homework, tutorial, and assessment system that accompanies
Pearson’s textbooks in mathematics or statistics. 

• Interactive homework exercises, correlated to your textbook at the objective level, are
algorithmically generated for unlimited practice and mastery. Most exercises are free-
response and provide guided solutions, sample problems, and learning aids for extra help.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

• Personalized Study Plan, generated when students complete a test or quiz, indicates
which topics have been mastered and links to tutorial exercises for topics students have
not mastered.

• Multimedia learning aids, such as video lectures, Java applets, and animations, help
students independently improve their understanding and performance. 

• Gradebook, designed specifically for mathematics and statistics, automatically tracks
students’ results and gives you control over how to calculate final grades. 

• MathXL Exercise Builder allows you to create static and algorithmic exercises for your
online assignments. You can use the library of sample exercises as an easy starting point. 

• Assessment Manager lets you create online homework, quizzes, and tests that are
automatically graded. Select just the right mix of questions from the MathXL exercise
bank, or instructor-created custom exercises. 

MathXL is available to qualified adopters. For more information, visit our Web site at
www.mathxl.com, or contact your Pearson sales representative.

TestGen®
TestGen (www.pearsonhighered.com/testgen) enables instructors to build, edit, print,
and administer tests using a computerized bank of questions developed to cover all the ob-
jectives of the text. TestGen is algorithmically based, allowing instructors to create multi-
ple but equivalent versions of the same question or test with the click of a button. Instruc-
tors can also modify test bank questions or add new questions. Tests can be printed or
administered online. The software and testbank are available for download from Pearson
Education’s online catalog. 

PowerPoint® Lecture Slides
These classroom presentation slides are geared specifically to the sequence and philosophy
of the Thomas’ Calculus series. Key graphics from the book are included to help bring the
concepts alive in the classroom.These files are available to qualified instructors through
the Pearson Instructor Resource Center, www.pearsonhighered/irc, and MyMathLab.
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1

1
FUNCTIONS

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, parabolas, and circles are re-
viewed in the Appendices.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length
of time the investment is held. The area of a circle depends on the radius of the circle. The
distance an object travels at constant speed along a straight-line path depends on the
elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x” and write this
symbolically as

In this notation, the symbol ƒ represents the function, the letter x is the independent vari-
able representing the input value of ƒ, and y is the dependent variable or output value of
ƒ at x.

y = ƒ(x)  (“y equals ƒ of x”).

FPO

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique
(single) element to each element x H D .ƒsxd H Y

The set D of all possible input values is called the domain of the function. The set of
all values of ƒ(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y. The domain and range of a function can be any
sets of objects, but often in calculus they are sets of real numbers interpreted as points of a
coordinate line. (In Chapters 13–16, we will encounter functions for which the elements of
the sets are points in the coordinate plane or in space.)
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Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function with a formula and the domain is not
stated explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, the so-called natural domain. If we
want to restrict the domain in some way, we must say so. The domain of is the en-
tire set of real numbers. To restrict the domain of the function to, say, positive values of x,
we would write 

Changing the domain to which we apply a formula usually changes the range as well.
The range of is The range of is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the
range is or or 

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite. The range of a function is not always easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give
an example of a function as a machine. For instance, the key on a calculator gives an out-
put value (the square root) whenever you enter a nonnegative number x and press the key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range ( y)

[0, 1]

Solution The formula gives a real y-value for any real number x, so the domain
is The range of is because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,

for 
The formula gives a real y-value for every x except For consistency

in the rules of arithmetic, we cannot divide any number by zero. The range of the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since

That is, for the number is the input assigned to the output
value y.

The formula gives a real y-value only if The range of is
because every nonnegative number is some number’s square root (namely, it is the

square root of its own square).
In the quantity cannot be negative. That is, or

The formula gives real y-values for all The range of is the
set of all nonnegative numbers.

[0, q d,14 - xx … 4.x … 4.
4 - x Ú 0,4 - xy = 14 - x ,

[0, q d
y = 1xx Ú 0.y = 1x

x = 1>yy Z 0y = 1>(1>y).

y = 1>x ,
x = 0.y = 1>xy Ú 0.y = A2y B2

[0, q dy = x2s - q , q d .
y = x2

[-1, 1]y = 21 - x2

[0, q ds - q , 4]y = 24 - x

[0, q d[0, q dy = 2x

s - q , 0d ´ s0, q ds - q , 0d ´ s0, q dy = 1>x
[0, q ds - q , q dy = x2

2x
2x

[4, q d .5y ƒ y Ú 465x2
ƒ x Ú 26

y = x2, x Ú 2,[0, q d .y = x2

“y = x2, x 7 0.”

y = x2

y = ƒsxd

A = pr2

2 Chapter 1: Functions

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.1 A diagram showing a
function as a kind of machine.

x

a f (a) f (x)

D � domain set Y � set containing
the range

FIGURE 1.2 A function from a set D to a
set Y assigns a unique element of Y to each
element in D.
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1.1 Functions and Their Graphs 3

The formula gives a real y-value for every x in the closed interval
from to 1. Outside this domain, is negative and its square root is not a real
number. The values of vary from 0 to 1 on the given domain, and the square roots
of these values do the same. The range of  is [0, 1].

Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for ƒ. In set notation, the graph is

The graph of the function is the set of points with coordinates (x, y) for
which Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the
graph, then is the height of the graph above the point x. The height may be posi-
tive or negative, depending on the sign of (Figure 1.4).ƒsxd

y = ƒsxd

y = x + 2.
ƒsxd = x + 2

5sx, ƒsxdd ƒ  x H D6 .

21 - x2
1 - x2

1 - x2
-1

y = 21 - x2

x

y

–2 0

2

y � x � 2

FIGURE 1.3 The graph of 
is the set of points (x, y) for which y has
the value x + 2.

ƒsxd = x + 2

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4 If (x, y) lies on the graph of
ƒ, then the value is the height of
the graph above the point x (or below x if
ƒ(x) is negative).

y = ƒsxd

EXAMPLE 2 Graph the function over the interval 

Solution Make a table of xy-pairs that satisfy the equation . Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5).

How do we know that the graph of doesn’t look like one of these curves?y = x2

y = x2

[-2, 2] .y = x2

x

4

1

0 0

1 1

2 4

9
4

3
2

-1

-2

y � x 2

y � x2?

x

y

y � x2?

x

y

0 1 2–1–2

1

2

3

4
(–2, 4)

(–1, 1) (1, 1)

(2, 4)

⎛
⎝

⎛
⎝

3
2

9
4

,

x

y

y � x2

FIGURE 1.5 Graph of the function in
Example 2.
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4 Chapter 1: Functions

To find out, we could plot more points. But how would we then connect them? The 
basic question still remains: How do we know for sure what the graph looks like be-
tween the points we plot? Calculus answers this question, as we will see in Chapter 4.
Meanwhile we will have to settle for plotting points and connecting them as best 
we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and scientists. From an appropriate table of values, a graph of the function can be
obtained using the method illustrated in Example 2, possibly with the aid of a computer.
The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data in Table 1.1 give
recorded pressure displacement versus time in seconds of a musical note produced by a
tuning fork. The table provides a representation of the pressure function over time. If we
first make a scatterplot and then connect approximately the data points (t, p) from the
table, we obtain the graph shown in Figure 1.6.

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can
have only one value for each x in its domain, so no vertical line can intersect the graph
of a function more than once. If a is in the domain of the function ƒ, then the vertical line

will intersect the graph of ƒ at the single point .
A circle cannot be the graph of a function since some vertical lines intersect the circle

twice. The circle in Figure 1.7a, however, does contain the graphs of two functions of x: 

the upper semicircle defined by the function and the lower semicircle 

defined by the function (Figures 1.7b and 1.7c).g (x) = -21 - x2

ƒ(x) = 21 - x2

(a, ƒ(a))x = a

ƒ(x)

TABLE 1.1 Tuning fork data

Time Pressure Time Pressure

0.00091 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525

0.00271 0.00543

0.00289 0.00562

0.00307 0.00579

0.00325 0.00598

0.00344 -0.041

-0.035-0.248

-0.248-0.348

-0.354-0.309

-0.320-0.141

-0.164

-0.080

–0.6
–0.4
–0.2

0.2
0.4
0.6
0.8
1.0

t (sec)

p (pressure)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points
gives a graph of the pressure function represented by
Table 1.1 (Example 3).
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1.1 Functions and Their Graphs 5

–2 –1 0 1 2

1

2

x

y

y � –x

y � x2

y � 1

y � f (x)

FIGURE 1.9 To graph the
function shown here,
we apply different formulas to
different parts of its domain
(Example 4).

y = ƒsxd

x

y � �x�

y � x
y � –x

y

–3 –2 –1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value
function has domain 
and range [0, q d .

s - q , q d

–1 10
x

y

(a) x2 � y2 � 1

–1 10
x

y

–1 1

0
x

y

(b) y � �1 � x2 (c) y � –�1 � x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper
semicircle is the graph of a function (c) The lower semicircle is the graph of a
function g sxd = -21 - x2 .

ƒsxd = 21 - x2 .

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its
domain. One example is the absolute value function

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if , and equals if Here are some other examples.

EXAMPLE 4 The function

is defined on the entire real line but has values given by different formulas depending on
the position of x. The values of ƒ are given by when when

and when The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9).

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. 
It is denoted . Figure 1.10 shows the graph. Observe that

EXAMPLE 6 The function whose value at any number x is the smallest integer greater
than or equal to x is called the least integer function or the integer ceiling function. It is
denoted Figure 1.11 shows the graph. For positive values of x, this function might
represent, for example, the cost of parking x hours in a parking lot which charges $1 for
each hour or part of an hour.

<x= .

:2.4; = 2, :1.9; = 1, :0; = 0, : -1.2; = -2,

:2; = 2, :0.2; = 0, : -0.3; = -1 : -2; = -2.

:x;

x 7 1.y = 10 … x … 1,
x 6 0, y = x2y = -x

ƒsxd = •
-x, x 6 0

  x2, 0 … x … 1

  1, x 7 1

x 6 0.-xx Ú 0

ƒ x ƒ = e x, x Ú 0 

-x, x 6 0,

1

–2

2

3

–2 –1 1 2 3

y � x

y � ⎣x⎦

x

y

FIGURE 1.10 The graph of the
greatest integer function 
lies on or below the line so
it provides an integer floor for x
(Example 5).

y = x ,
y = :x;
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The names even and odd come from powers of x. If y is an even power of x, as in
or it is an even function of x because and If y is

an odd power of x, as in or it is an odd function of x because 
and 

The graph of an even function is symmetric about the y-axis. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin
leaves the graph unchanged. Notice that the definitions imply that both x and must be
in the domain of ƒ.

EXAMPLE 8

Even function: for all x; symmetry about y-axis.

Even function: for all x; symmetry about y-axis
(Figure 1.13a).

Odd function: for all x; symmetry about the origin.

Not odd: but The two are not
equal.
Not even: for all (Figure 1.13b).x Z 0s -xd + 1 Z x + 1

-ƒsxd = -x - 1.ƒs -xd = -x + 1,ƒsxd = x + 1

s -xd = -xƒsxd = x

s -xd2
+ 1 = x2

+ 1ƒsxd = x2
+ 1

s -xd2
= x2ƒsxd = x2

-x

s -x , -yd
ƒs -xd = -ƒsxd ,

s -x , yd
ƒs -xd = ƒsxd ,

s -xd3
= -x3 .

s -xd1
= -xy = x3 ,y = x

s -xd4
= x4 .s -xd2

= x2y = x4 ,y = x2

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

6 Chapter 1: Functions

DEFINITIONS Let ƒ be a function defined on an interval I and let and be
any two points in I.

1. If whenever then ƒ is said to be increasing on I.

2. If whenever then ƒ is said to be decreasing on I.x1 6 x2 ,ƒsx2d 6 ƒsx1d
x1 6 x2 ,ƒsx2) 7 ƒsx1d

x2x1
x

y

1–1–2 2 3

–2

–1

1

2

3
y � x

y � ⎡x⎤

FIGURE 1.11 The graph of the
least integer function 
lies on or above the line 
so it provides an integer ceiling
for x (Example 6).

y = x ,
y = <x=

DEFINITIONS A function is an

for every x in the function’s domain.

even function of x if ƒs -xd = ƒsxd,
odd function of x if ƒs -xd = -ƒsxd,

y = ƒsxd

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points and in I with Because we use the
inequality to compare the function values, instead of it is sometimes said that ƒ is
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on and in-
creasing on [0, 1]. The function is neither increasing nor decreasing on the interval 
because of the strict inequalities used to compare the function values in the definitions.

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

[1, q d
s - q , 0]

… ,6

x1 6 x2 .x2x1

(a)

(b)

0
x

y

y � x2

(x, y)(–x, y)

0
x

y

y � x3

(x, y)

(–x, –y)

FIGURE 1.12 (a) The graph of 
(an even function) is symmetric about the
y-axis. (b) The graph of (an odd
function) is symmetric about the origin.

y = x3

y = x2
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1.1 Functions and Their Graphs 7

(a) (b)

x

y

0

1

y � x2 � 1

y � x2

x

y

0–1

1

y � x � 1

y � x

FIGURE 1.13 (a) When we add the constant term 1 to the function
the resulting function is still even and its graph is

still symmetric about the y-axis. (b) When we add the constant term 1 to
the function the resulting function is no longer odd.
The symmetry about the origin is lost (Example 8).

y = x + 1y = x ,

y = x2
+ 1y = x2 ,

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form for constants m and b, is
called a linear function. Figure 1.14a shows an array of lines where 
so these lines pass through the origin. The function where and is
called the identity function. Constant functions result when the slope (Figure
1.14b). A linear function with positive slope whose graph passes through the origin is
called a proportionality relationship.

m = 0
b = 0m = 1ƒsxd = x

b = 0,ƒsxd = mx
ƒsxd = mx + b ,

x

y

0 1 2

1

2 y � 3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function
with slope m = 0.

0 x

y
m � –3 m � 2

m � 1m � –1

y � –3x

y � –x

y � 2x

y � x

y � x
1
2

m �
1
2

(a)

DEFINITION Two variables y and x are proportional (to one another) if one is
always a constant multiple of the other; that is, if for some nonzero
constant k.

y = kx

If the variable y is proportional to the reciprocal then sometimes it is said that y is
inversely proportional to x (because is the multiplicative inverse of x).

Power Functions A function where a is a constant, is called a power func-
tion. There are several important cases to consider.

ƒsxd = xa ,

1>x 1>x,
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(b)

The graphs of the functions and are shown in
Figure 1.16. Both functions are defined for all (you can never divide by zero). The
graph of is the hyperbola , which approaches the coordinate axes far from
the origin. The graph of also approaches the coordinate axes. The graph of the
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals and

. The graph of the function g is symmetric about the y-axis; g is increasing on
and decreasing on .s0, q )s - q , 0)

s0, q )
s - q , 0)

y = 1>x2
xy = 1y = 1>x x Z 0

g sxd = x-2
= 1>x2ƒsxd = x-1

= 1>x
a = -1  or  a = -2.

8 Chapter 1: Functions

–1 0 1

–1

1

x

y y � x2

–1 10

–1

1

x

y y � x

–1 10

–1

1

x

y y � x3

–1 0 1

–1

1

x

y y � x4

–1 0 1

–1

1

x

y y � x5

FIGURE 1.15 Graphs of defined for - q 6 x 6 q .ƒsxd = xn, n = 1, 2, 3, 4, 5,

(a)

The graphs of for 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval and also rise more steeply for

Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval

and increasing on ; the odd-powered functions are increasing over the entire
real line .s - q , q )

[0, q ds - q , 0]

ƒ x ƒ 7 1.
s -1, 1d ,

n = 1,ƒsxd = xn ,

a = n,  a positive integer.

x

y

x

y

0

1

1

0

1

1

y � 1
x y � 1

x2

Domain: x � 0
Range:   y � 0

Domain: x � 0
Range:   y � 0

(a) (b)

FIGURE 1.16 Graphs of the power functions for part (a) 
and for part (b) .a = -2

a = -1ƒsxd = xa

(c)

The functions and are the square root and cube
root functions, respectively. The domain of the square root function is but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17
along with the graphs of and (Recall that and

)

Polynomials A function p is a polynomial if

where n is a nonnegative integer and the numbers are real constants
(called the coefficients of the polynomial). All polynomials have domain If thes - q , q d .

a0 , a1 , a2 , Á , an

psxd = an xn
+ an - 1x

n - 1
+

Á
+ a1 x + a0

x2>3
= sx1>3d2 .

x3>2
= sx1>2d3y = x2>3 .y = x3>2

[0, q d ,
g sxd = x1>3

= 23 xƒsxd = x1>2
= 2x

a =
1
2

, 
1
3

, 
3
2

, and 
2
3

.
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1.1 Functions and Their Graphs 9

y

x
0

1

1

y � x3�2

Domain:
Range:

0 � x � 	
0 � y � 	

y

x

Domain:
Range:

–	 � x � 	
0 � y � 	

0

1

1

y � x2�3

x

y

0 1

1

Domain:
Range:

0 � x � 	
0 � y � 	

y � �x  

x

y

Domain:
Range:

–	 � x � 	
–	 � y � 	

1

1

0

3
y � �x 

FIGURE 1.17 Graphs of the power functions for and 
2
3

.a =

1
2

, 
1
3

, 
3
2

,ƒsxd = xa

leading coefficient and then n is called the degree of the polynomial. Linear
functions with are polynomials of degree 1. Polynomials of degree 2, usually written
as are called quadratic functions. Likewise, cubic functions are
polynomials of degree 3. Figure 1.18 shows the graphs of
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

psxd = ax3
+ bx2

+ cx + d
psxd = ax2

+ bx + c ,
m Z 0

n 7 0,an Z 0

x

y

0

y �  �     � 2x � x3

3
x2

2
1
3

(a)

y

x
–1 1 2

2

–2

–4

–6

–8

–10

–12

y � 8x4 � 14x3 � 9x2 � 11x � 1

(b)

–1 0 1 2

–16

16

x

y
y � (x � 2)4(x � 1)3(x � 1)

(c)

–2–4 2 4

–4

–2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

(a) (b) (c)

2 4–4 –2

–2

2

4

–4

x

y

y � 2x2 � 3
7x � 4

0
–2

–4

–6

–8

2–2–4 4 6

2

4

6

8

x

y

y � 11x � 2
2x3 � 1

–5 0

1

2

–1

5 10

–2

x

y

Line y � 5
3

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines are called asymptotes and are not part
of the graph.

Rational Functions A rational function is a quotient or ratio where p
and q are polynomials. The domain of a rational function is the set of all real x for which

The graphs of several rational functions are shown in Figure 1.19.qsxd Z 0.

ƒ(x) = p(x)>q(x),
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Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions Functions of the form where the base is a
positive constant and are called exponential functions. All exponential functions
have domain and range , so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

s0, q ds - q , q d
a Z 1,

a 7 0ƒsxd = ax ,

10 Chapter 1: Functions

Algebraic Functions Any function constructed from polynomials using algebraic opera-
tions (addition, subtraction, multiplication, division, and taking roots) lies within the class
of algebraic functions. All rational functions are algebraic, but also included are more
complicated functions (such as those satisfying an equation like 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

y3
- 9xy + x3

= 0,

(a)

4–1

–3

–2

–1

1

2

3

4

x

y y � x1/3(x � 4)

(b)

0

y

x

y � (x2 � 1)2/33
4

(c)

10

–1

1

x

y

5
7

y � x(1 � x)2/5

FIGURE 1.20 Graphs of three algebraic functions.

y

x

1

–1
� �2

�3

(a)  f (x) � sin x

0

y

x

1

–1
�

2

3
2 2

(b)  f (x) � cos x

0

�

2
– �

–�

5�

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)

y � 2–x

y � 3–x

y � 10–x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

y � 2x

y � 3x

y � 10x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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1.1 Functions and Their Graphs 11

Logarithmic Functions These are the functions where the base is
a positive constant. They are the inverse functions of the exponential functions, and we
discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four logarithmic
functions with various bases. In each case the domain is and the range is
s - q , q d .

s0, q d

a Z 1ƒsxd = loga x ,

–1 10

1

x

y

FIGURE 1.24 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)

1

–1

1

0
x

y

y � log3x

y � log10 x

y � log2 x

y � log5x

FIGURE 1.23 Graphs of four logarithmic
functions.

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises 1.1

Functions
In Exercises 1–6, find the domain and range of each function.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. b.

x

y

0
x

y

0

G(t) =

2
t2

- 16
ƒstd =

4
3 - t

g(x) = 2x2
- 3xF(x) = 25x + 10

ƒsxd = 1 - 2xƒsxd = 1 + x2

8. a. b.

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a

function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

11. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the
cube as a function of the diagonal length.

x

y

0
x

y

0
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12. A point P in the first quadrant lies on the graph of the function
Express the coordinates of P as functions of the

slope of the line joining P to the origin.

13. Consider the point lying on the graph of the line
Let L be the distance from the point to the

origin Write L as a function of x.

14. Consider the point lying on the graph of Let
L be the distance between the points and Write L as a
function of y.

Functions and Graphs
Find the domain and graph the functions in Exercises 15–20.

15. 16.

17. 18.

19. 20.

21. Find the domain of 

22. Find the range of 

23. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

24. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

25.

26.

27.

28.

Find a formula for each function graphed in Exercises 29–32.

29. a. b.

30. a. b.

–1
x

y

3

21

2

1

–2

–3

–1
(2, –1)

x

y

52

2
(2, 1)

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

G sxd = e1>x , x 6 0

x , 0 … x

F sxd = e4 - x2 , x … 1

x2
+ 2x , x 7 1

g sxd = e1 - x , 0 … x … 1

2 - x , 1 6 x … 2

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2

ƒ x + y ƒ = 1ƒ x ƒ + ƒ y ƒ = 1

y2
= x2

ƒ y ƒ = x

y = 2 +

x2

x2
+ 4

 .

y =

x + 3

4 - 2x2
- 9

 .

G std = 1> ƒ t ƒF std = t> ƒ t ƒ

g sxd = 2-xg sxd = 2ƒ x ƒ

ƒsxd = 1 - 2x - x2ƒsxd = 5 - 2x

(4, 0).(x, y)
2x - 3.y =(x, y)

(0, 0).
(x, y)2x + 4y = 5.

(x, y)

ƒsxd = 2x .

12 Chapter 1: Functions

31. a. b.

32. a. b.

The Greatest and Least Integer Functions
33. For what values of x is

a. b.

34. What real numbers x satisfy the equation 

35. Does for all real x? Give reasons for your answer.

36. Graph the function

Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is in-
creasing and the intervals where it is decreasing.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither.
Give reasons for your answer.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Theory and Examples
59. The variable s is proportional to t, and when 

Determine t when s = 60.
t = 75.s = 25

hstd = 2 ƒ t ƒ + 1hstd = 2t + 1

hstd = ƒ t3
ƒhstd =

1
t - 1

gsxd =

x

x2
- 1

gsxd =

1
x2

- 1

gsxd = x4
+ 3x2

- 1gsxd = x3
+ x

ƒsxd = x2
+ xƒsxd = x2

+ 1

ƒsxd = x-5ƒsxd = 3

y = s -xd2>3y = -x3>2
y = -42xy = x3>8
y = 2-xy = 2ƒ x ƒ

y =

1
ƒ x ƒ

y = -

1
x

y = -

1
x2y = -x3

ƒsxd = e :x; , x Ú 0<x= , x 6 0.

< -x= = - :x;
:x; = <x= ?

<x= = 0?:x; = 0?

t

y

0

A

T

–A

T
2

3T
2

2T

x

y

0

1

TT
2

(T, 1)

x

y

1

2

(–2, –1) (3, –1)(1, –1)

x

y

3

1
(–1, 1) (1, 1)

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:23 PM  Page 12



1.1 Functions and Their Graphs 13

60. Kinetic energy The kinetic energy K of a mass is proportional
to the square of its velocity If joules when

what is K when 

61. The variables r and s are inversely proportional, and when
Determine s when 

62. Boyle’s Law Boyle’s Law says that the volume V of a gas at con-
stant temperature increases whenever the pressure P decreases, so
that V and P are inversely proportional. If when

then what is V when 

63. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 in. by 22 in. by cutting out
equal squares of side x at each corner and then folding up the
sides as in the figure. Express the volume V of the box as a func-
tion of x.

64. The accompanying figure shows a rectangle inscribed in an isosce-
les right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

In Exercises 65 and 66, match each equation with its graph. Do not
use a graphing device, and give reasons for your answer.

65. a. b. c.

x

y

f

g

h

0

y = x10y = x7y = x4

x

y

–1 0 1x
A

B

P(x, ?)

x

x

x

x

x

x

x

x

22

14

P = 23.4 lbs>in2?V = 1000 in3,
P = 14.7 lbs>in2

r = 10.s = 4.
r = 6

y = 10 m>sec?y = 18 m>sec,
K = 12,960y.

66. a. b. c.

67. a. Graph the functions and to-
gether to identify the values of x for which

b. Confirm your findings in part (a) algebraically.

68. a. Graph the functions and 
together to identify the values of x for which

b. Confirm your findings in part (a) algebraically.

69. For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the function is 

70. Three hundred books sell for $40 each, resulting in a revenue of
For each $5 increase in the price, 25

fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

71. A pen in the shape of an isosceles right triangle with legs of length
x ft and hypotenuse of length h ft is to be built. If fencing costs
$5/ft for the legs and $10/ft for the hypotenuse, write the total cost
C of construction as a function of h.

72. Industrial costs A power plant sits next to a river where the
river is 800 ft wide. To lay a new cable from the plant to a location
in the city 2 mi downstream on the opposite side costs $180 per
foot across the river and $100 per foot along the land.

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x ft from the point P directly opposite the
plant. Write a function C(x) that gives the cost of laying the
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 2000 ft or greater than 2000 ft
from point P.

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

(300)($40) = $12,000.

y = 0.

sx, -yd

3
x - 1

6

2
x + 1

.

g sxd = 2>sx + 1dƒsxd = 3>sx - 1d

x
2

7 1 +

4
x .

g sxd = 1 + s4>xdƒsxd = x>2

x

y

f

h

g

0

y = x5y = 5xy = 5x

T

T
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14 Chapter 1: Functions

1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If ƒ and g are functions, then for every
x that belongs to the domains of both ƒ and g (that is, for ), we define
functions and ƒg by the formulas

Notice that the sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the on the right-hand side of the equation means addition
of the real numbers ƒ(x) and g(x).

At any point of at which we can also define the function 
by the formula

Functions can also be multiplied by constants: If c is a real number, then the function
cƒ is defined for all x in the domain of ƒ by

EXAMPLE 1 The functions defined by the formulas

have domains and The points common to these do-
mains are the points

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write for the product function ƒg.

Function Formula Domain

[0, 1]

[0, 1]

[0, 1]

[0, 1) 

(0, 1] 

The graph of the function is obtained from the graphs of ƒ and g by adding the
corresponding y-coordinates ƒ(x) and g(x) at each point as in Figure
1.25. The graphs of and from Example 1 are shown in Figure 1.26.ƒ # gƒ + g

x H Dsƒd ¨ Dsgd ,
ƒ + g

sx = 0 excludedd
g
ƒ

 sxd =

g sxd
ƒsxd

= A
1 - x

xg>ƒ
sx = 1 excludedd

ƒ
g sxd =

ƒsxd
g sxd

= A
x

1 - x
ƒ>g

sƒ # gdsxd = ƒsxdg sxd = 2xs1 - xdƒ # g

sg - ƒdsxd = 21 - x - 2xg - ƒ

sƒ - gdsxd = 2x - 21 - xƒ - g

[0, 1] = Dsƒd ¨ Dsgdsƒ + gdsxd = 2x + 21 - xƒ + g

ƒ # g

[0, q d ¨ s - q , 1] = [0, 1] .

Dsgd = s - q , 1] .Dsƒd = [0, q d

ƒsxd = 2x and g sxd = 21 - x

scƒdsxd = cƒsxd .

aƒg b sxd =

ƒsxd
g sxd
 swhere gsxd Z 0d .

ƒ>ggsxd Z 0,Dsƒd ¨ Dsgd

+

+

 sƒgdsxd = ƒsxdg sxd .

 sƒ - gdsxd = ƒsxd - g sxd .

 sƒ + gdsxd = ƒsxd + g sxd .

ƒ + g, ƒ - g ,
x H Dsƒd ¨ Dsgd
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1.2 Combining Functions; Shifting and Scaling Graphs 15

y � ( f � g)(x)

y � g(x)

y � f (x) f (a)
g(a)

f (a) � g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25 Graphical addition of two
functions.

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) � �1 � x f (x) � �x
y � f � g

y � f • g

FIGURE 1.26 The domain of the function is
the intersection of the domains of ƒ and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function (Example 1).ƒ # g

ƒ + g

Composite Functions

Composition is another method for combining functions.

DEFINITION If ƒ and g are functions, the composite function (“ƒ com-
posed with g”) is defined by

The domain of consists of the numbers x in the domain of g for which g(x)
lies in the domain of ƒ.

ƒ � g

sƒ � gdsxd = ƒsg sxdd .

ƒ � g

The definition implies that can be formed when the range of g lies in the 
domain of ƒ. To find first find g(x) and second find ƒ(g(x)). Figure 1.27 pic-
tures as a machine diagram and Figure 1.28 shows the composite as an arrow di-
agram.

ƒ � g
sƒ � gdsxd,

ƒ � g

x g f f (g(x))g(x)

x

f (g(x))

g(x)

g
f

f 
 g

FIGURE 1.27 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite is denoted by
ƒ � g . FIGURE 1.28 Arrow diagram for ƒ � g .

To evaluate the composite function (when defined), we find ƒ(x) first and then
g(ƒ(x)). The domain of is the set of numbers x in the domain of ƒ such that ƒ(x) lies
in the domain of g.

The functions and are usually quite different.g � ƒƒ � g

g � ƒ
g � ƒ
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16 Chapter 1: Functions

EXAMPLE 2 If and find

(a) (b) (c) (d)

Solution
Composite Domain

(a)

(b)

(c)

(d)

To see why the domain of notice that is defined for all
real x but belongs to the domain of ƒ only if   that is to say, when   

Notice that if and then However,

the domain of is not since requires 

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to
each output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

x Ú 0.2xs - q , q d,[0, q d ,ƒ � g

sƒ � gdsxd = A2x B2 = x .g sxd = 2x ,ƒsxd = x2

x Ú -1.x + 1 Ú 0,
g sxd = x + 1ƒ � g is [-1, q d ,

s - q , q dsg � gdsxd = g sg sxdd = g sxd + 1 = sx + 1d + 1 = x + 2

[0, q dsƒ � ƒdsxd = ƒsƒsxdd = 2ƒsxd = 21x = x1>4
[0, q dsg � ƒdsxd = g sƒsxdd = ƒsxd + 1 = 2x + 1

[-1, q dsƒ � gdsxd = ƒsg sxdd = 2g sxd = 2x + 1

sg � gdsxd .sƒ � ƒdsxdsg � ƒdsxdsƒ � gdsxd

g sxd = x + 1,ƒsxd = 2x

Shift Formulas

Vertical Shifts

Shifts the graph of ƒ up

Shifts it down

Horizontal Shifts

Shifts the graph of ƒ left

Shifts it right ƒ h ƒ units if h 6 0

h units if h 7 0y = ƒsx + hd

ƒ k ƒ units if k 6 0

k units if k 7 0y = ƒsxd + k

x

y

2

1

2

2 units

1 unit

–2

–2

–1
0

y � x2 � 2

y � x2

y � x2 � 1

y � x2 � 2

FIGURE 1.29 To shift the graph
of up (or down), we add
positive (or negative) constants to
the formula for ƒ (Examples 3a
and b).

ƒsxd = x2

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula to get shifts the
graph up 1 unit (Figure 1.29).

(b) Adding to the right-hand side of the formula to get shifts the
graph down 2 units (Figure 1.29).

(c) Adding 3 to x in to get shifts the graph 3 units to the left (Figure
1.30).

(d) Adding to x in and then adding to the result, gives 
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function ƒ, or the independent variable x,
by an appropriate constant c. Reflections across the coordinate axes are special cases
where c = -1.

y = ƒsxd

y = ƒ x - 2 ƒ - 1-1y = ƒ x ƒ ,-2

y = sx + 3d2y = x2

y = x2
- 2y = x2

-2

y = x2
+ 1y = x2
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1.2 Combining Functions; Shifting and Scaling Graphs 17

x

y

0–3 2

1

1

y � (x � 2)2y � x2y � (x � 3)2

Add a positive
constant to x.

Add a negative
constant to x.

–4 –2 2 4 6–1

1

4

x

y

y � �x – 2� – 1 

FIGURE 1.30 To shift the graph of to the
left, we add a positive constant to x (Example 3c).
To shift the graph to the right, we add a negative
constant to x.

y = x2 FIGURE 1.31 Shifting the graph of
units to the right and 1 unit

down (Example 3d).
y = ƒ x ƒ 2

EXAMPLE 4 Here we scale and reflect the graph of 

(a) Vertical: Multiplying the right-hand side of by 3 to get stretches
the graph vertically by a factor of 3, whereas multiplying by compresses the
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of is a horizontal compression of the graph of

by a factor of 3, and is a horizontal stretching by a factor of 3
(Figure 1.33). Note that so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

(c) Reflection: The graph of is a reflection of across the x-axis, and
is a reflection across the y-axis (Figure 1.34).y = 2-x

y = 2xy = -2x

y = 23x = 232x
y = 2x>3y = 2x

y = 23x

1>3y = 32xy = 2x

y = 2x.

Vertical and Horizontal Scaling and Reflecting Formulas

For , the graph is scaled:

Stretches the graph of ƒ vertically by a factor of c.

Compresses the graph of ƒ vertically by a factor of c.

Compresses the graph of ƒ horizontally by a factor of c.

Stretches the graph of ƒ horizontally by a factor of c.

For , the graph is reflected:

Reflects the graph of ƒ across the x-axis.

Reflects the graph of ƒ across the y-axis.y = ƒs -xd
y = -ƒsxd

c = -1

y = ƒsx>cd
y = ƒscxd

y =
1
c  ƒsxd

y = cƒsxd
c 7 1

–1 10 2 3 4

1

2

3

4

5

x

y

y � �x

y �   �x

y � 3�x

3
1

stretch

compress

–1 0 1 2 3 4

1

2

3

4

x

y

y � �3 x

y � �x�3

y � �x
compress

stretch –3 –2 –1 1 2 3

–1

1

x

y

y � �x

y � –�x

y � �–x

FIGURE 1.32 Vertically stretching and
compressing the graph by a
factor of 3 (Example 4a).

y = 1x
FIGURE 1.33 Horizontally stretching and
compressing the graph by a factor of
3 (Example 4b).

y = 1x
FIGURE 1.34 Reflections of the graph

across the coordinate axes
(Example 4c).
y = 1x

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:23 PM  Page 17



18 Chapter 1: Functions

EXAMPLE 5 Given the function (Figure 1.35a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the x-axis
(Figure 1.35c).

ƒsxd = x4
- 4x3

+ 10

Solution

(a) We multiply x by 2 to get the horizontal compression, and by to give reflection
across the y-axis. The formula is obtained by substituting for x in the right-hand
side of the equation for ƒ:

(b) The formula is

Ellipses

Although they are not the graphs of functions, circles can be stretched horizontally or ver-
tically in the same way as the graphs of functions. The standard equation for a circle of
radius r centered at the origin is

Substituting cx for x in the standard equation for a circle (Figure 1.36a) gives

(1)c2x2
+ y2

= r2 .

x2
+ y2

= r2.

y = -
1
2

 ƒsxd = -
1
2

 x4
+ 2x3

- 5.

 = 16x4
+ 32x3

+ 10.

 y = ƒs -2xd = s -2xd4
- 4s -2xd3

+ 10

-2x
-1

–1 0 1 2 3 4

–20

–10

10

20

x

y

f (x) � x4 � 4x3 � 10

(a)

–2 –1 0 1

–20

–10

10

20

x

y

(b)

y � 16x4 � 32x3 � 10

–1 0 1 2 3 4

–10

10

x

y

y � –   x4 � 2x3 � 51
2

(c)

FIGURE 1.35 (a) The original graph of f. (b) The horizontal compression of in part (a) by a factor of 2, followed by a
reflection across the y-axis. (c) The vertical compression of in part (a) by a factor of 2, followed by a reflection across
the x-axis (Example 5).

y = ƒsxd
y = ƒsxd

x

y

(a) circle

–r

–r

r

r0

x2 � y2 � r2

x

y

(b) ellipse, 0 � c � 1

–r

0

c2x2 � y2 � r2

r
c– r

c

x

y

(c) ellipse,  c � 1

–r

r

0

c2x2 � y2 � r2

r
c– r

c

r

FIGURE 1.36 Horizontal stretching or compression of a circle produces graphs of ellipses.
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1.2 Combining Functions; Shifting and Scaling Graphs 19

If the graph of Equation (1) horizontally stretches the circle; if the cir-
cle is compressed horizontally. In either case, the graph of Equation (1) is an ellipse
(Figure 1.36). Notice in Figure 1.36 that the y-intercepts of all three graphs are always 
and r. In Figure 1.36b, the line segment joining the points is called the major
axis of the ellipse; the minor axis is the line segment joining The axes of the el-
lipse are reversed in Figure 1.36c: The major axis is the line segment joining the points

, and the minor axis is the line segment joining the points In both cases,
the major axis is the longer line segment.

If we divide both sides of Equation (1) by we obtain

(2)

where and If the major axis is horizontal; if the major axis
is vertical. The center of the ellipse given by Equation (2) is the origin (Figure 1.37).

Substituting for x, and for y, in Equation (2) results in

(3)

Equation (3) is the standard equation of an ellipse with center at (h, k). The geometric
definition and properties of ellipses are reviewed in Section 11.6.

sx - hd2

a2 +

s y - kd2

b2 = 1.

y - kx - h

a 6 b ,a 7 b ,b = r .a = r>c

x2

a2 +

y2

b2 = 1

r2 ,

s ;r>c, 0d .s0, ;rd

s0, ;rd .
s ;r>c, 0d

-r

c 7 10 6 c 6 1,

x

y

–a

–b

b

a

Major axis

Center

FIGURE 1.37 Graph of the ellipse

where the major

axis is horizontal.

x2

a2 +

y2

b2 = 1, a 7 b ,

Exercises 1.2

Algebraic Combinations
In Exercises 1 and 2, find the domains and ranges of and

1.

2.

In Exercises 3 and 4, find the domains and ranges of ƒ, g, , and

3.

4.

Composites of Functions
5. If and find the following.

a. b.

c. d.

e. f.

g. h.

6. If and find the following.

a. b.

c. d.

e. f.

g. h.

In Exercises 7–10, write a formula for 

7.

8. hsxd = x2gsxd = 2x - 1,ƒ(x) = 3x + 4,

hsxd = 4 - xgsxd = 3x ,ƒ(x) = x + 1,

ƒ � g � h.

g (g (x))ƒ(ƒ(x))

g (g (2))ƒ(ƒ(2))

g (ƒ(x))ƒ(g (x))

g (ƒ(1>2))ƒ(g (1>2))

gsxd = 1>sx + 1d ,ƒsxd = x - 1

g (g (x))ƒ(ƒ(x))

g (g (2))ƒ(ƒ(-5))

g (ƒ(x))ƒ(g (x))

g (ƒ(0))ƒ(g (0))

g sxd = x2
- 3,ƒsxd = x + 5

ƒsxd = 1, g sxd = 1 + 2x

ƒsxd = 2, g sxd = x2
+ 1

g>ƒ.
ƒ>g

ƒsxd = 2x + 1, g sxd = 2x - 1

ƒsxd = x, g sxd = 2x - 1

ƒ # g .
ƒ, g, ƒ + g ,

9.

10.

Let and Ex-
press each of the functions in Exercises 11 and 12 as a composite in-
volving one or more of ƒ, g, h, and j.

11. a. b.

c. d.

e. f.

12. a. b.

c. d.

e. f.

13. Copy and complete the following table.

g(x) ƒ(x) (ƒ g)(x)

a. ?

b. 3x ?

c. ?

d. ?

e. ? x

f. ? x
1
x

1 +

1
x

x
x - 1

x
x - 1

2x2
- 52x - 5

x + 2

2xx - 7

�

y = 2x3
- 3y = 22x - 3

y = x - 6y = x9

y = x3>2y = 2x - 3

y = s2x - 6d3y = 2sx - 3d3

y = 4xy = x1>4
y = 22xy = 2x - 3

jsxd = 2x .ƒsxd = x - 3, g sxd = 2x , hsxd = x3 ,

hsxd = 22 - xgsxd =

x2

x2
+ 1

 ,ƒsxd =

x + 2
3 - x

 ,

hsxd =

1
xgsxd =

1
x + 4

 ,ƒsxd = 2x + 1,
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20 Chapter 1: Functions

14. Copy and complete the following table.

g(x) ƒ(x) (ƒ g)(x)

a. ?

b. ?

c. ?

d. ?

15. Evaluate each expression using the given table of values

ƒ x ƒ2x

ƒ x ƒ2x

x
x + 1

x - 1
x

ƒ x ƒ

1
x - 1

�

22. The accompanying figure shows the graph of shifted to
two new positions. Write equations for the new graphs.

23. Match the equations listed in parts (a)–(d) to the graphs in the ac-
companying figure.

a. b.

c. d.

24. The accompanying figure shows the graph of shifted to
four new positions. Write an equation for each new graph.

x

y

(–2, 3)

(–4, –1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

y = -x2

x

y

Position 2 Position 1

Position 4

Position 3

–4 –3 –2 –1 0 1 2 3

(–2, 2) (2, 2)

(–3, –2)

(1, –4)

1

2

3

y = sx + 3d2
- 2y = sx + 2d2

+ 2

y = sx - 2d2
+ 2y = sx - 1d2

- 4

x

y
Position (a)

Position (b)

y � x2

–5

0

3

y = x2

x 0 1 2

ƒ(x) 1 0 1 2

g(x) 2 1 0 0-1

-2

-1-2

a. b. c.

d. e. f.

16. Evaluate each expression using the functions

a. b. c.

d. e. f.

In Exercises 17 and 18, (a) write formulas for and and
find the (b) domain and (c) range of each.

17.

18.

19. Let Find a function so that

20. Let Find a function so that

Shifting Graphs
21. The accompanying figure shows the graph of shifted to

two new positions. Write equations for the new graphs.

x

y

–7 0 4

Position (a) Position (b)y � –x2

y = -x2

(ƒ � g)(x) = x + 2.
y = g(x)ƒ(x) = 2x3

- 4.

(ƒ � g)(x) = x.

y = g(x)ƒ(x) =

x
x - 2

.

ƒ(x) = x2, g (x) = 1 - 2x

ƒ(x) = 2x + 1, g (x) =

1
x

g � ƒƒ � g

ƒsgs1>2ddgsƒs0ddƒsƒs2dd
gsgs -1ddgsƒs3ddƒsgs0dd

ƒ(x) = 2 - x, g(x) = b -x, -2 … x 6 0

x - 1,    0 … x … 2.

ƒsgs1ddgsƒs -2ddgsgs2dd
ƒsƒs -1ddgsƒs0ddƒsgs -1dd
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1.2 Combining Functions; Shifting and Scaling Graphs 21

Exercises 25–34 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
labeling each graph with its equation.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Graph the functions in Exercises 35–54.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. The accompanying figure shows the graph of a function ƒ(x) with
domain [0, 2] and range [0, 1]. Find the domains and ranges of the
following functions, and sketch their graphs.

a. b.

c. d.

e. f.

g. h. -ƒsx + 1d + 1ƒs -xd

ƒsx - 1dƒsx + 2d

-ƒsxd2ƒ(x)

ƒsxd - 1ƒsxd + 2

x

y

0 2

1 y � f (x)

y =

1
sx + 1d2y =

1
x2 + 1

y =

1
x2 - 1y =

1
sx - 1d2

y =

1
x + 2

y =

1
x + 2

y =

1
x - 2y =

1
x - 2

y = sx + 2d3>2
+ 1y = 23 x - 1 - 1

y + 4 = x2>3y = 1 - x2>3
y = sx - 8d2>3y = sx + 1d2>3
y = 1 - 2xy = 1 + 2x - 1

y = ƒ 1 - x ƒ - 1y = ƒ x - 2 ƒ

y = 29 - xy = 2x + 4

y = 1>x2 Left 2, down 1

y = 1>x Up 1, right 1

y =

1
2

 sx + 1d + 5 Down 5, right 1

y = 2x - 7 Up 7

y = -2x Right 3

y = 2x Left 0.81

y = x2>3 Right 1, down 1

y = x3 Left 1, down 1

x2
+ y2

= 25 Up 3, left 4

x2
+ y2

= 49 Down 3, left 2

56. The accompanying figure shows the graph of a function g(t) with
domain and range Find the domains and ranges
of the following functions, and sketch their graphs.

a. b.

c. d.

e. f.

g. h.

Vertical and Horizontal Scaling
Exercises 57–66 tell by what factor and direction the graphs of the
given functions are to be stretched or compressed. Give an equation
for the stretched or compressed graph.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Graphing
In Exercises 67–74, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.14–1.17 and applying an appropriate transformation.

67. 68.

69. 70.

71. 72.

73. 74.

75. Graph the function 

76. Graph the function 

Ellipses
Exercises 77–82 give equations of ellipses. Put each equation in stan-
dard form and sketch the ellipse.

77. 78.

79. 80. sx + 1d2
+ 2y2

= 43x2
+ s y - 2d2

= 3

16x2
+ 7y2

= 1129x2
+ 25y2

= 225

y = 2ƒ x ƒ .

y = ƒ x2
- 1 ƒ .

y = s -2xd2>3y = -23 x

y =

2
x2 + 1y =

1
2x

- 1

y = s1 - xd3
+ 2y = sx - 1d3

+ 2

y = A1 -

x
2

y = -22x + 1

y = 1 - x3, stretched horizontally by a factor of 2

y = 1 - x3, compressed horizontally by a factor of 3

y = 24 - x2, compressed vertically by a factor of 3

y = 24 - x2, stretched horizontally by a factor of 2

y = 2x + 1, stretched vertically by a factor of 3

y = 2x + 1, compressed horizontally by a factor of 4

y = 1 +

1
x2 , stretched horizontally by a factor of 3

y = 1 +

1
x2 , compressed vertically by a factor of 2

y = x2
- 1, compressed horizontally by a factor of 2

y = x2
- 1, stretched vertically by a factor of 3

-g st - 4dg s1 - td
g st - 2dg s - t + 2d
1 - g stdg std + 3

-g stdg s - td

t

y

–3

–2 0–4

y � g(t)

[-3, 0] .[-4, 0]
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22 Chapter 1: Functions

81.

82.

83. Write an equation for the ellipse shifted 
4 units to the left and 3 units up. Sketch the ellipse and identify its
center and major axis.

84. Write an equation for the ellipse shifted 
3 units to the right and 2 units down. Sketch the ellipse and iden-
tify its center and major axis.

Combining Functions
85. Assume that ƒ is an even function, g is an odd function, and both

ƒ and g are defined on the entire real line Which of the follow-
ing (where defined) are even? odd?

� .

sx2>4d + sy2>25d = 1

sx2>16d + sy2>9d = 1

6 ax +

3
2
b2

+ 9 ay -

1
2
b2

= 54

3sx - 1d2
+ 2s y + 2d2

= 6 a. b. c.

d. e. f.

g. h. i.

86. Can a function be both even and odd? Give reasons for your
answer.

87. (Continuation of Example 1.) Graph the functions 

and together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

88. Let and Graph ƒ and g together with
and g � ƒ.ƒ � g

g sxd = x2 .ƒsxd = x - 7

g sxd = 21 - x

ƒsxd = 2x

g � gƒ � ƒg � ƒ

ƒ � gg2
= ggƒ 2

= ƒƒ

g>ƒƒ>gƒg

T

T

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle
within a circle of radius r is defined as the number of “radius units” contained in

the arc s subtended by that central angle. If we denote this central angle by when meas-
ured in radians, this means that (Figure 1.38), oru = s>r u

A¿CB¿

(1)s = ru (u in radians).

If the circle is a unit circle having radius , then from Figure 1.38 and Equation (1),
we see that the central angle measured in radians is just the length of the arc that the an-
gle cuts from the unit circle. Since one complete revolution of the unit circle is 360 or 
radians, we have

(2)

and

Table 1.2 shows the equivalence between degree and radian measures for some basic 
angles.

1 radian =
180
p  ( L 57.3) degrees or 1 degree =  

p
180

 ( L 0.017) radians.

p radians = 180°

2p°
u

r = 1

B'

B
s

A'
C A

r

1
θ

Circle of radius r

Unit circle

FIGURE 1.38 The radian measure of the
central angle is the number 
For a unit circle of radius is the
length of arc AB that central angle ACB
cuts from the unit circle.

r = 1, u
u = s>r.A¿CB¿

TABLE 1.2 Angles measured in degrees and radians

Degrees 0 30 45 60 90 120 135 150 180 270 360

(radians) 0 2p
3p
2

p
5p
6

3p
4

2p
3

p
2

p
3

p
4

p
6

�p
4

�p
2

�3p
4

�pU

�45�90�135�180
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1.3 Trigonometric Functions 23

x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.39 Angles in standard position in the xy-plane.

x

y

4
9�

x

y

3�

x

y

4
–3�

x

y

2
–5�

FIGURE 1.40 Nonzero radian measures can be positive or negative and can go beyond 2p.
hypotenuse

adjacent

opposite

�

sin ��
opp
hyp

��
adj
hyp

cos

tan ��
opp
adj

csc ��
hyp
opp

��
hyp
adj

sec

cot ��
adj
opp

FIGURE 1.41 Trigonometric
ratios of an acute angle.

An angle in the xy-plane is said to be in standard position if its vertex lies at the origin
and its initial ray lies along the positive x-axis (Figure 1.39). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

Angles describing counterclockwise rotations can go arbitrarily far beyond radi-
ans or 360 . Similarly, angles describing clockwise rotations can have negative measures
of all sizes (Figure 1.40).

°
2p

Angle Convention: Use Radians From now on, in this book it is assumed that all angles
are measured in radians unless degrees or some other unit is stated explicitly. When we talk
about the angle , we mean radians (which is 60 ), not degrees. We use radians
because it simplifies many of the operations in calculus, and some results we will obtain 
involving the trigonometric functions are not true when angles are measured in degrees.

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in
terms of the sides of a right triangle (Figure 1.41). We extend this definition to obtuse and
negative angles by first placing the angle in standard position in a circle of radius r. 
We then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.42).

sine: cosecant:

cosine: secant:

tangent: cotangent:

These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,

csc u =
1

sin u
sec u =

1
cos u

cot u =
1

tan u
tan u =

sin u
cos u

cot u =
x
ytan u =

y
x

sec u =
r
xcos u =

x
r

csc u =
r
ysin u =

y
r

p>3°p>3p>3

x

y

P(x, y)
r

rO

�

y

x

FIGURE 1.42 The trigonometric
functions of a general angle are
defined in terms of x, y, and r.

u
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24 Chapter 1: Functions

As you can see, and are not defined if This means they are not
defined if is Similarly, and are not defined for values of 
for which namely 

The exact values of these trigonometric ratios for some angles can be read from the
triangles in Figure 1.43. For instance,

The CAST rule (Figure 1.44) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.45, we see that

sin 
2p
3

=

23
2

,  cos 
2p
3

= -
1
2

,  tan 
2p
3

= -23.

tan 
p
3

= 23tan 
p
6

=
1

23
tan 
p
4

= 1

cos 
p
3

=
1
2

cos 
p
6

=

23
2

cos 
p
4

=
1

22

sin 
p
3

=

23
2

sin 
p
6

=
1
2

sin 
p
4

=
1

22

u = 0, ;p, ;2p, Á .y = 0,
ucsc ucot u;p>2, ;3p>2, Á .u

x = cos u = 0.sec utan u

1

1

�
2

�
4

�
4�2

FIGURE 1.43 Radian angles and side
lengths of two common triangles.

1

�
3

�
2

�
6

2 �3

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

x

y

�3
2

1
2

1 2
3

�

⎛
⎝

⎛
⎝

⎛
⎝

⎛
⎝

2
3

, ,cos � 2
3

sin �� 1
2

–
2

P

�3

FIGURE 1.44 The CAST rule,
remembered by the statement
“Calculus Activates Student
Thinking,” tells which
trigonometric functions are
positive in each quadrant.

FIGURE 1.45 The triangle for
calculating the sine and cosine of 
radians. The side lengths come from the
geometry of right triangles.

2p>3

Using a similar method we determined the values of sin , cos , and tan shown in Table 1.3.uuu

TABLE 1.3 Values of and for selected values of 

Degrees 0 30 45 60 90 120 135 150 180 270 360

(radians) 0

0 0 1 0 0

0 1 0 0 1

0 1 0 1 0 0
-23

3
-1-2323

23
3

-1tan u

-1
-23

2
-22

2
-

1
2

1
2

22
2

23
2

22
2

-22
2

-1cos u

-1
1
2

22
2

23
2

23
2

22
2

1
2

-22
2

-1
-22

2
sin u

2p
3p
2

p
5p
6

3p
4

2p
3

p
2

p
3

p
4

p
6

�p
4

�p
2

�3p
4

�pu

�45�90�135�180

utan usin u, cos u,
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1.3 Trigonometric Functions 25

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure and an angle of measure are in standard position, their
terminal rays coincide. The two angles therefore have the same trigonometric function values:

, and so on. Similarly, 
, and so on. We describe this repeating behavior by saying that the six

basic trigonometric functions are periodic.
sin(u - 2p) = sin u

cos(u - 2p) = cos u,tan(u + 2p) = tan usin(u + 2p) = sin u,

u + 2pu

DEFINITION A function ƒ(x) is periodic if there is a positive number p such that
for every value of x. The smallest such value of p is the period of ƒ.ƒ(x + p) = ƒ(x)

When we graph trigonometric functions in the coordinate plane, we usually denote the in-
dependent variable by x instead of Figure 1.46 shows that the tangent and cotangent
functions have period , and the other four functions have period Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other
four functions are odd (although this does not prove those results). 

2p.p = p

u.

y � sin x

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y � cos x

Domain: –	 � x � 	
Range:    –1 � y � 1
Period:     2�

0–� � 2�–�
2

�
2

3�
2

0–� � 2�–�
2

�
2

3�
2

y � sin x

y � tan x

Domain: –	 � x � 	
Range:    –1 � y � 1
Period:    2�

3�
2

– –� –�
2

0 �
2

� 3�
2

�
2

3�
2

Domain: x ��    , �       , . . . 

Range:    –	 � y � 	
Period:    �

y � sec x y � csc x y � cot x

3�
2

– –� –�
2

0

1

�
2

� 3�
2

0

1

–� � 2�–�
2

�
2

3�
2

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    y � –1 or y � 1
Period:    2�

Domain: x � 0, ��, �2�, . . .
Range:    –	 � y � 	
Period:    �

Domain: x ��    , �       , . . . 

Range:    y � –1 or y � 1
Period:    2�

�
2

3�
2

FIGURE 1.46 Graphs of the six basic trigonometric functions using radian measure. The shading
for each trigonometric function indicates its periodicity.

Even

sec s -xd = sec x

cos s -xd = cos x

Odd

cot s -xd = -cot x

csc s -xd = -csc x

tan s -xd = - tan x

sin s -xd = -sin x

Periods of Trigonometric Functions
Period

Period

csc sx + 2pd = csc x
sec sx + 2pd = sec x
cos sx + 2pd = cos x
sin sx + 2pd = sin x2P :

cot sx + pd = cot x
tan sx + pd = tan xP :

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s
distance r from the origin and the angle that ray OP makes with the positive x-axis
(Figure 1.42). Since and we have

When we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.47 and obtain the equation

r = 1

x = r cos u, y = r sin u .

y>r = sin u,x>r = cos u

u

(3)cos2 u + sin2 u = 1.

y

x

�

1

P(cos �, sin �) x2 � y2 � 1

�cos � �

�sin � �

O

FIGURE 1.47 The reference
triangle for a general angle u .
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26 Chapter 1: Functions

This equation, true for all values of , is the most frequently used identity in trigonometry.
Dividing this identity in turn by and givessin2 ucos2 u

u

1 + cot2 u = csc2 u

1 + tan2 u = sec2 u

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

(4)
 sin sA + Bd = sin A cos B + cos A sin B

 cos sA + Bd = cos A cos B - sin A sin B

There are similar formulas for and (Exercises 35 and 36). All
the trigonometric identities needed in this book derive from Equations (3) and (4). For ex-
ample, substituting for both A and B in the addition formulas givesu

sin sA - Bdcos sA - Bd

Double-Angle Formulas

(5)
 sin 2u = 2 sin u cos u

 cos 2u = cos2 u - sin2 u

Additional formulas come from combining the equations

We add the two equations to get and subtract the second from the
first to get This results in the following identities, which are useful
in integral calculus.

2 sin2 u = 1 - cos 2u .
2 cos2 u = 1 + cos 2u

cos2 u + sin2 u = 1, cos2 u - sin2 u = cos 2u .

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if is the angle opposite c, thenu

Half-Angle Formulas

(6)

(7) sin2 u =

1 - cos 2u
2

 cos2 u =

1 + cos 2u
2

(8)c2
= a2

+ b2
- 2ab cos u .

This equation is called the law of cosines.
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1.3 Trigonometric Functions 27

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.48. The coordinates of A
are (b, 0); the coordinates of B are The square of the distance between A
and B is therefore

The law of cosines generalizes the Pythagorean theorem. If then 
and 

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed
in this section.

c2
= a2

+ b2.
cos u = 0u = p>2,

 = a2
+ b2

- 2ab cos u .

 

= a2scos2 u + sin2 ud + b2
- 2ab cos u

('')''*

1

 c2
= sa cos u - bd2

+ sa sin ud2

sa cos u, a sin ud .

y

x
C

a
c

b

B(a cos �, a sin �)

A(b, 0)

�

FIGURE 1.48 The square of the distance
between A and B gives the law of cosines.

y = aƒ(bsx + cdd + d

Vertical stretch or compression;
reflection about x-axis if negative

Vertical shift

Horizontal stretch or compression;
reflection about y-axis if negative

Horizontal shift

The transformation rules applied to the sine function give the general sine function
or sinusoid formula

where is the amplitude, is the period, C is the horizontal shift, and D is the
vertical shift. A graphical interpretation of the various terms is revealing and given below.

ƒ B ƒƒ A ƒ

ƒ(x) = A sin a2p
B

 (x - C )b + D,

D

y

x

Vertical
shift (D)

Horizontal
shift (C)

D � A

D � A

Amplitude (A)

This distance is
the period (B).

This axis is the
line y � D.

y � A sin � D(x � C)(                    )2�
B

0

Two Special Inequalities

For any angle measured in radians,u

- ƒ u ƒ … sin u … ƒ u ƒ   and  - ƒ u ƒ … 1 - cos u … ƒ u ƒ .
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28 Chapter 1: Functions

To establish these inequalities, we picture as a nonzero angle in standard position
(Figure 1.49). The circle in the figure is a unit circle, so equals the length of the circular
arc AP. The length of line segment AP is therefore less than .

Triangle APQ is a right triangle with sides of length

From the Pythagorean theorem and the fact that we get

(9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than
their sum and hence is less than or equal to :

By taking square roots, this is equivalent to saying that

so

These inequalities will be useful in the next chapter.

- ƒ u ƒ … sin u … ƒ u ƒ   and  - ƒ u ƒ … 1 - cos u … ƒ u ƒ .

ƒ sin u ƒ … ƒ u ƒ   and  ƒ 1 - cos u ƒ … ƒ u ƒ ,

sin2 u … u2  and  (1 - cos u)2
… u2.

u2

sin2 u + (1 - cos u)2
= (AP)2

… u2.

AP 6 ƒ u ƒ ,

QP = ƒ sin u ƒ ,  AQ = 1 - cos u.

ƒ u ƒ

ƒ u ƒ

u

�

1

P

A(1, 0)

cos � 1 – cos �

sin �

O Q

�

x

y

FIGURE 1.49 From the geometry
of this figure, drawn for 

we get the inequality
sin2 u + (1 - cos u)2

… u2.
u 7 0,

Exercises 1.3

Radians and Degrees
1. On a circle of radius 10 m, how long is an arc that subtends a cen-

tral angle of (a) radians? (b) 110°?

2. A central angle in a circle of radius 8 is subtended by an arc of
length Find the angle’s radian and degree measures.

3. You want to make an 80° angle by marking an arc on the perime-
ter of a 12-in.-diameter disk and drawing lines from the ends of
the arc to the disk’s center. To the nearest tenth of an inch, how
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions
5. Copy and complete the following table of function values. If the

function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

0

6. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

csc u

sec u

cot u
tan u

cos u

sin u

3P>4P>2�2P>3�PU

10p .

4p>5

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the other
two if x lies in the specified interval.

7. 8.

9. 10.

11. 12.

Graphing Trigonometric Functions
Graph the functions in Exercises 13–22. What is the period of each
function?

13. sin 2x 14. sin ( )

15. 16.

17. 18.

19. 20. sin ax +

p

6
bcos ax -

p

2
b

-cos 2px-sin 
px
3

cos 
px
2

cos px

x>2

sin x = -

1
2

, x H cp, 
3p
2
dtan x =

1
2

, x H cp, 
3p
2
d

cos x = -

5
13

, x H cp
2

, p dcos x =

1
3

, x H c- p
2

, 0 d
tan x = 2, x H c0, 

p

2
dsin x =

3
5

, x H cp
2

, p d

csc u

sec u

cot u
tan u

cos u

sin u

5P>6P>4�P>6�P>3�3P>2U
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1.3 Trigonometric Functions 29

21. 22.

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23. 24.

25. 26.

27. a. Graph and together for 
Comment on the behavior of sec x in relation to the

signs and values of cos x.

b. Graph and together for 
Comment on the behavior of csc x in relation to the signs and
values of sin x.

28. Graph and together for Com-
ment on the behavior of cot x in relation to the signs and values of
tan x.

29. Graph and together. What are the domain
and range of 

30. Graph and together. What are the domain
and range of 

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31–36.

31. 32.

33. 34.

35. (Exercise 57 provides a
different derivation.)

36.

37. What happens if you take in the trigonometric identity
Does the result agree

with something you already know?

38. What happens if you take in the addition formulas? Do
the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and
cos x.

39. 40.

41. 42.

43. Evaluate as 

44. Evaluate as 

45. Evaluate 46. Evaluate 

Using the Half-Angle Formulas
Find the function values in Exercises 47–50.

47. 48.

49. 50. sin2 
3p
8

sin2 
p

12

cos2 
5p
12

cos2 
p

8

sin 
5p
12

.cos 
p

12
.

cos ap
4

+

2p
3
b .cos 

11p
12

sin ap
4

+

p

3
b .sin 

7p
12

cos a3p
2

+ xbsin a3p
2

- xb
sin s2p - xdcos sp + xd

B = 2p

cos sA - Bd = cos A cos B + sin A sin B?
B = A

sin sA - Bd = sin A cos B - cos A sin B

cos sA - Bd = cos A cos B + sin A sin B

sin ax -

p

2
b = -cos xsin ax +

p

2
b = cos x

cos ax +

p

2
b = -sin xcos ax -

p

2
b = sin x

<sin x= ?
y = <sin x=y = sin x

:sin x; ?
y = :sin x;y = sin x

-7 … x … 7.y = cot xy = tan x

-p … x … 2p .y = csc xy = sin x

…  3p>2.
-3p>2 … xy = sec xy = cos x

s = csc a t
2
bs = sec apt

2
b

s = - tan pts = cot 2t

cos ax +

2p
3
b - 2sin ax -

p

4
b + 1

Solving Trigonometric Equations
For Exercises 51–54, solve for the angle where 

51. 52.

53. 54.

Theory and Examples
55. The tangent sum formula The standard formula for the tan-

gent of the sum of two angles is

Derive the formula.

56. (Continuation of Exercise 55.) Derive a formula for 

57. Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for 

58. a. Apply the formula for to the identity 

to obtain the addition formula for 

b. Derive the formula for by substituting for B
in the formula for from Exercise 35.

59. A triangle has sides and and angle Find
the length of side c.

60. A triangle has sides and and angle Find
the length of side c.

61. The law of sines The law of sines says that if a, b, and c are the
sides opposite the angles A, B, and C in a triangle, then

Use the accompanying figures and the identity 
if required, to derive the law.

62. A triangle has sides and and angle (as in
Exercise 59). Find the sine of angle B using the law of sines.

C = 60°b = 3a = 2

A

B Ca

hc b

A

B Ca

hc
b

sin u ,
sin sp - ud =

sin A
a =

sin B
b

=

sin C
c .

C = 40° .b = 3a = 2

C = 60° .b = 3a = 2

cos sA - Bd
-Bcos sA + Bd

sin sA + Bd .cos ap
2

- ub
sin u =cos sA - Bd

x

y

A
B

0 1

1

1

cos sA - Bd .

tan sA - Bd .

tansA + Bd =

tan A + tan B
1 - tan A tan B

.

cos 2u + cos u = 0sin 2u - cos u = 0

sin2 u = cos2 usin2 u =

3
4

0 … u … 2p.u,

T

T
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30 Chapter 1: Functions

63. A triangle has side and angles and 
Find the length a of the side opposite A.

64. The approximation sin x x It is often useful to know that,
when x is measured in radians, for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds.
The approximation error is less than 1 in 5000 if

a. With your grapher in radian mode, graph and 
together in a viewing window about the origin. What do you
see happening as x nears the origin?

b. With your grapher in degree mode, graph and
together about the origin again. How is the picture dif-

ferent from the one obtained with radian mode?

General Sine Curves
For

identify A, B, C, and D for the sine functions in Exercises 65–68 and
sketch their graphs.

65. 66.

67. 68.

COMPUTER EXPLORATIONS
In Exercises 69–72, you will explore graphically the general sine
function

as you change the values of the constants A, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.

ƒsxd = A sin a2p
B

 sx - Cdb + D

y =

L
2p

 sin 
2pt
L

, L 7 0y = -

2
p sin ap

2
 tb +

1
p

y =

1
2

 sin spx - pd +

1
2

y = 2 sin sx + pd - 1

ƒsxd = A sin a2p
B

 sx - Cdb + D ,

y = x
y = sin x

y = xy = sin x

ƒ x ƒ 6 0.1 .

sin x L x
L

B = p>3.A = p>4c = 2 69. The period B Set the constants 

a. Plot ƒ(x) for the values over the interval
Describe what happens to the graph of the

general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it
with and 

70. The horizontal shift C Set the constants 

a. Plot ƒ(x) for the values and 2 over the interval
Describe what happens to the graph of the

general sine function as C increases through positive values.

b. What happens to the graph for negative values of C?

c. What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot.

71. The vertical shift D Set the constants 

a. Plot ƒ(x) for the values and 3 over the interval
Describe what happens to the graph of the

general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?

72. The amplitude A Set the constants 

a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your an-
swer by plotting ƒ(x) for the values and 9.

b. What happens to the graph for negative values of A?

A = 1, 5 ,

B = 6, C = D = 0.

-4p … x … 4p .
D = 0, 1 ,

A = 3, B = 6, C = 0.

-4p … x … 4p .
C = 0, 1 ,

A = 3, B = 6, D = 0.

B = -2p .B = -3

-4p … x … 4p .
B = 1, 3, 2p, 5p

A = 3, C = D = 0.

T

1.4 Graphing with Calculators and Computers

A graphing calculator or a computer with graphing software enables us to graph very com-
plicated functions with high precision. Many of these functions could not otherwise be
easily graphed. However, care must be taken when using such devices for graphing pur-
poses, and in this section we address some of the issues involved. In Chapter 4 we will see
how calculus helps us determine that we are accurately viewing all the important features
of a function’s graph.

Graphing Windows

When using a graphing calculator or computer as a graphing tool, a portion of the graph is
displayed in a rectangular display or viewing window. Often the default window gives an in-
complete or misleading picture of the graph. We use the term square window when the units
or scales on both axes are the same. This term does not mean that the display window itself is
square (usually it is rectangular), but instead it means that the x-unit is the same as the y-unit.

When a graph is displayed in the default window, the x-unit may differ from the y-unit of
scaling in order to fit the graph in the window. The viewing window is set by specifying an
interval [a, b] for the x-values and an interval [c, d] for the y-values. The machine selects
equally spaced x-values in [a, b] and then plots the points (x, ƒ(x)). A point is plotted if and
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1.4 Graphing with Calculators and Computers 31

only if x lies in the domain of the function and ƒ(x) lies within the interval [c, d]. A short line
segment is then drawn between each plotted point and its next neighboring point. We now
give illustrative examples of some common problems that may occur with this procedure.

EXAMPLE 1 Graph the function in each of the following dis-
play or viewing windows:

(a) by (b) by (c) by 

Solution

(a) We select and to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure
1.50a. It appears that the window is cutting off the bottom part of the graph and that
the interval of x-values is too large. Let’s try the next window.

d = 10a = -10, b = 10, c = -10,

[-60, 60][-4, 10][-50, 10][-4, 4][-10, 10][-10, 10]

ƒsxd = x3
- 7x2

+ 28

10

–10

10–10

10

–50

4–4

(a) (b) (c)

60

–60

10–4

FIGURE 1.50 The graph of in different viewing windows. Selecting a window that gives a clear
picture of a graph is often a trial-and-error process (Example 1).

ƒsxd = x3
- 7x2

+ 28

(b) Now we see more features of the graph (Figure 1.50b), but the top is missing and we
need to view more to the right of as well. The next window should help.

(c) Figure 1.50c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window, and it is a reasonable graph of a
third-degree polynomial.

EXAMPLE 2 When a graph is displayed, the x-unit may differ from the y-unit, as in the
graphs shown in Figures 1.50b and 1.50c. The result is distortion in the picture, which may
be misleading. The display window can be made square by compressing or stretching the
units on one axis to match the scale on the other, giving the true graph. Many systems have
built-in functions to make the window “square.” If yours does not, you will have to do
some calculations and set the window size manually to get a square window, or bring to
your viewing some foreknowledge of the true picture.

Figure 1.51a shows the graphs of the perpendicular lines and 
together with the semicircle in a nonsquare by display
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be elliptical in shape.

Figure 1.51b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for
Figure 1.51a has been compressed in Figure 1.51b to make the window square. Figure
1.51c gives an enlarged view of Figure 1.51b with a square  by [0, 4] window.

If the denominator of a rational function is zero at some x-value within the viewing
window, a calculator or graphing computer software may produce a steep near-vertical line
segment from the top to the bottom of the window. Here is an example.

[-3, 3]

[-6, 8][-4, 4]y = 29 - x2 ,
y = -x + 322,y = x

x = 4
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32 Chapter 1: Functions

(a)

8

–6

4–4

(b)

4

–4

6–6

(c)

4

0

3–3

FIGURE 1.51 Graphs of the perpendicular lines and and the semicircle 
appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2).

y = 29 - x2y = -x + 322,y = x

(a)

10

–10

10–10

(b)

4

–4

6–6

FIGURE 1.52 Graphs of the function . A vertical line may appear

without a careful choice of the viewing window (Example 3).

y =

1
2 - x

EXAMPLE 3 Graph the function 

Solution Figure 1.52a shows the graph in the by default square
window with our computer graphing software. Notice the near-vertical line segment at

It is not truly a part of the graph and does not belong to the domain of the
function. By trial and error we can eliminate the line by changing the viewing window to
the smaller by view, revealing a better graph (Figure 1.52b).[-4, 4][-6, 6]

x = 2x = 2.

[-10, 10][-10, 10]

y =
1

2 - x
.

(a)

1

–1

12–12

(b)

1

–1

6–6

(c)

1

–1

0.1–0.1

FIGURE 1.53 Graphs of the function in three viewing windows. Because the period is 
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 4).

2p>100 L 0.063 ,y = sin 100x

Sometimes the graph of a trigonometric function oscillates very rapidly. When a calcula-
tor or computer software plots the points of the graph and connects them, many of the maxi-
mum and minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 4 Graph the function 

Solution Figure 1.53a shows the graph of ƒ in the viewing window by
We see that the graph looks very strange because the sine curve should oscillate

periodically between and 1. This behavior is not exhibited in Figure 1.53a. We might-1
[-1, 1] .

[-12, 12]

ƒsxd = sin 100x .
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1.4 Graphing with Calculators and Computers 33

experiment with a smaller viewing window, say by but the graph is not
better (Figure 1.53b). The difficulty is that the period of the trigonometric function

is very small If we choose the much smaller viewing
window by we get the graph shown in Figure 1.53c. This graph reveals
the expected oscillations of a sine curve.

EXAMPLE 5 Graph the function 

Solution In the viewing window by the graph appears much like the co-
sine function with some small sharp wiggles on it (Figure 1.54a). We get a better look
when we significantly reduce the window to by [0.8, 1.02], obtaining the graph
in Figure 1.54b. We now see the small but rapid oscillations of the second term,

added to the comparatively larger values of the cosine curve.1>50 sin 50x ,

[-0.6, 0.6]

[-1, 1][-6, 6]

y = cos x +
1

50
 sin 50x .

[-1, 1][-0.1, 0.1]
s2p>100 L 0.063d .y = sin 100x

[-1, 1] ,[-6, 6]

(a)

1

–1

6–6

(b)

1.02

0.8
0.6–0.6

FIGURE 1.54 In (b) we see a close-up view of the function

graphed in (a). The term cos x clearly dominates the

second term, which produces the rapid oscillations along the

cosine curve. Both views are needed for a clear idea of the graph (Example 5).

1
50

 sin 50x ,

y = cos x +

1
50

 sin 50x

(a)

2

–2

3–3

(b)

2

–2

3–3

FIGURE 1.55 The graph of is missing the left branch in (a). In

(b) we graph the function obtaining both branches. (See

Example 6.)

ƒsxd =

x
ƒ x ƒ

#
ƒ x ƒ

1>3,
y = x1>3

Obtaining a Complete Graph

Some graphing devices will not display the portion of a graph for when Usu-
ally that happens because of the procedure the device is using to calculate the function val-
ues. Sometimes we can obtain the complete graph by defining the formula for the function
in a different way.

EXAMPLE 6 Graph the function 

Solution Some graphing devices display the graph shown in Figure 1.55a. When we
compare it with the graph of in Figure 1.17, we see that the left branch fory = x1>3

= 23 x

y = x1>3 .

x 6 0.ƒ(x)
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34 Chapter 1: Functions

is missing. The reason the graphs differ is that many calculators and computer soft-
ware programs calculate as Since the logarithmic function is not defined for
negative values of x, the computing device can produce only the right branch, where

(Logarithmic and exponential functions are introduced in the next two sections.)
To obtain the full picture showing both branches, we can graph the function

This function equals except at (where ƒ is undefined, although ). The
graph of ƒ is shown in Figure 1.55b.

01>3
= 0x = 0x1>3

ƒsxd =
x

ƒ x ƒ

#
ƒ x ƒ

1>3 .

x 7 0.

e s1>3dln x .x1>3x 6 0

Exercises 1.4

Choosing a Viewing Window
In Exercises 1–4, use a graphing calculator or computer to determine
which of the given viewing windows displays the most appropriate
graph of the specified function.

1.

a. by b. by 

c. by d. by 

2.

a. by b. by 

c. by d. by 

3.

a. by b. by 

c. by d. by 

4.

a. by b. by 

c. by [0, 10] d. by 

Finding a Viewing Window
In Exercises 5–30, find an appropriate viewing window for the given
function and use it to display its graph.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 1 -

1
x + 3

y =

x + 3
x + 2

y = ƒ x2
- x ƒy = ƒ x2

- 1 ƒ

y = x2>3s5 - xdy = 5x2>5
- 2x

y = x1>3sx2
- 8dy = 2x - 3x2>3

ƒsxd = x2s6 - x3dƒsxd = x29 - x2

ƒsxd = 4x3
- x4ƒsxd = x5

- 5x4
+ 10

ƒsxd =

x3

3
-

x2

2
- 2x + 1ƒsxd = x4

- 4x3
+ 15

[-10, 10][-10, 10][-3, 7]

[-1, 4][-2, 6][-2, 2][-2, 2]

ƒsxd = 25 + 4x - x2

[-15, 25][-4, 5][-20, 20][-4, 4]

[-10, 10][-5, 5][-1, 1][-1, 1]

ƒsxd = 5 + 12x - x3

[-100, 100][-20, 20][-10, 20][-5, 5]

[-10, 10][-3, 3][-5, 5][-1, 1]

ƒsxd = x3
- 4x2

- 4x + 16

[-25, 15][-5, 5][-10, 10][-10, 10]

[-5, 5][-2, 2][-1, 1][-1, 1]

ƒsxd = x4
- 7x2

+ 6x

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Graph the lower half of the circle defined by the equation

32. Graph the upper branch of the hyperbola 

33. Graph four periods of the function 

34. Graph two periods of the function 

35. Graph the function 

36. Graph the function 

Graphing in Dot Mode
Another way to avoid incorrect connections when using a graphing
device is through the use of a “dot mode,” which plots only the points.
If your graphing utility allows that mode, use it to plot the functions in
Exercises 37–40.

37. 38.

39. 40. y =

x3
- 1

x2
- 1

y = x:x;
y = sin 

1
xy =

1
x - 3

ƒsxd = sin3 x .

ƒsxd = sin 2x + cos 3x .

ƒsxd = 3 cot 
x
2

+ 1.

ƒsxd = -  tan 2x .

y2
- 16x2

= 1.

x2
+ 2x = 4 + 4y - y2 .

y = x2
+

1
50

 cos 100xy = x +

1
10

 sin 30x

y =

1
10

 sin a x
10
by = cos a x

50
b

y = 3 cos 60xy = sin 250x

ƒsxd =

x2
- 3

x - 2
ƒsxd =

6x2
- 15x + 6

4x2
- 10x

ƒsxd =

8
x2

- 9
ƒsxd =

x - 1
x2

- x - 6

ƒsxd =

x2
- 1

x2
+ 1

ƒsxd =

x2
+ 2

x2
+ 1T

T

T

1.5 Exponential Functions

Exponential functions are among the most important in mathematics and occur in a wide
variety of applications, including interest rates, radioactive decay, population growth, the
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure,
temperature change of a heated object placed in a cooler environment, and the dating of
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1.5 Exponential Functions 35

fossils. In this section we introduce these functions informally, using an intuitive approach.
We give a rigorous development of them in Chapter 7, based on important calculus ideas
and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P. If it doubles again, it becomes and a third doubling gives 
Continuing to double in this fashion leads us to the consideration of the function

We call this an exponential function because the variable x appears in the
exponent of Functions such as and are other examples of ex-
ponential functions. In general, if is a positive constant, the function

is the exponential function with base a.

EXAMPLE 1 In 2000, $100 is invested in a savings account, where it grows by accru-
ing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount A in the account after x years have
elapsed.

Solution If at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

At the end of the second year the account earns interest again and grows to

Continuing this process, after x years the value of the account is

This is a multiple of the exponential function with base 1.055. Table 1.4 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

A = 100 # (1.055)x.

P = 100(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2.

P + a 5.5
100
bP = (1 + 0.055)P = (1.055)P.

P = 100,

ƒ(x) = ax

a Z 1
h(x) = (1>2)xg(x) = 10x2x.

ƒ(x) = 2x.

2(22P) = 23P.2(2P) = 22P,

TABLE 1.4 Savings account growth

Year Amount (dollars) Increase (dollars)

2000 100

2001 5.50

2002 5.80

2003 6.12

2004 6.46100(1.055)4
= 123.88

100(1.055)3
= 117.42

100(1.055)2
= 111.30

100(1.055) = 105.50

In general, the amount after x years is given by where r is the interest rate
(expressed as a decimal).

P(1 + r)x,

Don’t confuse with the power ,
where the variable x is the base, not the
exponent.

x22x
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36 Chapter 1: Functions

For integer and rational exponents, the value of an exponential function is
obtained arithmetically as follows. If is a positive integer, the number is given by
multiplying a by itself n times:

1442443
n factors

If then and if for some positive integer n, then

If for some positive integer n, then

which is the positive number that when multiplied by itself n times gives a. If is
any rational number, then

If x is irrational, the meaning of is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function. In Chapter 7 we define the meaning in a
rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again here in Figure 1.56. These graphs describe the values of the exponential func-
tions for all real inputs x. The value at an irrational number x is chosen so that the graph of

has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they
do convey the informal idea. We mean that the value of , when x is irrational, is chosen
so that the function is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior when or
decreasing behavior when (see Figure 1.56).

Arithmetically, the graphical idea can be described in the following way, using the ex-
ponential as an illustration. Any particular irrational number, say has
a decimal expansion

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

(1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to , it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be  .

Table 1.5 illustrates how taking better approximations to gives better approxima-
tions to the number . It is the completeness property of the real numbers
(discussed briefly in Appendix 6) which guarantees that this procedure gives a single number
we define to be (although it is beyond the scope of this text to give a proof ). In a similar
way, we can identify the number (or ) for any irrational x. By identifying the
number for both rational and irrational x, we eliminate any “holes” or “gaps” in the graph
of . In practice you can use a calculator to find the number for irrational x, taking suc-
cessive decimal approximations to x and creating a table similar to Table 1.5.

Exponential functions obey the familiar rules of exponents listed on the next page. 
It is easy to check these rules using algebra when the exponents are integers or rational
numbers. We prove them for all real exponents in Chapters 4 and 7.

axax
ax

ax, a 7 02x
213

213
L 3.321997086

23
223

23
23

21, 21.7, 21.73, 21.732, 21.7320, 21.73205, . . . .

23 = 1.732050808 . . . .

x = 23,ƒ(x) = 2x

0 6 a 6 1
a 7 1,

ƒ(x) = ax
ax

ax

ax

ap>q
= 2q ap

= A2q a Bp.
x = p>q

a1>n
= 2n a ,

x = 1>n
a-n

=
1
an = a1a b

n

.

x = -na0
= 1,x = 0,

an
= a # a # Á # a .

anx = n
ƒ(x) = ax

(a)  y � 2x, y � 3x, y � 10x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

y � 2x

y � 3x

y � 10x

(b) y � 2–x, y � 3–x, y � 10–x

y � 2–x

y � 3–x

y � 10–x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.56 Graphs of exponential
functions.

TABLE 1.5 Values of for 
rational r closer and closer to

r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

2r

23
213
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1.5 Exponential Functions 37

EXAMPLE 2 We illustrate using the rules for exponents.

1.

2.

3.

4.

5.

The Natural Exponential Function 

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number
e. The number e is irrational, and its value is 2.718281828 to nine decimal places. It might
seem strange that we would use this number for a base rather than a simple number like 2
or 10. The advantage in using e as a base is that it simplifies many of the calculations in
calculus.

If you look at Figure 1.56a you can see that the graphs of the exponential functions
get steeper as the base a gets larger. This idea of steepness is conveyed by the

slope of the tangent line to the graph at a point. Tangent lines to graphs of functions are
defined precisely in the next chapter, but intuitively the tangent line to the graph at a
point is a line that just touches the graph at the point, like a tangent to a circle. Figure
1.57 shows the slope of the graph of as it crosses the y-axis for several values of
a. Notice that the slope is exactly equal to 1 when a equals the number e. The slope is
smaller than 1 if and larger than 1 if This is the property that makes the
number e so useful in calculus: The graph of has slope 1 when it crosses the
y-axis.

y � ex
a 7 e.a 6 e,

y = ax

y = ax

ex

a4
9
b1>2

=
41>2
91>2 =

2
3

7p # 8p = (56)p
A522 B22

= 522 # 22
= 52

= 25

A210 B3
210

= A210 B3 - 1
= A210 B2 = 10

31.1 # 30.7
= 31.1 + 0.7

= 31.8

Rules for Exponents
If and the following rules hold true for all real numbers x and y.

1. 2.

3. 4.

5.
ax

bx = aa
b
b x

ax # bx
= (ab)x(ax)y

= (ay)x
= axy

ax

ay = ax - yax # ay
= ax + y

b 7 0,a 7 0

0
x

y

m � 0.7

(a)

y � 2x

x

y

0

(c)

m � 1.1

y � 3x

x

y

0

(b)

m � 1

y � e x

1 1 1

FIGURE 1.57 Among the exponential functions, the graph of has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as , and larger for a base greater than e, such as 3x.2x

y = ex
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38 Chapter 1: Functions

In Chapter 3 we use that slope property to prove e is the number the quantity
approaches as x becomes large without bound. That result provides one way to

compute the value of e, at least approximately. The graph and table in Figure 1.58 show the
behavior of this expression and how it gets closer and closer to the line 

as x gets larger and larger. (This limit idea is made precise in the next
chapter.) A more complete discussion of e is given in Chapter 7.
e L 2.718281828

y =

(1 + 1>x)x

Exponential Growth and Decay

The exponential functions , where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function is a model for exponential
growth if and a model for exponential decay if Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by where P is the initial investment, r is the interest
rate as a decimal, and t is time in units consistent with r. An example of exponential decay
is the model , which represents how the radioactive element carbon-14
decays over time. Here A is the original amount of carbon-14 and t is the time in years.
Carbon-14 decay is used to date the remains of dead organisms such as shells, seeds, and
wooden artifacts. Figure 1.59 shows graphs of exponential growth and exponential decay.

y = A # e-1.2 * 10-4t

y = P # ert,

k 6 0.k 7 0
y = y0 ekx

y = ekx

–10 –8 –6 –4 –2 20 4 6 8 10

2

4

6

8

10

x

y

x (1 � 1�x)x

1000
2000
3000
4000
5000
6000
7000

2.7169
2.7176
2.7178
2.7179
2.7180
2.7181
2.7181

f (x) � (1 � 1�x)x 

y � 2.718281...

FIGURE 1.58 A graph and table of values for both suggest that as x gets 
larger and larger, gets closer and closer to e L 2.7182818 Á .ƒ(x)

ƒ(x) = (1 + 1>x)x

FIGURE 1.59 Graphs of (a) exponential growth, and (b) exponential decay,
k = -1.2 6 0.

k = 1.5 7 0,

(b)

00 0.5

0.6

0.2

1.5

1.4

2.5–0.5–0.5 1

1

2 3

y � e–1.2xy � e1.5x

(a)

1.50.5 1–1

15

10

5

20

2
x

y

x

y

EXAMPLE 3 Investment companies often use the model in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2000 at an
annual interest rate of 5.5%.

Solution Let represent 2000, represent 2001, and so on. Then the exponen-
tial growth model is , where (the initial investment), (ther = 0.055P = 100y(t) = Pert

t = 1t = 0

y = Pert
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annual interest rate expressed as a decimal), and t is time in years. To predict the amount in
the account in 2004, after four years have elapsed, we take and calculate

Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1.

EXAMPLE 4 Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If is the number of radioactive nuclei present at time zero, the number
still present at any later time t will be

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined ex-
perimentally to be about when t is measured in years. Predict the percent
of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount of carbon-14 nuclei, after 866 years we are left
with the amount

Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so
about 10% of the original nuclei have decayed. In Example 7 in the next section, you will
see how to find the number of years required for half of the radioactive nuclei present in a
sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions for different values of the con-
stant k instead of the general exponential functions In the next section, we show
that the exponential function is equal to for an appropriate value of k. So the formula

covers the entire range of possibilities, and we will see that it is easier to use.y = ekx
ekxax

y = ax.
y = ekx

 L (0.901)y0.

y(866) = y0 e (-1.2 * 10-4)(866)

y0

r = 1.2 * 10-4

y = y0 e-rt,  r 7 0.

y0

 = 124.61.

 = 100e0.22

y(4) = 100e0.055(4)

t = 4

1.5 Exponential Functions 39

Exercises 1.5

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate
coordinate plane and label each curve with its equation.

1.

2.

3. and 4. and 

5. and 6. and 

In each of Exercises 7–10, sketch the shifted exponential curves.

7. and 

8. and 

9. and 

10. and y = -1 - e-xy = -1 - ex

y = 1 - e-xy = 1 - ex

y = 3-x
+ 2y = 3x

+ 2

y = 2-x
- 1y = 2x

- 1

y = -e-xy = -exy = 1>exy = ex

y = -3ty = 3-ty = -2ty = 2-t

y = 3x, y = 8x, y = 2-x, y = (1>4)x

y = 2x, y = 4x, y = 3-x, y = (1>5)x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises
11–20.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. a26
3
b2a 2

22
b4

A23 B1>2 # A212 B1>2223 # 723

A1322 B22>2A251>8 B4
35>3
32>3

44.2

43.7

91>3 # 91>6162 # 16-1.75
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Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21–24.

21. 22.

23. 24.

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 26.

27. 28.

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.
29. Population growth The population of Knoxville is 500,000 and

is increasing at the rate of 3.75% each year. Approximately when
will the population reach 1 million?

30. Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

31. Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

3 - 2-x
= 03x

- 0.5 = 0

ex
= 42x

= 5

ƒ(x) =

3
1 - e2x

g(t) = 21 + 3-t

g(t) = cos(e-t)ƒ(x) =

1
2 + ex

40 Chapter 1: Functions

a. Express the amount of phosphorus-32 remaining as a function
of time t.

b. When will there be 1 gram remaining?

32. If John invests $2300 in a savings account with a 6% interest rate
compounded annually, how long will it take until John’s account
has a balance of $4150?

33. Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required for
an investment to triple in value if interest is earned at the rate of
5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function as the inverse of the exponential function

, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion assigns the same value, 1, to both of the numbers and ; the sines of

and are both Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

13>2.2p>3p>3 +1-1ƒsxd = x2

y = ex
y = ln x

DEFINITION A function ƒ(x) is one-to-one on a domain D if 
whenever in D.x1 Z x2

ƒsx1d Z ƒsx2d

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.
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(a) is one-to-one on any domain of nonnegative numbers because 
whenever 

(b) is not one-to-one on the interval because 
In fact, for each element in the subinterval there is a corresponding ele-
ment in the subinterval satisfying so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on however, because it is an increasing function on giving dis-
tinct outputs for distinct inputs.

The graph of a one-to-one function can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one (Figure 1.60).

y = ƒsxd

[0, p>2][0, p>2],

sin x1 = sin x2,sp>2, p]x2

[0, p>2dx1

sin sp>6d = sin s5p>6d .[0, p]gsxd = sin x

x1 Z x2 .1x2

1x1 Zƒsxd = 1x

1.6 Inverse Functions and Logarithms 41

The Horizontal Line Test for One-to-One Functions
A function is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

y = ƒsxd

DEFINITION Suppose that ƒ is a one-to-one function on a domain D with range
R. The inverse function is defined by

The domain of is R and the range of is D.ƒ -1ƒ -1

ƒ -1sbd = a if ƒsad = b .

ƒ -1

x 1 2 3 4 5 6 7 8

ƒ(x) 3 4.5 7 10.5 15 20.5 27 34.5

y 3 4.5 7 10.5 15 20.5 27 34.5

1 2 3 4 5 6 7 8ƒ-1syd

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

The symbol for the inverse of ƒ is read “ƒ inverse.” The “ ” in is not an 
exponent; does not mean 1 ƒ(x). Notice that the domains and ranges of ƒ and 
are interchanged.

EXAMPLE 2 Suppose a one-to-one function is given by a table of valuesy = ƒsxd

ƒ -1>ƒ -1sxd
ƒ -1

-1ƒ -1

A table for the values of can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for ƒ:

x = ƒ -1s yd

If we apply ƒ to send an input x to the output ƒ(x) and follow by applying to ƒ(x)
we get right back to x, just where we started. Similarly, if we take some number y in the
range of ƒ, apply to it, and then apply ƒ to the resulting value we get back the
value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

 sƒ � ƒ -1dsyd = y, for all y in the domain of ƒ -1 sor range of ƒd

 sƒ -1 � ƒdsxd = x, for all x in the domain of ƒ

ƒ -1syd ,ƒ -1

ƒ -1

0 0

(a) One-to-one: Graph meets each
      horizontal line at most once.

x

y y

y � x3 y � �x

x

FIGURE 1.60 (a) and are
one-to-one on their domains and

(b) and are not
one-to-one on their domains s - q , q d .

y = sin xy = x2[0, q d.
s - q , q d

y = 1xy = x3

0–1 1

0.5

(b) Not one-to-one: Graph meets one or
      more horizontal lines more than once.

1

y

y

x x

y � x2

Same y-value

Same y-value

y � sin x

�
6

5�
6
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Only a one-to-one function can have an inverse. The reason is that if and
for two distinct inputs and then there is no way to assign a value to 

that satisfies both and 
A function that is increasing on an interval so it satisfies the inequality 

when is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function for and defined on 
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move
horizontally to the y-axis to read the value of y. The inverse function can be read from the
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the
graph of and then move vertically to the x-axis to read the value of 
(Figure 1.61).

x = ƒ -1sydy = ƒsxd,

(- q , q )ƒ(0) = 0,x Z 0ƒ(x) = 1>x
x2 7 x1

ƒsx2d 7 ƒsx1d
ƒ -1sƒsx2dd = x2 .ƒ -1sƒsx1dd = x1

ƒ -1sydx2 ,x1ƒsx2d = y
ƒsx1d = y
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x

y

0 x

y

R
A

N
G

E
 O

F 
f

DOMAIN OF f

(a) To find the value of f at x, we start at x,
go up to the curve, and then over to the y-axis.

y 5 f (x)

x

y

0 x

y

D
O

M
A

IN
 O

F 
f

–1

RANGE OF f –1

x 5 f –1(y)

(b) The graph of  f –1 is the graph of f, but
with x and y interchanged.  To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f –1 is the
range of f.  The range of f –1 is the domain of f.

y

x

0

(b, a)

(a, b)

y 5 x

x 5 f –1(y)

R
A

N
G

E
 O

F 
f

–1

DOMAIN OF f –1

(c) To draw the graph of f –1 in the
more usual way, we reflect the
system across the line y 5 x. 

x

y

0
DOMAIN OF f –1

R
A

N
G

E
 O

F 
f–1

y 5 f –1(x)

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f –1

as a function of x.

FIGURE 1.61 Determining the graph of from the graph of The graph
of is obtained by reflecting the graph of ƒ about the line y = x.ƒ -1

y = ƒsxd .y = ƒ -1sxd

We want to set up the graph of so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x

ƒ -1
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and y axes by reflecting across the 45° line After this reflection we have a new graph
that represents The value of can now be read from the graph in the usual way,
by starting with a point x on the x-axis, going vertically to the graph, and then horizontally
to the y-axis to get the value of Figure 1.61 indicates the relationship between the
graphs of ƒ and The graphs are interchanged by reflection through the line 

The process of passing from ƒ to can be summarized as a two-step procedure.

1. Solve the equation for x. This gives a formula where x is ex-
pressed as a function of y.

2. Interchange x and y, obtaining a formula where is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3 Find the inverse of expressed as a function of x.

Solution

1. Solve for x in terms of y:

2. Interchange x and y:

The inverse of the function is the function (See
Figure 1.62.) To check, we verify that both composites give the identity function:

EXAMPLE 4 Find the inverse of the function expressed as a function
of x.

Solution We first solve for x in terms of y:

We then interchange x and y, obtaining

The inverse of the function is the function (Figure 1.63).
Notice that the function with domain restricted to the nonnegative

real numbers, is one-to-one (Figure 1.63) and has an inverse. On the other hand, the func-
tion , with no domain restrictions, is not one-to-one (Figure 1.60b) and therefore
has no inverse.

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function is
one-to-one. It therefore has an inverse. Its inverse is called the logarithm function with
base a.

ƒ(x) = ax

y = x2

y = x2, x Ú 0,
y = 1xy = x2, x Ú 0,

y = 1x .

ƒ x ƒ = x because x Ú 0 2y = 2x2
= ƒ x ƒ = x

 y = x2

y = x2, x Ú 0,

 ƒsƒ -1sxdd =
1
2

 s2x - 2d + 1 = x - 1 + 1 = x .

 ƒ -1sƒsxdd = 2 a1
2

 x + 1b - 2 = x + 2 - 2 = x

ƒ -1sxd = 2x - 2.ƒsxd = s1>2dx + 1

y = 2x - 2.

 x = 2y - 2.

 2y = x + 2

 y =
1
2

 x + 1

y =
1
2

 x + 1,

ƒ -1y = ƒ -1sxd

x = ƒ -1s ydy = ƒsxd

ƒ -1
y = x .ƒ -1 .

ƒ -1sxd .

ƒ -1sxdƒ -1 .
y = x .

1.6 Inverse Functions and Logarithms 43

x

y

0

y � x2, x � 0

y � x

y � �x

FIGURE 1.63 The functions 
and are inverses of one
another (Example 4).

y = x2, x Ú 0,
y = 1x

x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 1.62 Graphing
and 

together shows the graphs’ symmetry with
respect to the line (Example 3).y = x

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

DEFINITION The logarithm function with base a, , is the inverse
of the base a exponential function y = ax (a 7 0, a Z 1).

y = loga x
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The domain of is the range of The range of is the do-
main of 

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions with 
Figure 1.64a shows the graph of The graph of increases rap-
idly for so its inverse, increases slowly for 

Because we have no technique yet for solving the equation for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of by reflecting the graph of the exponential

across the line Figure 1.64 shows the graphs for and 
Logarithms with base 2 are commonly used in computer science. Logarithms with

base e and base 10 are so important in applications that calculators have special keys for
them. They also have their own special notation and names:

is written as

is written as

The function is called the natural logarithm function, and is
often called the common logarithm function. For the natural logarithm,

y = log xy = ln  x

log x.log10 x

ln x.loge x

a = e.a = 2y = x.y = ax
y = loga x

y = ax
x 7 1.y = loga x,x 7 0,

y = ax, a 7 1,y = log2 x.
a 7 1.

ax.
(- q , q ),loga xax.(0, q ),loga x

44 Chapter 1: Functions

ln x = y 3  ey
= x.

x

y

1
2

0 1 2

y � log2x

y � 2x

y � x

(a)

ln e = 1

HISTORICAL BIOGRAPHY*

John Napier
(1550–1617)

In particular, if we set we obtainx = e,

because 

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in
arithmetic calculation before the modern electronic computer. What made them so useful
is that the properties of logarithms reduce multiplication of positive numbers to addition of
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case
when r is an irrational number cannot be dealt with properly until Chapter 4. We also es-
tablish the validity of the rules for logarithmic functions with any base a in Chapter 7.

e1
= e.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any numbers
and the natural logarithm satisfies the following rules:

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule: Rule 2 with

4. Power Rule: ln xr
= r ln x

b = 1ln 
1
x = - ln x

ln 
b
x = ln b - ln x

ln bx = ln b + ln x

x 7 0,b 7 0

*To learn more about the historical figures mentioned in the text and the development of many major ele-
ments and topics of calculus, visit www.aw.com/thomas.

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y � ln x

y � ex

(b)

FIGURE 1.64 (a) The graph of and its
inverse, (b) The graph of and its
inverse, ln .x

exlog2 x.
2x
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EXAMPLE 5 Here are examples of the properties in Theorem 1.

(a) Product Rule

(b) Quotient Rule

(c) Reciprocal Rule

Power Rule

Because and are inverses, composing them in either order gives the identity function.loga xax

 = - ln 23
= -3 ln 2

ln 
1
8

= - ln 8

ln 
x + 1
2x - 3

= ln (x + 1) - ln (2x - 3)

ln 4 + ln sin x = ln (4 sin x)

1.6 Inverse Functions and Logarithms 45

Inverse Properties for and 

1. Base a:

2. Base e: x 7 0ln ex
= x,e ln x

= x,

a 7 0, a Z 1, x 7 0loga ax
= x,a loga x

= x,

loga xax

Every exponential function is a power of the natural exponential function.

That is, is the same as raised to the power for k = ln a.ln a: ax
= ekxexax

ax
= ex ln a

Substituting for x in the equation enables us to rewrite as a power of e:

Substitute for x in

Power Rule for logs

Exponent rearranged

Thus, the exponential function is the same as for k = ln a.ekxax

 = e (ln a) x.

 = ex ln a

x = e ln x.axax
= e ln (ax)

axx = e ln xax

For example,

, and

Returning once more to the properties of and we have

Inverse Property for and 

Power Rule for logarithms, with

Rewriting this equation as shows that every logarithmic function is a
constant multiple of the natural logarithm This allows us to extend the algebraic prop-
erties for to For instance, loga bx = loga b + loga x.loga x.ln x

ln x.
loga x = (ln x)>(ln a)

r = loga x = (loga x)(ln a).

loga xaxln x = ln (a loga x)

loga x,ax

5- 3x
= e (ln 5) ( - 3x)

= e - 3x ln 5. 2x
= e (ln 2) x

= ex ln 2

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

(a 7 0, a Z 1)loga x =
ln x
ln a

Applications

In Section 1.5 we looked at examples of exponential growth and decay problems. Here we
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6 If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:24 PM  Page 45



Solution From Example 1, Section 1.5 with and , the amount in
the account at any time t in years is so we need to solve the equation

Thus we have

Divide by 1000.

Take logarithms of both sides.

Power Rule

Values obtained by calculator

The amount in the account will reach $2500 in 18 years, when the annual interest payment
is deposited for that year.

EXAMPLE 7 The half-life of a radioactive element is the time required for half of the
radioactive nuclei present in a sample to decay. It is a remarkable fact that the half-life is a
constant that does not depend on the number of radioactive nuclei initially present in the
sample, but only on the radioactive substance.

To see why, let be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time t will be We seek the value of t at
which the number of radioactive nuclei present equals half the original number:

Reciprocal Rule for logarithms

(1)

This value of t is the half-life of the element. It depends only on the value of k; the number
does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in
days rather than years. The number of radioactive atoms remaining after t days in a sample
that starts with radioactive atoms is

The element’s half-life is

Eq. (1)

The k from polonium’s decay equation

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Section
1.3. These functions are not one-to-one (their values repeat periodically). However, we can
restrict their domains to intervals on which they are one-to-one. The sine function 

 L 139 days.

 =
ln 2

5 * 10-3

Half-life =
ln 2
k

y = y0 e-5 * 10-3 t.

y0

y0

t =
ln 2

k
.

-kt = ln 
1
2

= - ln 2

e-kt
=

1
2

y0 e-kt
=

1
2

 y0

y = y0 e-kt .
y0

 t =
ln 2.5

ln 1.0525
L 17.9

t ln 1.0525 = ln 2.5

ln (1.0525)t
= ln 2.5

 (1.0525)t
= 2.5

1000(1.0525)t
= 2500.

1000(1.0525)t,
r = 0.0525P = 1000
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increases from at to at By restricting its domain to the inter-
val we make it one-to-one, so that it has an inverse (Figure 1.65).
Similar domain restrictions can be applied to all six trigonometric functions.

sin-1 x[-p>2, p>2]
x = p>2.+1x = -p>2-1

1.6 Inverse Functions and Logarithms 47

Domain:
Range:

x

y

1–1

x � sin y

�
2

�
2

–

y � sin–1x
–1 � x � 1

–�/2 � y � �/2

FIGURE 1.65 The graph of y = sin-1 x.

0

1

�
2

– �
2

csc x

x

y

0

1

��
2

sec x

x

y

0 � �
2

cot x

x

y

tan x

x

y

0 �
2

�
2

–0 � �
2

cos x

x

y

x

y

0 �
2

�
2

–

sin x

Domain: 
Range: [-1, 1]

[-p>2, p>2]
y = sin x

Domain: 
Range: [-1, 1]

[0, p]
y = cos x

Domain: 
Range: s - q , q d

s -p>2, p>2d
y = tan x

Domain: 
Range: s - q , q d

s0, pd
y = cot x

Domain: 
Range: s - q , -1] ´ [1, q d

[0, p>2d ´ sp>2, p]
y = sec x

Domain: 
Range: s - q , -1] ´ [1, q d

[-p>2, 0d ´ s0, p>2]
y = csc x

Domain restrictions that make the trigonometric functions one-to-one

Since these restricted functions are now one-to-one, they have inverses, which we de-
note by

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

Caution The in the expressions for the inverse means “inverse.” It does not mean
reciprocal. For example, the reciprocal of sin x is 

The graphs of the six inverse trigonometric functions are shown in Figure 1.66. We
can obtain these graphs by reflecting the graphs of the restricted trigonometric functions
through the line We now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in ra-
dians) that belong to restricted domains of the sine and cosine functions.

y = x.

ssin xd-1
= 1>sin x = csc x .

-1

 y = csc-1 x or  y = arccsc x

 y = sec-1 x or  y = arcsec x

 y = cot-1 x or  y = arccot x

 y = tan-1 x or  y = arctan x

y = cos-1 x or y = arccos x

 y = sin-1 x or  y = arcsin x

The “Arc” in Arcsine 
and Arccosine
The accompanying figure gives a
geometric interpretation of 
and for radian angles in the
first quadrant. For a unit circle, the
equation becomes so
central angles and the arcs they subtend
have the same measure. If 
then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc
whose sine is x.”

x = sin y ,

s = u ,s = ru

y = cos-1 x
y = sin-1 x

Arc whose sine is x

Arc whose
cosine is x

x2 1 y2 5 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1
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The graph of (Figure 1.67b) is symmetric about the origin (it lies along the
graph of ). The arcsine is therefore an odd function:

(2)

The graph of (Figure 1.68b) has no such symmetry.

EXAMPLE 8 Evaluate (a) and (b)

Solution

(a) We see that

because and belongs to the range of the arcsine
function. See Figure 1.69a.

(b) We have

because and belongs to the range of the arccosine
function. See Figure 1.69b.

[0, p]2p>3cos (2p>3) = -1>2
cos-1 a-

1
2
b =

2p
3

[-p>2, p>2]p>3sin (p>3) = 23>2
sin-1 a23

2
b =

p
3

cos-1 a-
1
2
b .sin-1 a23

2
b

y = cos-1 x

sin-1s -xd = -sin-1 x .

x = sin y
y = sin-1 x
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x

y

�
2

�
2

–

1–1

(a)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

y � sin–1x

x

y

�

�

2

1–1

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

y � cos–1x

x

y

(c)

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

1–1–2 2

�
2

�
2

–

y � tan–1x

x

y

(d)

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

1–1–2 2

y � sec–1x

�

�
2

�
2

x

y

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

(e)

1–1–2 2

�
2

�
2

–

y � csc–1x

x

y

Domain:
Range: 0 � y � �

(f )

�

�
2

1–1–2 2

y � cot–1x

–∞ � x � ∞

FIGURE 1.66 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y � cos�1 x is the number in [0, p]  for which cos y = x .

 y � sin�1 x is the number in [-p>2, p>2]  for which  sin y = x .

x

y

x

y

1

–1
0

0 1–1

(a)

(b)

�
2

�
2

�
2

–

�
2

–

y � sin x, �
2

�
2

– � x �

Domain:
Range:

[–�/2, �/2]
[–1, 1] 

x � sin y

y � sin–1x
Domain:
Range:

[–1, 1] 
[–�/2, �/2]

FIGURE 1.67 The graphs of 
(a) and 
(b) its inverse, The graph of

obtained by reflection across the
line is a portion of the curve
x = sin y .

y = x ,
sin-1 x ,

y = sin-1 x .
y = sin x, -p>2 … x … p>2,
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Using the same procedure illustrated in Example 8, we can create the following table of
common values for the arcsine and arccosine functions.

1.6 Inverse Functions and Logarithms 49

FIGURE 1.69 Values of the arcsine and arccosine functions
(Example 8).

x

y

�
3

0 1

2 �3

�
3

sin �
�3
2

�
3

sin–1 �
�3
2

(a)

0–1
x

y

�3
2

p
3
2

p
3
2–⎛

⎝
⎛
⎝

cos–1 1
2

�

p
3
2cos � –1

2
⎛
⎝

⎛
⎝

(b)

x

1 2

5p>6-23>2
3p>4-22>2
2p>3-1>2
p>3>
p>422>2
p>623>2

cos-1 xx

1 2

-p>3-23>2
-p>4-22>2
-p>6-1>2
p>6>
p>422>2
p>323>2

sin-1 x

EXAMPLE 9 During an airplane flight from Chicago to St. Louis, the navigator deter-
mines that the plane is 12 mi off course, as shown in Figure 1.70. Find the angle a for a
course parallel to the original correct course, the angle b, and the drift correction angle

Solution From Figure 1.70 and elementary geometry, we see that and
so

Identities Involving Arcsine and Arccosine

As we can see from Figure 1.71, the arccosine of x satisfies the identity

(3)

or

(4)

Also, we can see from the triangle in Figure 1.72 that for 

(5)sin-1 x + cos-1 x = p>2.

x 7 0,

cos-1 s -xd = p - cos-1 x .

cos-1 x + cos-1s -xd = p ,

 c = a + b L 15°.

 b = sin-1 
12
62

L 0.195 radian L 11.2°

 a = sin-1 
12
180

L 0.067 radian L 3.8°

62 sin b = 12,
180 sin a = 12

c = a + b .

Chicago

Springfield

Plane
St. Louis

62
61 12

180

179

a

b

c

FIGURE 1.70 Diagram for drift
correction (Example 9), with distances
rounded to the nearest mile (drawing not
to scale).

FIGURE 1.71 and are
supplementary angles (so their sum is ).p

cos-1s -xdcos-1 x

x

y

0–x x–1 1

cos–1x

cos–1(–x)

x

y

x

y

0 � �
2

y � cos x, 0 � x � �

Domain:
Range:

[0, �]
[–1, 1] 

y � cos–1x
Domain:
Range:

[–1, 1] 
[0, �]

1

–1

(a)

(b)

�

�

2

0–1 1

x � cos y

FIGURE 1.68 The graphs of 
(a) and 
(b) its inverse, The graph of

obtained by reflection across the
line is a portion of the curve
x = cos y .

y = x ,
cos-1 x ,

y = cos-1 x .
0 … x … p ,y = cos x,
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Equation (5) holds for the other values of x in as well, but we cannot conclude this
from the triangle in Figure 1.72. It is, however, a consequence of Equations (2) and (4)
(Exercise 74).

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in
Section 3.9. There we develop additional properties of the inverse trigonometric functions
in a calculus setting using the identities discussed here.

[-1, 1]
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1
x

cos–1x

sin–1x

FIGURE 1.72 and are
complementary angles (so their sum is ).p>2

cos-1 xsin-1 x

Exercises 1.6

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and
which are not?

1. 2.

3. 4.

5. 6.

In Exercises 7–10, determine from its graph if the function is 
one-to-one.

7.

8.

9.

10. ƒsxd = e2 - x2, x … 1

x2, x 7 1

ƒsxd = d 1 -

x
2

, x … 0

x
x + 2

, x 7 0

ƒsxd = e2x + 6, x … -3

x + 4, x 7 -3

ƒsxd = e3 - x, x 6 0

3, x Ú 0

x

y

y � x1/3

x

y

0

y � 1
x

x

y

y � int x

y

x

y � 2�x�

x

y

0–1 1

y � x4 � x2

x

y

0

y � �3x3

Graphing Inverse Functions
Each of Exercises 11–16 shows the graph of a function 
Copy the graph and draw in the line Then use symmetry with
respect to the line to add the graph of to your sketch. (It is
not necessary to find a formula for ) Identify the domain and
range of 

11. 12.

13. 14.

15. 16.

17. a. Graph the function What
symmetry does the graph have?

b. Show that ƒ is its own inverse. (Remember that if
)

18. a. Graph the function What symmetry does the
graph have?

b. Show that ƒ is its own inverse.

ƒsxd = 1>x .

x Ú 0.
2x2

= x

ƒsxd = 21 - x2, 0 … x … 1.

x

y

0

1

–1 3

–2

x � 1,    �1 � x � 0

�2 �    x,    0 � x � 3
f (x) � 2

3

x

y

0

6

3

f (x) 5 6 2 2x,
0 � x � 3

�
2

�
2

–

y � f (x) � tan x,

� x �

x

y

0 �
2

�
2

–x

y

0 �
2

�
2

–

1

–1

�
2

�
2

–

y � f (x) � sin x,

� x �

x

y

10

1
y � f (x) � 1 � , x � 01

x

x

y

10

1

y � f (x) � , x � 01
x2 � 1

ƒ -1 .
ƒ -1 .

ƒ -1y = x
y = x .

y = ƒsxd .
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Formulas for Inverse Functions
Each of Exercises 19–24 gives a formula for a function 
and shows the graphs of ƒ and Find a formula for in each
case.

19. 20.

21. 22.

23. 24.

Each of Exercises 25–34 gives a formula for a function In
each case, find and identify the domain and range of As a
check, show that 

25. 26.

27. 28.

29. 30.

31. 32.

33.

(Hint: Complete the square.)

34. ƒsxd = s2x3
+ 1d1>5

ƒsxd = x2
- 2x, x … 1

ƒsxd =

2x

2x - 3
ƒsxd =

x + 3
x - 2

ƒsxd = 1>x3, x Z 0ƒsxd = 1>x2, x 7 0

ƒsxd = s1>2dx - 7>2ƒsxd = x3
+ 1

ƒsxd = x4, x Ú 0ƒsxd = x5

ƒsƒ -1sxdd = ƒ -1sƒsxdd = x .
ƒ -1 .ƒ -1sxd

y = ƒsxd .

x

y

0

1

1

y � f –1(x)

y � f (x)

x

y

0

1

–1

1–1

y � f (x)

y � f –1(x)

ƒsxd = x2>3, x Ú 0ƒsxd = sx + 1d2, x Ú -1

x

y

1

10

y � f (x)

y � f –1(x)

x

y

1

1–1

–1

y � f (x)

y � f –1(x)

ƒsxd = x2
- 2x + 1, x Ú 1ƒsxd = x3

- 1

x

y

1

10

y � f –1(x)

y � f (x)

x

y

1

10

y � f (x)

y � f –1(x)

ƒsxd = x2, x … 0ƒsxd = x2
+ 1, x Ú 0

ƒ -1ƒ -1 .
y = ƒsxd

1.6 Inverse Functions and Logarithms 51

Inverses of Lines
35. a. Find the inverse of the function where m is a con-

stant different from zero.

b. What can you conclude about the inverse of a function
whose graph is a line through the origin with a

nonzero slope m?

36. Show that the graph of the inverse of where 
m and b are constants and is a line with slope 1 m and 
y-intercept 

37. a. Find the inverse of Graph ƒ and its inverse
together. Add the line to your sketch, drawing it with
dashes or dots for contrast.

b. Find the inverse of (b constant). How is the
graph of related to the graph of ƒ?

c. What can you conclude about the inverses of functions whose
graphs are lines parallel to the line 

38. a. Find the inverse of Graph the line
together with the line At what angle do

the lines intersect?

b. Find the inverse of (b constant). What angle
does the line make with the line 

c. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line 

Logarithms and Exponentials
39. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4 9)

c. ln (1 2) d.

e. f.

40. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1 125) b. ln 9.8

c. d. ln 1225

e. ln 0.056 f.

Use the properties of logarithms to simplify the expressions in Exer-
cises 41 and 42.

41. a. b.

c.

42. a. b.

c.

Find simpler expressions for the quantities in Exercises 43–46.

43. a. b. c.

44. a. b. c.

45. a. b. c.

46. a. b. c.

In Exercises 47–52, solve for y in terms of t or x, as appropriate.

47. 48.

49. 50.

51.

52. ln s y2
- 1d - ln s y + 1d = ln ssin xd

ln s y - 1d - ln 2 = x + ln x

ln s1 - 2yd = tln s y - 40d = 5t

ln y = - t + 5ln y = 2t + 4

ln se2 ln xdln se sexddln sesec ud
ln se-x2

- y2

dln sln eed2 ln 2e

e ln px - ln 2e-ln 0.3e ln sx2
+ y2d

e ln x - ln ye-ln x2

e ln 7.2

3 ln23 t2
- 1 - ln st + 1d

ln s8x + 4d - 2 ln 2ln sec u + ln cos u

1
2

 ln s4t4d - ln 2

ln s3x2
- 9xd + ln a 1

3x
bln sin u - ln asin u

5
b

sln 35 + ln s1>7dd>sln 25d
ln 727

>
ln 213.5ln 322

ln23 9>
>

y = x?

y = x?y = -x + b
ƒsxd = -x + b

y = x .y = -x + 1
ƒsxd = -x + 1.

y = x?

ƒ -1
ƒsxd = x + b

y = x
ƒsxd = x + 1.

-b>m .
>m Z 0,

ƒsxd = mx + b ,

y = ƒsxd

ƒsxd = mx ,
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In Exercises 53 and 54, solve for k.

53. a. b. c.

54. a. b. c.

In Exercises 55–58, solve for t.

55. a. b. c.

56. a. b. c.

57. 58.

Simplify the expressions in Exercises 59–62.

59. a. b. c.

d. e. f.

60. a. b. c.

d. e. f.

61. a. b. c.

62. a. b. c.

Express the ratios in Exercises 63 and 64 as ratios of natural loga-
rithms and simplify.

63. a. b. c.

64. a. b. c.

Arcsine and Arccosine
In Exercises 65–68, find the exact value of each expression.

65. a. b. c.

66. a. b. c.

67. a. b. arccos (0)

68. a. b.

Theory and Examples
69. If ƒ(x) is one-to-one, can anything be said about 

Is it also one-to-one? Give reasons for your answer.

70. If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said
about Is it also one-to-one? Give reasons for your
answer.

71. Suppose that the range of g lies in the domain of ƒ so that the
composite is defined. If ƒ and g are one-to-one, can any-
thing be said about Give reasons for your answer.ƒ � g?

ƒ � g

hsxd = 1>ƒsxd?

gsxd = -ƒsxd?

arcsin a-  
1

22
barcsin (-1)

arccos (-1)

cos-1 a23
2
bcos-1 a -1

22
bcos-1 a1

2
b

sin-1 a-23
2
bsin-1 a 1

22
bsin-1 a-1

2
b

log a b

log b a

log210  x

log22  x
log 9 x

log 3 x

log x a

log x2 a

log 2 x

log 8 x

log 2 x

log 3 x

log4 s2ex sin xdloge sexd25log5 s3x2d

log2 se sln 2dssin xdd9log3 x2log4 x

log3 a1
9
blog121 11log11 121

plogp 710log10 s1>2d2log2 3

log4 a1
4
blog323log4 16

1.3log1.3 758log8225log5 7

e sx2de s2x + 1d
= ete2t

= x2

e sln 2dt
=

1
2

ekt
=

1
10

e-0.01t
= 1000

e sln 0.2dt
= 0.4ekt

=

1
2

e-0.3t
= 27

e sln 0.8dk
= 0.880ek

= 1e5k
=

1
4

ek>1000
= a100e10k

= 200e2k
= 4
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72. If a composite is one-to-one, must g be one-to-one? Give
reasons for your answer.

73. Find a formula for the inverse function and verify that

a. b.

74. The identity Figure 1.72 establishes
the identity for To establish it for the rest of 
verify by direct calculation that it holds for 0, and 
Then, for values of x in let and apply
Eqs. (3) and (5) to the sum 

75. Start with the graph of Find an equation of the graph
that results from

a. shifting down 3 units.

b. shifting right 1 unit.

c. shifting left 1, up 3 units.

d. shifting down 4, right 2 units.

e. reflecting about the y-axis.

f. reflecting about the line 

76. Start with the graph of Find an equation of the graph
that results from

a. vertical stretching by a factor of 2.

b. horizontal stretching by a factor of 3.

c. vertical compression by a factor of 4.

d. horizontal compression by a factor of 2.

77. The equation has three solutions: and one
other. Estimate the third solution as accurately as you can by
graphing.

78. Could possibly be the same as for ? Graph the two
functions and explain what you see.

79. Radioactive decay The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

a. Express the amount of substance remaining as a function of
time t.

b. When will there be 1 gram remaining?

80. Doubling your money Determine how much time is required
for a $500 investment to double in value if interest is earned at the
rate of 4.75% compounded annually.

81. Population growth The population of Glenbrook is 375,000
and is increasing at the rate of 2.25% per year. Predict when the
population will be 1 million.

82. Radon-222 The decay equation for radon-222 gas is known to
be with t in days. About how long will it take the
radon in a sealed sample of air to fall to 90% of its original value?

y = y0 e-0.18t ,

x 7 02ln xx ln 2

x = 2, x = 4,x2
= 2x

y = ln x.

y = x.

y = ln x.

sin-1s -ad + cos-1s -ad .
x = -a, a 7 0,s -1, 0d ,

-1.x = 1,
[-1, 1] ,0 6 x 6 1.

sin-1 x + cos-1 x = P>2
ƒ(x) =

50
1 + 1.1-xƒ(x) =

100
1 + 2-x

(ƒ -1 � ƒ)(x) = x.(ƒ � ƒ -1)(x) =

ƒ -1

ƒ � g

T

T

Chapter 1 Questions to Guide Your Review

1. What is a function? What is its domain? Its range? What is an ar-
row diagram for a function? Give examples.

2. What is the graph of a real-valued function of a real variable?
What is the vertical line test?

3. What is a piecewise-defined function? Give examples.

4. What are the important types of functions frequently encountered
in calculus? Give an example of each type.
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5. What is meant by an increasing function? A decreasing function?
Give an example of each.

6. What is an even function? An odd function? What symmetry
properties do the graphs of such functions have? What advantage
can we take of this? Give an example of a function that is neither
even nor odd.

7. If ƒ and g are real-valued functions, how are the domains of
and related to the domains of ƒ and g?

Give examples.

8. When is it possible to compose one function with another? Give
examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

9. How do you change the equation to shift its graph verti-
cally up or down by Horizontally to the left or right?
Give examples.

10. How do you change the equation to compress or stretch
the graph by a factor Reflect the graph across a coordi-
nate axis? Give examples.

11. What is the standard equation of an ellipse with center (h, k)?
What is its major axis? Its minor axis? Give examples.

12. What is radian measure? How do you convert from radians to de-
grees? Degrees to radians?

13. Graph the six basic trigonometric functions. What symmetries do
the graphs have?

14. What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?

15. Starting with the identity and the formulas
for and show how a variety of other
trigonometric identities may be derived.

16. How does the formula for the general sine function 
relate to the shifting, stretching,A sin ss2p>Bdsx - Cdd + D

ƒsxd =

sin sA + Bd ,cos sA + Bd
sin2 u + cos2 u = 1

c 7 1?
y = ƒsxd

ƒ k ƒ  units?
y = ƒsxd

ƒ>gƒ + g, ƒ - g, ƒg ,

Chapter 1 Practice Exercises 53

compressing, and reflection of its graph? Give examples.
Graph the general sine curve and identify the constants A, B, C,
and D.

17. Name three issues that arise when functions are graphed using a
calculator or computer with graphing software. Give examples.

18. What is an exponential function? Give examples. What laws of
exponents does it obey? How does it differ from a simple power
function like ? What kind of real-world phenomena are
modeled by exponential functions?

19. What is the number e, and how is it defined? What are the domain
and range of ? What does its graph look like? How do
the values of relate to and so on?

20. What functions have inverses? How do you know if two functions
ƒ and g are inverses of one another? Give examples of functions
that are (are not) inverses of one another.

21. How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

22. What procedure can you sometimes use to express the inverse of a
function of x as a function of x?

23. What is a logarithmic function? What properties does it satisfy?
What is the natural logarithm function? What are the domain and
range of ? What does its graph look like?

24. How is the graph of related to the graph of ln x? What truth
is there in the statement that there is really only one exponential
function and one logarithmic function?

25. How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

loga x

y = ln x

x2, x3,ex
ƒ(x) = ex

ƒ(x) = xn

Chapter 1 Practice Exercises

Functions and Graphs
1. Express the area and circumference of a circle as functions of the

circle’s radius. Then express the area as a function of the circum-
ference.

2. Express the radius of a sphere as a function of the sphere’s sur-
face area. Then express the surface area as a function of the
volume.

3. A point P in the first quadrant lies on the parabola Ex-
press the coordinates of P as functions of the angle of inclination
of the line joining P to the origin.

4. A hot-air balloon rising straight up from a level field is tracked by
a range finder located 500 ft from the point of liftoff. Express the
balloon’s height as a function of the angle the line from the range
finder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

5. 6.

7. 8. y = e-x2

y = x2
- 2x - 1

y = x2>5y = x1>5

y = x2 .

In Exercises 9–16, determine whether the function is even, odd, or neither.

9. 10.

11. 12.

13. 14.

15. 16.

17. Suppose that ƒ and g are both odd functions defined on the entire
real line. Which of the following (where defined) are even? odd?

a. b. c. d. e.

18. If show that is an even
function.

In Exercises 19–28, find the (a) domain and (b) range.

19. 20.

21. 22.

23. 24.

25. 26. y = x2>5y = 2 sin s3x + pd - 1

y = tan s2x - pdy = 2e-x
- 3

y = 32 - x
+ 1y = 216 - x2

y = -2 + 21 - xy = ƒ x ƒ - 2

gsxd = ƒsx + adƒsa - xd = ƒsa + xd,
ƒ g ƒgssec xdƒssin xdƒ3ƒg

y = x cos xy = x + cos x

y = x - sin xy =

x4
+ 1

x3
- 2x

y = sec x tan xy = 1 - cos x

y = x5
- x3

- xy = x2
+ 1
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27. 28.

29. State whether each function is increasing, decreasing, or neither.

a. Volume of a sphere as a function of its radius

b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric
pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

30. Find the largest interval on which the given function is 
increasing.

a. b.

c. d.

Piecewise-Defined Functions
In Exercises 31 and 32, find the (a) domain and (b) range.

31.

32.

In Exercises 33 and 34, write a piecewise formula for the function.

33. 34.

Composition of Functions
In Exercises 35 and 36, find

a. b.

c. d.

35.

36.

In Exercises 37 and 38, (a) write formulas for and and
find the (b) domain and (c) range of each.

37.

38.

For Exercises 39 and 40, sketch the graphs of ƒ and 

39.

40. ƒsxd = b x + 1, -2 … x 6 0

x - 1, 0 … x … 2

ƒsxd = •
-x - 2, -4 … x … -1

-1, -1 6 x … 1

x - 2, 1 6 x … 2

ƒ � ƒ.

ƒsxd = 2x, g sxd = 21 - x

ƒsxd = 2 - x2, g sxd = 2x + 2

g � ƒƒ � g

ƒsxd = 2 - x, g sxd = 23 x + 1

ƒsxd =

1
x , g sxd =

1

2x + 2

sg � gdsxd .sƒ � ƒdsxd .

sg � ƒds2d .sƒ � gds -1d .

x

5
(2, 5)

0 4

y

x

1

10 2

y

y = •
-x - 2, -2 … x … -1

  x, -1 6 x … 1

-x + 2, 1 6 x … 2

y = e2-x, -4 … x … 0

2x, 0 6 x … 4

Rsxd = 22x - 1gsxd = s3x - 1d1>3
ƒsxd = sx + 1d4ƒsxd = ƒ x - 2 ƒ + 1

y = -1 + 23 2 - xy = ln sx - 3d + 1

54 Chapter 1: Functions

Composition with absolute values In Exercises 41–48, graph 
and together. Then describe how applying the absolute value func-
tion in affects the graph of .

41. x

42.

43.

44.

45.

46.

47.

48. sin x

Shifting and Scaling Graphs
49. Suppose the graph of g is given. Write equations for the graphs

that are obtained from the graph of g by shifting, scaling, or 
reflecting, as indicated.

a. Up unit, right 3 

b. Down 2 units, left 

c. Reflect about the y-axis 

d. Reflect about the x-axis 

e. Stretch vertically by a factor of 5 

f. Compress horizontally by a factor of 5 

50. Describe how each graph is obtained from the graph of

a. b.

c. d.

e. f.

In Exercises 51–54, graph each function, not by plotting points, but
by starting with the graph of one of the standard functions presented
in Figures 1.15–1.17, and applying an appropriate transformation.

51. 52.

53. 54.

Trigonometry
In Exercises 55–58, sketch the graph of the given function. What is
the period of the function?

55. 56.

57. 58.

59. Sketch the graph 

60. Sketch the graph y = 1 + sin ax +

p

4
b .

y = 2 cos ax -

p

3
b .

y = cos 
px
2

y = sin px

y = sin 
x
2

y = cos 2x

y = s -5xd1>3y =

1
2x2 + 1

y = 1 -

x
3

y = -A1 +

x
2

y = -3ƒsxd +

1
4

y = ƒ ax
3
b - 4

y = ƒs2x + 1dy = ƒs -3xd
y = ƒs4xdy = ƒsx - 5d

y = ƒsxd.

2
3

1
2

sin ƒ x ƒ

2ƒ x ƒ2x

1
ƒ x ƒ

1
x

ƒ 4 - x2
ƒ4 - x2

ƒ x2
+ x ƒx2

+ x

ƒ x3
ƒx3

ƒ x ƒ
2x2

ƒ x ƒ

ƒ2sxdƒ1sxd

ƒ1ƒ2

ƒ2

ƒ1

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:24 PM  Page 54



In Exercises 61–64, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are a, b, and c, respectively.

61. a. Find a and b if 

b. Find a and c if 

62. a. Express a in terms of A and c.

b. Express a in terms of A and b.

63. a. Express a in terms of B and b.

b. Express c in terms of A and a.

64. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

65. Height of a pole Two wires stretch from the top T of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

66. Height of a weather balloon Observers at positions A and B
2 km apart simultaneously measure the angle of elevation of a
weather balloon to be 40° and 70°, respectively. If the balloon is
directly above a point on the line segment between A and B, find
the height of the balloon.

67. a. Graph the function 

b. What appears to be the period of this function?

c. Confirm your finding in part (b) algebraically.

68. a. Graph 

b. What are the domain and range of ƒ?

c. Is ƒ periodic? Give reasons for your answer.

Transcendental Functions
In Exercises 69–72, find the domain of each function.

69. a. b.

70. a. b.

71. a. b.

72. a. b.

73. If and find the functions
and their domains.ƒ � g, g � ƒ, ƒ � ƒ, g � g,

g(x) = 4 - x2,ƒ(x) = ln x

ƒ(x) = 2p - sin-1 xh(x) = ln (cos-1 x)

ƒ(x) = cos-1 (2x - 1)h(x) = sin-1 ax
3
b

g(x) = ln ƒ 4 - x2
ƒƒ(x) = e1>x2

g(x) = ex
+ ln 2xƒ(x) = 1 + e-sin x

ƒsxd = sin s1>xd .

ƒsxd = sin x + cossx>2d .

b = 2, B = p>3.

c = 2, B = p>3.
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74. Determine whether ƒ is even, odd, or neither.

a. b.

c. d.

75. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) to-
gether for What is going on? Explain.

76. Graph for and 5. How does
the graph change when c changes?

77. Graph in the window 
Explain what you see. How could you change the formula to turn
the arches upside down?

78. Graph the three functions and to-
gether on the same screen for and 20. For large values
of x, which of these functions has the largest values and which has
the smallest values?

Theory and Examples
In Exercises 79 and 80, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers and
comment on any differences you see.

79. a. b.

80. a. b.

81. Use a graph to decide whether ƒ is one-to-one.

a. b.

82. Use a graph to find to 3 decimal places the values of x for which

83. a. Show that and are inverses of one
another.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the picture
shows the required symmetry in the line 

84. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the picture
shows the required symmetry in the line y = x.

(-2, -2).

k(x) = (4x)1>3h(x) = x3>4
y = x.

(-1, -1).

g(x) = 23 xƒ(x) = x3
ex

7 10,000,000.

ƒ(x) = x3
+

x
2

ƒ(x) = x3
-

x
2

y = cos (cos-1 x)y = cos-1 (cos x)

y = sin (sin-1 x)y = sin-1 (sin x)

a = 2, 10,
y = loga xy = xa, y = ax,

0 … x … 22, -2 … y … 0.y = ln ƒ sin x ƒ

c = -4, -2, 0, 3,y = ln (x2
+ c)

0 6 x … 10.

ƒ(x) = e ln ƒx ƒ + 1ƒ(x) = ƒ ex
ƒ

ƒ(x) = 1 + sin-1 (-x)ƒ(x) = e-x2

Chapter 1 Additional and Advanced Exercises

Functions and Graphs
1. Are there two functions ƒ and g such that Give

reasons for your answer.

2. Are there two functions ƒ and g with the following property? The
graphs of ƒ and g are not straight lines but the graph of is a
straight line. Give reasons for your answer.

3. If ƒ(x) is odd, can anything be said of What if
ƒ is even instead? Give reasons for your answer.

4. If g (x) is an odd function defined for all values of x, can anything
be said about g (0)? Give reasons for your answer.

g sxd = ƒsxd - 2?

ƒ � g

ƒ � g = g � ƒ ?
5. Graph the equation 

6. Graph the equation 

Derivations and Proofs
7. Prove the following identities.

a. b.
1 - cos x
1 + cos x

= tan2 
x
2

1 - cos x
sin x

=

sin x
1 + cos x

y + ƒ y ƒ = x + ƒ x ƒ .

ƒ x ƒ + ƒ y ƒ = 1 + x .

T

T

T

T

T

T

T

T

T
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8. Explain the following “proof without words” of the law of cosines.
(Source: “Proof without Words: The Law of Cosines,” Sidney H.
Kung, Mathematics Magazine, Vol. 63, No. 5, Dec. 1990, p. 342.)

9. Show that the area of triangle ABC is given by

10. Show that the area of triangle ABC is given by 

where is the
semiperimeter of the triangle.

11. Show that if ƒ is both even and odd, then for every x in
the domain of ƒ.

12. a. Even-odd decompositions Let ƒ be a function whose do-
main is symmetric about the origin, that is, belongs to the
domain whenever x does. Show that ƒ is the sum of an even
function and an odd function:

where E is an even function and O is an odd function. (Hint:
Let Show that so
that E is even. Then show that is odd.)

b. Uniqueness Show that there is only one way to write ƒ as
the sum of an even and an odd function. (Hint: One way is
given in part (a). If also where is
even and is odd, show that Then use
Exercise 11 to show that and )

Grapher Explorations—Effects of Parameters
13. What happens to the graph of as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

14. What happens to the graph of as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

Geometry
15. An object’s center of mass moves at a constant velocity along a

straight line past the origin. The accompanying figure shows the
coordinate system and the line of motion. The dots show positions
that are 1 sec apart. Why are the areas in the figure
all equal? As in Kepler’s equal area law (see Section 13.6), the

A5A2 , Á ,A1,

y

a Z 0

a Z 0

y = asx + bd3
+ c

a Z 0

a Z 0

y = ax2
+ bx + c

O = O1 .E = E1

E - E1 = O1 - O .O1

E1ƒsxd = E1sxd + O1sxd

O sxd = ƒsxd - Esxd
Es -xd = Esxd ,Esxd = sƒsxd + ƒs -xdd>2.

ƒsxd = Esxd + O sxd ,

-x

ƒsxd = 0

s = sa + b + cd>22sss - adss - bdss - cd

BA

C

ab

c

s1>2dab sin C = s1>2dbc sin A = s1>2dca sin B .

a a

a

c b

a � c
2a cos � � b

�
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line that joins the object’s center of mass to the origin sweeps out
equal areas in equal times.

16. a. Find the slope of the line from the origin to the midpoint P of
side AB in the triangle in the accompanying figure 

b. When is OP perpendicular to AB?

17. Consider the quarter-circle of radius 1 and right triangles ABE
and ACD given in the accompanying figure. Use standard area
formulas to conclude that

18. Let and What condition must be
satisfied by the constants a, b, c, d in order that 

for every value of x?

Theory and Examples
19. Domain and range Suppose that and 

Determine the domain and range of the function.

a. b.

20. Inverse functions Let

a. Give a convincing argument that ƒ is one-to-one.

b. Find a formula for the inverse of ƒ.

ad - bc Z 0 .c Z 0 ,ƒ(x) =

ax + b
cx + d

,

y = a logb (x - c) + dy = a(bc - x) + d

b 7 0.a Z 0, b Z 1,

sg � ƒdsxd
sƒ � gdsxd =

gsxd = cx + d.ƒsxd = ax + b

x

y

B

E

C(0, 1)

A (1, 0)
D

1

u

1
2

 sin u cos u 6

u

2
6

1
2

 
sin u

cos u
.

x

y

P

B(0, b)

A(a, 0)O

sa, b 7 0d .

x

y

0 5 10 15

Kilometers

5

10

K
ilo

m
et

er
s

A5

A4

A3
A2

A1

t � 6

t � 5

t � 1

t � 2

y�t

y�t
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21. Depreciation Smith Hauling purchased an 18-wheel truck for
$100,000. The truck depreciates at the constant rate of $10,000
per year for 10 years.

a. Write an expression that gives the value y after x years.

b. When is the value of the truck $55,000?

22. Drug absorption A drug is administered intravenously for
pain. The function

gives the number of units of the drug remaining in the body after t
hours.

a. What was the initial number of units of the drug administered?

b. How much is present after 2 hours?

c. Draw the graph of ƒ.

23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will
it take this single payment to grow to $5000?

24. The rule of 70 If you use the approximation (in
place of 0.69314 . . .), you can derive a rule of thumb that says,

ln 2 L 0.70

0 … t … 4ƒ(t) = 90 - 52 ln (1 + t),

Chapter 1 Technology Application Projects 57

“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5%
will double in about years. If you want it to double in
10 years instead, you have to invest it at Show how
the rule of 70 is derived. (A similar “rule of 72” uses 72 instead of
70, because 72 has more integer factors.)

25. For what does ? Give reasons for your answer.

26. a. If must 

b. If must 

Give reasons for your answers.

27. The quotient has a constant value. What value?
Give reasons for your answer.

28. vs. How does compare with
Here is one way to find out.

a. Use the equation to express ƒ(x) and
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in re-
lation to the signs and values of g.

loga b = sln bd>sln ad
gsxd = log2 sxd?

ƒsxd = logx s2dlog2 sxdlogx s2d

slog4 xd>slog2 xd

x = 1>2?sln xd>x = -2 ln 2 ,

x = 2?sln xd>x = sln 2d>2,

x (xx)
= (xx)xx 7 0

70>10 = 7%.
70>5 = 14

Chapter 1 Technology Application Projects

An Overview of Mathematica
An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

Mathematica/Maple Module:

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.

T

T
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58

2
LIMITS AND CONTINUITY

OVERVIEW Mathematicians of the seventeenth century were keenly interested in the study
of motion for objects on or near the earth and the motion of planets and stars. This study
involved both the speed of the object and its direction of motion at any instant, and they
knew the direction was tangent to the path of motion. The concept of a limit is fundamen-
tal to finding the velocity of a moving object and the tangent to a curve. In this chapter we
develop the limit, first intuitively and then formally. We use limits to describe the way a
function varies. Some functions vary continuously; small changes in x produce only small
changes in ƒ(x). Other functions can have values that jump, vary erratically, or tend to in-
crease or decrease without bound. The notion of limit gives a precise way to distinguish
between these behaviors.

2.1 Rates of Change and Tangents to Curves

Calculus is a tool to help us understand how functional relationships change, such as the
position or speed of a moving object as a function of time, or the changing slope of a
curve being traversed by a point moving along it. In this section we introduce the ideas of
average and instantaneous rates of change, and show that they are closely related to the
slope of a curve at a point P on the curve. We give precise developments of these impor-
tant concepts in the next chapter, but for now we use an informal approach so you will see
how they lead naturally to the main idea of the chapter, the limit. You will see that limits
play a major role in calculus and the study of change.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not
moving) near the surface of the earth and allowed to fall freely will fall a distance propor-
tional to the square of the time it has been falling. This type of motion is called free fall. It
assumes negligible air resistance to slow the object down, and that gravity is the only force
acting on the falling body. If y denotes the distance fallen in feet after t seconds, then
Galileo’s law is

where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the
constant is 4.9.)

A moving body’s average speed during an interval of time is found by dividing 
the distance covered by the time elapsed. The unit of measure is length per unit time:
kilometers per hour, feet (or meters) per second, or whatever is appropriate to the prob-
lem at hand.

y = 16t2,

HISTORICAL BIOGRAPHY

Galileo Galilei
(1564–1642)
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2.1 Rates of Change and Tangents to Curves 59

EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed

(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in dis-
tance, , divided by the length of the time interval, . (Increments like and are
reviewed in Appendix 3.) Measuring distance in feet and time in seconds, we have the
following calculations:

(a) For the first 2 sec:

(b) From sec 1 to sec 2:

We want a way to determine the speed of a falling object at a single instant instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at .
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2 Find the speed of the falling rock in Example 1 at and 

Solution We can calculate the average speed of the rock over a time interval 
having length as

(1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment 
by simply substituting because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at and 
When we do so, we see a pattern (Table 2.1).

t0 = 2.t0 = 1
h = 0,

t0

¢y

¢t
=

16st0 + hd2
- 16t0 

2

h
.

¢t = h ,
[t0 , t0 + h] ,

t = 2 sec.t = 1

t0

t0,

¢y

¢t
=

16s2d2
- 16s1d2

2 - 1
= 48 

ft
sec

¢y

¢t
=

16s2d2
- 16s0d2

2 - 0
= 32 

ft
sec

¢t¢y¢t¢y

TABLE 2.1 Average speeds over short time intervals 

Length of Average speed over Average speed over
time interval interval of length h interval of length h
h starting at starting at 

1 48 80

0.1 33.6 65.6

0.01 32.16 64.16

0.001 32.016 64.016

0.0001 32.0016 64.0016

t0 � 2t0 � 1

Average speed: 
¢y

¢t
=

16st0 + hd2
- 16t0 

2

h

[t0, t0 + h]

The average speed on intervals starting at seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft sec at Let’s confirm this algebraically.t0 = 1 sec.>

t0 = 1
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60 Chapter 2: Limits and Continuity

If we set and then expand the numerator in Equation (1) and simplify, we find that

For values of h different from 0, the expressions on the right and left are equivalent and the
average speed is We can now see why the average speed has the limiting
value as h approaches 0.

Similarly, setting in Equation (1), the procedure yields

for values of h different from 0. As h gets closer and closer to 0, the average speed has the
limiting value 64 ft sec when  as suggested by Table 2.1.

The average speed of a falling object is an example of a more general idea which we
discuss next.

Average Rates of Change and Secant Lines

Given an arbitrary function we calculate the average rate of change of y with
respect to x over the interval by dividing the change in the value of y,

by the length of the interval over which the
change occurs. (We use the symbol h for to simplify the notation here and later on.)¢x

¢x = x2 - x1 = h¢y = ƒsx2d - ƒsx1d ,
[x1, x2]

y = ƒsxd ,

t0 = 2 sec,>

¢y

¢t
= 64 + 16h

t0 = 2
32 + 16s0d = 32 ft>sec

32 + 16h ft>sec.

 =
32h + 16h2

h
= 32 + 16h .

 
¢y

¢t
=

16s1 + hd2
- 16s1d2

h
=

16s1 + 2h + h2d - 16
h

t0 = 1

DEFINITION The average rate of change of with respect to x over the
interval is

¢y

¢x
=

ƒsx2d - ƒsx1d
x2 - x1

=

ƒsx1 + hd - ƒsx1d
h

, h Z 0.

[x1, x2]
y = ƒsxd

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

�x � h

�y

x2x1

y � f (x)

FIGURE 2.1 A secant to the graph
Its slope is the

average rate of change of ƒ over the
interval [x1 , x2] .

¢y>¢x ,y = ƒsxd .
Geometrically, the rate of change of ƒ over is the slope of the line through the
points and (Figure 2.1). In geometry, a line joining two points of
a curve is a secant to the curve. Thus, the average rate of change of ƒ from to is iden-
tical with the slope of secant PQ. Let’s consider what happens as the point Q approaches
the point P along the curve, so the length h of the interval over which the change occurs
approaches zero.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it
rises or falls—its rate of change as the graph of a linear function. But what is meant by the
slope of a curve at a point P on the curve? If there is a tangent line to the curve at P—a
line that just touches the curve like the tangent to a circle—it would be reasonable to iden-
tify the slope of the tangent as the slope of the curve at P. So we need a precise meaning
for the tangent at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L
passes through P perpendicular to the radius at P (Figure 2.2). Such a line just touches the circle.
But what does it mean to say that a line L is tangent to some other curve C at a point P?

x2x1

Qsx2 , ƒsx2ddPsx1, ƒsx1dd
[x1, x2]

P

L

O

FIGURE 2.2 L is tangent to the
circle at P if it passes through P
perpendicular to radius OP.
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To define tangency for general curves, we need an approach that takes into account
the behavior of the secants through P and nearby points Q as Q moves toward P along the
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limiting value of the secant slope as Q approaches P along the curve.
(We clarify the limit idea in the next section.)

3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2.
The next example illustrates the geometric idea for the tangent to a curve.

2.1 Rates of Change and Tangents to Curves 61

P

Q
Secants

P

Tangent

Tangent

Q

Secants

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of
the secant slopes as from either side.Q : P

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601–1665)

EXAMPLE 3 Find the slope of the parabola at the point P(2, 4). Write an equa-
tion for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and nearby.
We then write an expression for the slope of the secant PQ and investigate what happens to
the slope as Q approaches P along the curve:

If then Q lies above and to the right of P, as in Figure 2.4. If then Q lies to
the left of P (not shown). In either case, as Q approaches P along the curve, h approaches
zero and the secant slope approaches 4. We take 4 to be the parabola’s slope at P.h + 4

h 6 0,h 7 0,

 =
h2

+ 4h
h

= h + 4.

 Secant slope =

¢y

¢x
=

s2 + hd2
- 22

h
=

h2
+ 4h + 4 - 4

h

Qs2 + h, s2 + hd2d

y = x2

x

y

0 2

NOT TO SCALE

Tangent slope � 4

Δy � (2 � h)2 � 4

y � x2

Q(2 � h, (2 � h)2)

Δx � h

2 � h

P(2, 4)

Secant slope is � h � 4.
(2 � h)2 � 4

h

FIGURE 2.4 Finding the slope of the parabola at the point P(2, 4) as the
limit of secant slopes (Example 3).

y = x2
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62 Chapter 2: Limits and Continuity

The tangent to the parabola at P is the line through P with slope 4:

Point-slope equation

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants and are
called instantaneous rates of change. Instantaneous rates and slopes of tangent lines are
intimately connected, as we will now see in the following examples.

EXAMPLE 4 Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in a
50-day experiment. The number of flies was counted at regular intervals, the counted val-
ues plotted with respect to time t, and the points joined by a smooth curve (colored blue in
Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by in days. The average rate of change
of the population from day 23 to day 45 was

Average rate of change: 
¢p

¢t
=

340 - 150
45 - 23

=
190
22

L 8.6 flies>day.

45 - 23 = 22340 - 150 = 190

t = 2t = 1

 y = 4x - 4.

 y = 4 + 4sx - 2d

t

p

100 20 30 40 50

50

100

150

200

250

300

350

P(23, 150)

Q(45, 340)

�t � 22

�p � 190

�t
�p

� 8.6 flies/day

Time (days)

N
um

be
r 

 o
f 

fl
ie

s

FIGURE 2.5 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope

of the secant line (Example 4).¢p>¢t

This average is the slope of the secant through the points P and Q on the graph in
Figure 2.5.

The average rate of change from day 23 to day 45 calculated in Example 4 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question.

EXAMPLE 5 How fast was the number of flies in the population of Example 4 growing
on day 23?

Solution To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by
calculating the slopes of secants from P to Q, for a sequence of points Q approaching P
along the curve (Figure 2.6).
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2.1 Rates of Change and Tangents to Curves 63

FIGURE 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

Slope of 
Q (flies day)

(45, 340)

(40, 330)

(35, 310)

(30, 265)
265 - 150
30 - 23

L 16.4

310 - 150
35 - 23

L 13.3

330 - 150
40 - 23

L 10.6

340 - 150
45 - 23

L 8.6

/
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A(14, 0)

P(23, 150)

B(35, 350)

Q(45, 340)

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the
t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly
higher as t continued on toward 23. Geometrically, the secants rotate about P and seem to
approach the red tangent line in the figure. Since the line appears to pass through the
points (14, 0) and (35, 350), it has slope

(approximately).

On day 23 the population was increasing at a rate of about 16.7 flies day.

The instantaneous rates in Example 2 were found to be the values of the average
speeds, or average rates of change, as the time interval of length h approached 0. That is,
the instantaneous rate is the value the average rate approaches as the length h of the in-
terval over which the change occurs approaches zero. The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of
the tangent line as the independent variable approaches a fixed value. In Example 2, the
independent variable t approached the values and . In Example 3, the inde-
pendent variable x approached the value . So we see that instantaneous rates and
slopes of tangent lines are closely connected. We investigate this connection thoroughly
in the next chapter, but to do so we need the concept of a limit.

x = 2
t = 2t = 1

>
350 - 0
35 - 14

= 16.7 flies>day

Exercises 2.1

Average Rates of Change
In Exercises 1–6, find the average rate of change of the function over
the given interval or intervals.

1.

a. [2, 3] b.

2.

a. b.

3.

a. b.

4.

a. b. [-p, p][0, p]

g std = 2 + cos t

[p>6, p>2][p>4, 3p>4]

hstd = cot t

[-2, 0][-1, 1]

g sxd = x2

[-1, 1]

ƒsxd = x3
+ 1

5.

6.

Slope of a Curve at a Point
In Exercises 7–14, use the method in Example 3 to find (a) the slope
of the curve at the given point P, and (b) an equation of the tangent
line at P.

7.

8.

9.

10.

11. y = x3, P(2, 8)

y = x2
- 4x, P(1, -3)

y = x2
- 2x - 3, P(2, -3)

y = 5 - x2, P(1, 4)

y = x2
- 3, P(2, 1)

Psud = u3
- 4u2

+ 5u; [1, 2]

Rsud = 24u + 1; [0, 2]
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64 Chapter 2: Limits and Continuity

T

12.

13.

14.

Instantaneous Rates of Change
15. Speed of a car The accompanying figure shows the time-

to-distance graph for a sports car accelerating from a standstill.

a. Estimate the slopes of secants and 
arranging them in order in a table like the one in Figure 2.6.
What are the appropriate units for these slopes?

b. Then estimate the car’s speed at time 

16. The accompanying figure shows the plot of distance fallen versus
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a. Estimate the slopes of the secants and 
arranging them in a table like the one in Figure 2.6.

b. About how fast was the object going when it hit the surface?

17. The profits of a small company for each of the first five years of
its operation are given in the following table:

a. Plot points representing the profit as a function of year, and
join them by as smooth a curve as you can.

Year Profit in $1000s

2000 6
2001 27
2002 62
2003 111
2004 174

t

y
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(m
)
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P
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Q4

PQ4 ,PQ1 , PQ2 , PQ3 ,

t = 20 sec .

PQ4 ,PQ1 , PQ2 , PQ3 ,

0 5

200

100
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)

10 15 20

300

400

500

600
650

P

Q1

Q2

Q3

Q4

t

s

y = x3
- 3x2

+ 4, P(2, 0)

y = x3
- 12x, P(1, -11)

y = 2 - x3, P(1, 1) b. What is the average rate of increase of the profits between
2002 and 2004?

c. Use your graph to estimate the rate at which the profits were
changing in 2002.

18. Make a table of values for the function 
at the points 

and 

a. Find the average rate of change of F(x) over the intervals [1, x]
for each in your table.

b. Extending the table if necessary, try to determine the rate of
change of F(x) at 

19. Let for 

a. Find the average rate of change of g(x) with respect to x over
the intervals [1, 2], [1, 1.5] and 

b. Make a table of values of the average rate of change of g with
respect to x over the interval for some values of h
approaching zero, say 
and 0.000001.

c. What does your table indicate is the rate of change of g(x)
with respect to x at 

d. Calculate the limit as h approaches zero of the average rate of
change of g(x) with respect to x over the interval 

20. Let for 

a. Find the average rate of change of ƒ with respect to t over the
intervals (i) from to and (ii) from to 

b. Make a table of values of the average rate of change of ƒ with
respect to t over the interval [2, T ], for some values of T ap-
proaching 2, say and
2.000001.

c. What does your table indicate is the rate of change of ƒ with
respect to t at 

d. Calculate the limit as T approaches 2 of the average rate of
change of ƒ with respect to t over the interval from 2 to T. You
will have to do some algebra before you can substitute 

21. The accompanying graph shows the total distance s traveled by a
bicyclist after t hours.

a. Estimate the bicyclist’s average speed over the time intervals
[0, 1], [1, 2.5], and [2.5, 3.5].

b. Estimate the bicyclist’s instantaneous speed at the times 
and .

c. Estimate the bicyclist’s maximum speed and the specific time
at which it occurs.

t = 3t = 2,
t =

1
2,

10

10

20

30

40

2 3 4

Elapsed time (hr)

D
is

ta
nc

e 
tr

av
el

ed
 (

m
i)

t

s

T = 2.

t = 2?

T = 2.1, 2.01, 2.001, 2.0001, 2.00001,

t = T .t = 2t = 3,t = 2

t Z 0.ƒstd = 1>t
[1, 1 + h] .

x = 1?

h = 0.1, 0.01, 0.001, 0.0001, 0.00001,
[1, 1 + h]

[1, 1 + h] .

x Ú 0.g sxd = 2x

x = 1.

x Z 1

x = 1. x = 10001>10000,
x = 1001>1000,x = 1.2, x = 11>10, x = 101>100,

Fsxd = sx + 2d>sx - 2dT

T

T
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22. The accompanying graph shows the total amount of gasoline A in
the gas tank of an automobile after being driven for t days.

310
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2.2 Limit of a Function and Limit Laws 65

a. Estimate the average rate of gasoline consumption over the
time intervals [0, 3], [0, 5], and [7, 10].

b. Estimate the instantaneous rate of gasoline consumption at
the times , , and .

c. Estimate the maximum rate of gasoline consumption and the
specific time at which it occurs.

t = 8t = 4t = 1

2.2 Limit of a Function and Limit Laws

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of limit and
show how we can calculate the values of limits. A precise definition is presented in the
next section.

Limits of Function Values

Frequently when studying a function , we find ourselves interested in the func-
tion’s behavior near a particular point , but not at . This might be the case, for instance,
if is an irrational number, like or , whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situa-
tion occurs when trying to evaluate a function at leads to division by zero, which is un-
defined. We encountered this last circumstance when seeking the instantaneous rate of
change in y by considering the quotient function for h closer and closer to zero.
Here’s a specific example where we explore numerically how a function behaves near a
particular point at which we cannot directly evaluate the function.

EXAMPLE 1 How does the function

behave near 

Solution The given formula defines ƒ for all real numbers x except (we cannot di-
vide by zero). For any we can simplify the formula by factoring the numerator and
canceling common factors:

The graph of ƒ is the line with the point (1, 2) removed. This removed point is
shown as a “hole” in Figure 2.7. Even though ƒ(1) is not defined, it is clear that we can
make the value of ƒ(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2).

y = x + 1

ƒsxd =

sx - 1dsx + 1d
x - 1

= x + 1 for x Z 1.

x Z 1,
x = 1

x = 1?

ƒsxd =
x2

- 1
x - 1

¢y>h
x0

22px0

x0x0

y = ƒ(x)

HISTORICAL ESSAY

Limits

x

y

0 1

2

1

x

y

0 1

2

1
y � f (x) � x2 � 1

x � 1

y � x � 1

–1

–1

FIGURE 2.7 The graph of ƒ is
identical with the line 
except at where ƒ is not
defined (Example 1).

x = 1,
y = x + 1
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66 Chapter 2: Limits and Continuity

TABLE 2.2 The closer x gets to 1, the closer 
seems to get to 2

Values of x below and above 1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

ƒ(x) � 
x2 � 1
x � 1

 � x � 1, x � 1

ƒ(x) = (x2
- 1)>(x - 1)

Let’s generalize the idea illustrated in Example 1.

Suppose ƒ(x) is defined on an open interval about except possibly at itself. If ƒ(x)
is arbitrarily close to L (as close to L as we like) for all x sufficiently close to we say
that ƒ approaches the limit L as x approaches and write

which is read “the limit of ƒ(x) as x approaches is L.” For instance, in Example 1 we
would say that ƒ(x) approaches the limit 2 as x approaches 1, and write

Essentially, the definition says that the values of ƒ(x) are close to the number L whenever x is
close to (on either side of ). This definition is “informal” because phrases like arbitrarily
close and sufficiently close are imprecise; their meaning depends on the context. (To a machin-
ist manufacturing a piston, close may mean within a few thousandths of an inch. To an as-
tronomer studying distant galaxies, close may mean within a few thousand light-years.) Never-
theless, the definition is clear enough to enable us to recognize and evaluate limits of specific
functions. We will need the precise definition of Section 2.3, however, when we set out to
prove theorems about limits. Here are several more examples exploring the idea of limits.

EXAMPLE 2 This example illustrates that the limit value of a function does not depend
on how the function is defined at the point being approached. Consider the three functions
in Figure 2.8. The function ƒ has limit 2 as even though ƒ is not defined at x = 1.x : 1

x0x0

lim
x:1

 ƒsxd = 2, or lim
x:1

 
x2

- 1
x - 1

= 2.

x0

lim
x:x0

 ƒsxd = L ,

x0 ,
x0 ,

x0x0 ,

x2 � 1
x � 1

x

y

0 1

2

1

x

y

0 1

2

1

x

y

0 1–1–1–1

2

1

⎧
⎪
⎨
⎪
⎩ 1,

,
(a)  f (x) � (b)  g(x) �x2 � 1

x � 1

   x � 1

   x � 1

(c)  h(x) � x � 1

FIGURE 2.8 The limits of ƒ(x), g(x), and h(x) all equal 2 as x approaches 1. However,
only h(x) has the same function value as its limit at (Example 2).x = 1
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The function g has limit 2 as even though The function h is the only one
of the three functions in Figure 2.8 whose limit as equals its value at For h,
we have This equality of limit and function value is significant, and
we return to it in Section 2.5.

EXAMPLE 3

(a) If ƒ is the identity function then for any value of (Figure 2.9a),

(b) If ƒ is the constant function (function with the constant value k), then for
any value of (Figure 2.9b),

For instances of each of these rules we have

We prove these rules in Example 3 in Section 2.3.

Some ways that limits can fail to exist are illustrated in Figure 2.10 and described in
the next example.

lim
x:3

 x = 3 and lim
x: -7

s4d = lim
x:2

s4d = 4.

lim
x:x0

 ƒsxd = lim
x:x0

 k = k .

x0

ƒsxd = k

lim
x:x0

 ƒsxd = lim
x:x0

 x = x0 .

x0ƒsxd = x ,

limx:1 hsxd = hs1d .
x = 1.x : 1

2 Z g s1d .x : 1

2.2 Limit of a Function and Limit Laws 67

EXAMPLE 4 Discuss the behavior of the following functions as 

(a)

(b)

(c) ƒsxd = • 0, x … 0

sin 
1
x , x 7 0

g sxd = L 1
x , x Z 0

0, x = 0

Usxd = e0, x 6 0

1, x Ú 0

x : 0.

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y � x

x0

x0

x0

y � k

FIGURE 2.9 The functions in Example 3
have limits at all points .x0

x

y

0

⎧
⎪
⎨
⎪
⎩

x

y

0

1

⎧
⎨
⎩

x

y

0

1

–1

⎧
⎪
⎨
⎪
⎩

y �
0,   x � 0

1,   x � 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y �
1
x ,  x � 0

0, x � 0

y �
0,         x � 0

1
xsin   ,  x 	 0

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).
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68 Chapter 2: Limits and Continuity

Solution

(a) It jumps: The unit step function U(x) has no limit as because its values jump
at For negative values of x arbitrarily close to zero, For positive
values of x arbitrarily close to zero, There is no single value L approached
by U(x) as (Figure 2.10a).

(b) It grows too “large” to have a limit: g(x) has no limit as because the values of g
grow arbitrarily large in absolute value as and do not stay close to any fixed
real number (Figure 2.10b).

(c) It oscillates too much to have a limit: ƒ(x) has no limit as because the function’s
values oscillate between and in every open interval containing 0. The values
do not stay close to any one number as  (Figure 2.10c).

The Limit Laws

When discussing limits, sometimes we use the notation if we want to emphasize
the point that is being approached in the limit process (usually to enhance the clarity of
a particular discussion or example). Other times, such as in the statements of the following
theorem, we use the simpler notation or which avoids the subscript in . In
every case, the symbols , c, and a refer to a single point on the x-axis that may or may
not belong to the domain of the function involved. To calculate limits of functions that are
arithmetic combinations of functions having known limits, we can use several easy rules.

x0

x0x : ax : c

x0

x : x0

x : 0
-1+1

x : 0

x : 0
x : 0

x : 0
Usxd = 1.

Usxd = 0.x = 0.
x : 0

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product is
the product of the limits; the limit of a quotient is the quotient of the limits (provided that the
limit of the denominator is not 0); the limit of a positive integer power (or root) of a function
is the integer power (or root) of the limit (provided that the root of the limit is a real number).

It is reasonable that the properties in Theorem 1 are true (although these intuitive ar-
guments do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L and
g (x) is close to M, from our informal definition of a limit. It is then reasonable that

is close to is close to kƒ(x) is close to kL;
ƒ(x)g(x) is close to LM; and is close to if M is not zero. We prove the
Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are proved in

L>Mƒ(x)>g (x)
L - M ;L + M; ƒsxd - g sxdƒsxd + g sxd

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule:

6. Power Rule: a positive integer

7. Root Rule: a positive integer

(If n is even, we assume that )lim
x:c

ƒ(x) = L 7 0.

lim
x:c
2n ƒ(x) = 2n L = L1>n, n

lim
x:c

[ƒ(x)]n
= Ln, n

lim
x:c

  
ƒsxd
g sxd

=
L
M

, M Z 0

lim
x:c

sƒsxd # g sxdd = L # M

lim
x:c

sk # ƒsxdd = k # L

lim
x:c

sƒsxd - g sxdd = L - M

lim
x:c

sƒsxd + g sxdd = L + M

lim
x:c

 ƒsxd = L and lim
x:c

 g sxd = M, then
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Appendix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more
advanced texts. The sum, difference, and product rules can be extended to any number of
functions, not just two.

EXAMPLE 5 Use the observations and (Example 3) and
the properties of limits to find the following limits.

(a) (b) (c)

Solution

(a) Sum and Difference Rules

Power and Multiple Rules

(b) Quotient Rule

Sum and Difference Rules

Power or Product Rule

(c)

Difference Rule

Product and Multiple Rules

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches c, merely substitute c for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point c at which the denominator is not zero, sub-
stitute c for x in the formula for the function. (See Examples 5a and 5b.) We state these re-
sults formally as theorems.

 = 213

 = 216 - 3

 = 24s -2d2
- 3

 = 2 lim
x: -2

 4x2
- lim

x: -2
 3

Root Rule with n = 2lim
x: -2

24x2
- 3 = 2 lim

x: -2
s4x2

- 3d

 =
c4

+ c2
- 1

c2
+ 5

 =

lim
x:c

 x4
+ lim

x:c
 x2

- lim
x:c

 1

lim
x:c

 x2
+ lim

x:c
 5

 lim
x:c

 
x4

+ x2
- 1

x2
+ 5

=

lim
x:c

sx4
+ x2

- 1d

lim
x:c

sx2
+ 5d

 = c3
+ 4c2

- 3

 lim
x:c

sx3
+ 4x2

- 3d = lim
x:c

 x3
+ lim

x:c
 4x2

- lim
x:c

 3

lim
x: -2

24x2
- 3lim

x:c
 
x4

+ x2
- 1

x2
+ 5

lim
x:c

sx3
+ 4x2

- 3d

limx:c x = climx:c k = k

2.2 Limit of a Function and Limit Laws 69

THEOREM 2—Limits of Polynomials

If then

lim
x:c

 Psxd = Pscd = an cn
+ an - 1 cn - 1

+
Á

+ a0 .

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a0 ,

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and then

lim
x:c

  
Psxd
Qsxd

=

Pscd
Qscd

.

Qscd Z 0,
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70 Chapter 2: Limits and Continuity

EXAMPLE 6 The following calculation illustrates Theorems 2 and 3:

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and de-
nominator may reduce the fraction to one whose denominator is no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 7 Evaluate

Solution We cannot substitute because it makes the denominator zero. We test the
numerator to see if it, too, is zero at It is, so it has a factor of in common
with the denominator. Canceling the gives a simpler fraction with the same val-
ues as the original for 

Using the simpler fraction, we find the limit of these values as by substitution:

See Figure 2.11.

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem 1 because the limit of the denominator
is zero, we can try using a calculator or computer to guess the limit numerically as x gets
closer and closer to c. We used this approach in Example 1, but calculators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there, as we now illustrate.

EXAMPLE 8 Estimate the value of 

Solution Table 2.3 lists values of the function for several values near As x ap-
proaches 0 through the values and the function seems to ap-
proach the number 0.05.

As we take even smaller values of x, and 
the function appears to approach the value 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next
example.

;0.000001,;0.0005, ;0.0001, ;0.00001,

;0.01,;1, ;0.5, ;0.10,
x = 0.

lim
x:0

 
2x2

+ 100 - 10
x2 .

lim
x:1

 
x2

+ x - 2
x2

- x
= lim

x:1
 
x + 2

x =
1 + 2

1
= 3.

x : 1

x2
+ x - 2

x2
- x

=

sx - 1dsx + 2d
xsx - 1d

=
x + 2

x , if x Z 1.

x Z 1:
sx - 1d’s

sx - 1dx = 1.
x = 1

lim
x:1

 
x2

+ x - 2
x2

- x
.

lim
x: -1

 
x3

+ 4x2
- 3

x2
+ 5

=

s -1d3
+ 4s -1d2

- 3

s -1d2
+ 5

=
0
6

= 0

Identifying Common Factors
It can be shown that if Q(x) is a
polynomial and then 

is a factor of Q(x). Thus, if
the numerator and denominator of a
rational function of x are both zero 
at they have as a
common factor.

sx - cdx = c ,

sx - cd
Qscd = 0,

x

y

1–2 0

(1, 3)

(b)

3

x

y

10–2

(1, 3)

(a)

3

y � x2 � x � 2
x2 � x

y � x � 2
x

FIGURE 2.11 The graph of
in

part (a) is the same as the graph of
in part (b) except at

, where ƒ is undefined. The functions
have the same limit as (Example 7).x : 1
x = 1
g sxd = sx + 2d>x
ƒsxd = sx2

+ x - 2d>sx2
- xd
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Using a computer or calculator may give ambiguous results, as in the last example.
We cannot substitute in the problem, and the numerator and denominator have no
obvious common factors (as they did in Example 7). Sometimes, however, we can create a
common factor algebraically.

EXAMPLE 9 Evaluate

Solution This is the limit we considered in Example 8. We can create a common factor
by multiplying both numerator and denominator by the conjugate radical expression

(obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

Common factor x2

Cancel x2 for 

Therefore,

This calculation provides the correct answer, in contrast to the ambiguous computer results
in Example 8.

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with the

 =
1

20
= 0.05.

 =
1

202
+ 100 + 10

 lim
x:0

 
2x2

+ 100 - 10
x2 = lim

x:0
 

1

2x2
+ 100 + 10

x Z 0 =
1

2x2
+ 100 + 10

.

 =
x2

x2 A2x2
+ 100 + 10 B

 =
x2

+ 100 - 100

x2 A2x2
+ 100 + 10 B

 
2x2

+ 100 - 10
x2 =

2x2
+ 100 - 10

x2
#
2x2

+ 100 + 10

2x2
+ 100 + 10

2x2
+ 100 + 10

lim
x:0

 
2x2

+ 100 - 10
x2 .

x = 0

2.2 Limit of a Function and Limit Laws 71

TABLE 2.3 Computer values of near 

x ƒ(x)

;0.0005 0.050000

;0.0001 0.000000

;0.00001 0.000000

;0.000001 0.000000

t  approaches 0?

;1     0.049876

;0.5     0.049969

;0.1     0.049999

;0.01     0.050000

t  approaches 0.05?

x = 0ƒ(x) =

2x2
+ 100 - 10

x2

Denominator not 0 at
; substitutex = 0
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72 Chapter 2: Limits and Continuity

aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of calculus (illustrated in Section 7.5). The next theorem is also
useful.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich
Theorem because it refers to a function ƒ whose values are sandwiched between the values
of two other functions g and h that have the same limit L at a point c. Being trapped be-
tween the values of two functions that approach L, the values of ƒ must also approach L
(Figure 2.12). You will find a proof in Appendix 4.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10 Given that

find no matter how complicated u is.

Solution Since

the Sandwich Theorem implies that (Figure 2.13).

EXAMPLE 11 The Sandwich Theorem helps us establish several important limit rules:

(a) (b)

(c) For any function ƒ, implies .

Solution

(a) In Section 1.3 we established that for all (see Figure 2.14a).
Since we have

(b) From Section 1.3, for all (see Figure 2.14b), and we have
or

(c) Since and and have limit 0 as  it
follows that .limx:c ƒ(x) = 0

x : c,ƒ ƒsxd ƒ- ƒ ƒsxd ƒ- ƒ ƒsxd ƒ … ƒsxd … ƒ ƒsxd ƒ

lim
u:0

 cos u = 1.

limu:0 s1 - cos ud = 0
u0 … 1 - cos u … ƒ u ƒ

lim
u:0

 sin u = 0.

limu:0 ƒ u ƒ = 0,limu:0 s - ƒ u ƒd =

u- ƒ u ƒ … sin u … ƒ u ƒ

lim
x:c

 ƒ(x) = 0lim
x:c

 ƒƒ(x) ƒ = 0

lim
u:0

 cos u = 1lim
u:0

 sin u = 0

limx:0 usxd = 1

lim
x:0

s1 - sx2>4dd = 1 and lim
x:0

s1 + sx2>2dd = 1,

limx:0 usxd ,

1 -
x2

4
… usxd … 1 +

x2

2
 for all x Z 0,

x

y

0

L

c

h

f

g

FIGURE 2.12 The graph of ƒ is
sandwiched between the graphs of g and h.

x

y

0 1–1

2

1

y � 1 � x2

2

y � 1 � x2

4

y � u(x)

FIGURE 2.13 Any function u(x) whose
graph lies in the region between

and has
limit 1 as (Example 10).x : 0

y = 1 - sx2>4dy = 1 + sx2>2d

THEOREM 4—The Sandwich Theorem Suppose that for
all x in some open interval containing c, except possibly at itself. Suppose
also that

Then limx:c ƒsxd = L .

lim
x:c

 g sxd = lim
x:c

 hsxd = L .

x = c
g sxd … ƒsxd … hsxd

y � ⎢� ⎢ 

y � – ⎢� ⎢ 

y � sin �  

�

1

–1

–� �

y

(a)

y � ⎢� ⎢ 

y � 1 � cos �

�

y

(b)

2

2

1

1–1–2 0

FIGURE 2.14 The Sandwich Theorem
confirms the limits in Example 11.
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2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by the
strict less than inequality in Theorem 5 is false. Figure 2.14a shows that for 

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,
u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, except
possibly at itself, and the limits of ƒ and g both exist as x approaches c,
then

lim
x:c

 ƒsxd … lim
x:c

 g sxd .

x = c
ƒsxd … g sxd

Exercises 2.2

Limits from Graphs
1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-
plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function 
graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in 

g. does not exist.lim
x:1

 ƒsxd

s -1, 1d .x0lim
x:x0

 ƒsxd
lim
x:1

 ƒsxd = 0

lim
x:1

 ƒsxd = 1

lim
x:0

 ƒsxd = 1

lim
x:0

 ƒsxd = 0

lim
x:0

 ƒsxd

y = ƒsxd

t

s

1

10

s � f (t)

–1

–1–2

lim
t: -0.5

 ƒstdlim
t:0

 ƒstdlim
t: -1

 ƒstdlim
t: -2

 ƒstd

3
x

y

2

1

1

y � g(x)

lim
x:2.5

 g sxdlim
x:3

 g sxdlim
x:2

 g sxdlim
x:1

 g sxd

4. Which of the following statements about the function 
graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in 

e. exists at every point in (1, 3).

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-
cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Can
anything be said about the existence of Give rea-
sons for your answer.

limx:0 ƒsxd?
[-1, 1] .

limx:x0 ƒsxd?
x = x0 .

lim
x:1

  
1

x - 1
lim
x:0

  
x
ƒ x ƒ

x

y

321–1

1

–1

–2

y � f (x)

x0lim
x:x0

 ƒsxd

s -1, 1d .x0lim
x:x0

 ƒsxd
lim
x:1

 ƒsxd
lim
x:2

 ƒsxd = 2

lim
x:2

 ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y � f (x)

Another important property of limits is given by the next theorem. A proof is given in
the next section.
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74 Chapter 2: Limits and Continuity

9. If must ƒ be defined at If it is, must
Can we conclude anything about the values of ƒ at

Explain.

10. If must exist? If it does, then must
Can we conclude anything about 

Explain.

Calculating Limits
Find the limits in Exercises 11–22.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Limits of quotients Find the limits in Exercises 23–42.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

Limits with trigonometric functions Find the limits in Exercises
43–50.

43. 44.

45. 46.

47. 48.

49. 50. lim
x:0

  27 + sec2 xlim
x: -p

  2x + 4 cos (x + p)

lim
x:0

  (x2
- 1)(2 - cos x)lim

x:0
  
1 + x + sin x

3 cos x

lim
x:0

  tan xlim
x:0

  sec x

lim
x:0

  sin2 xlim
x:0

  (2 sin x - 1)

lim
x:4

  
4 - x

5 - 2x2
+ 9

lim
x: -3

 
2 - 2x2

- 5
x + 3

lim
x: -2

 
x + 2

2x2
+ 5 - 3

lim
x:2

 
2x2

+ 12 - 4
x - 2

lim
x: -1

 
2x2

+ 8 - 3
x + 1

lim
x:1

 
x - 1

2x + 3 - 2

lim
x:4

  
4x - x2

2 - 2x
lim
x:9

 
2x - 3
x - 9

lim
y:2

  
y3

- 8
y4

- 16
lim
u:1

  
u4

- 1
u3

- 1

lim
x:0

  

1
x - 1 +

1
x + 1

x
lim
x:1

  

1
x - 1

x - 1

lim
y:0

  
5y3

+ 8y2

3y4
- 16y2lim

x: -2
  

-2x - 4
x3

+ 2x2

lim
t: -1

  
t2

+ 3t + 2
t2

- t - 2
lim
t:1

 
t2

+ t - 2
t2

- 1

lim
x:2

  
x2

- 7x + 10
x - 2

lim
x: -5

 
x2

+ 3x - 10
x + 5

lim
x: -3

  
x + 3

x2
+ 4x + 3

lim
x:5

  
x - 5

x2
- 25

lim
h:0

 
25h + 4 - 2

h
lim
h:0

 
3

23h + 1 + 1

lim
z:0

 s2z - 8d1>3lim
y: -3

s5 - yd4>3
lim
y:2

  
y + 2

y2
+ 5y + 6

lim
x: -1

 3s2x - 1d2

lim
s:2>3 3ss2s - 1dlim

x:2
  
x + 3
x + 6

lim
x: -2

sx3
- 2x2

+ 4x + 8dlim
t:6

 8st - 5dst - 7d

lim
x:2

s -x2
+ 5x - 2dlim

x: -7
s2x + 5d

limx:1 ƒsxd?limx:1 ƒsxd = 5?
limx:1 ƒsxdƒs1d = 5,

x = 1?
ƒs1d = 5?

x = 1?limx:1 ƒsxd = 5, Using Limit Rules
51. Suppose and Name the

rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

(a)

(b)

(c)

52. Let and 
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

(a)

(b)

(c)

53. Suppose and Find

a. b.

c. d.

54. Suppose and Find

a. b.

c. d.

55. Suppose and Find

a. b.

c. d.

56. Suppose that and
Find

a.

b.

c. lim
x: -2

s -4psxd + 5r sxdd>ssxd

lim
x: -2

  psxd # r sxd # ssxd

lim
x: -2

 spsxd + r sxd + ssxdd
ssxd = -3.limx:-2

limx:-2  psxd = 4, limx:-2  r sxd = 0,

lim
x:b

 ƒsxd>g sxdlim
x:b

 4g sxd

lim
x:b

 ƒsxd # g sxdlim
x:b

 sƒsxd + g sxdd
limx:b g sxd = -3.limx:b ƒsxd = 7

lim
x:4

  
g sxd

ƒsxd - 1
lim
x:4

 sg sxdd2

lim
x:4

 xƒsxdlim
x:4

 sg sxd + 3d
limx:4 g sxd = -3.limx:4 ƒsxd = 0

lim
x:c

  
ƒsxd

ƒsxd - g sxd
lim
x:c

 sƒsxd + 3g sxdd

lim
x:c

 2ƒsxdg sxdlim
x:c

 ƒsxdg sxd
limx:c g sxd = -2.limx:c ƒsxd = 5

 =

2s5ds5d
s1ds4 - 2d

=

5
2

 =

45 lim
x:1

 hsxd

A lim
x:1

 p(x) B A lim
x:1

 4 - lim
x:1

 r (x) B

 =

4lim
x:1

 5hsxd

A lim
x:1

 p(x) B A lim
x:1

 A4 - r(x) B B

 lim
x:1

  
25hsxd

psxds4 - rsxdd
=

lim
x:1
25hsxd

lim
x:1

 spsxds4 - rsxddd

limx:1 r sxd = 2.limx:1 hsxd = 5, limx:1 psxd = 1,

 =

s2ds1d - s -5d

s1 + 7d2>3 =

7
4

 =

2 lim
x:0

 ƒsxd - lim
x:0

 g sxd

A lim
x:0

 ƒ(x) + lim
x:0

 7 B2>3

 =

lim
x:0

 2ƒsxd - lim
x:0

 g sxd

A lim
x:0

 Aƒsxd + 7 B B2>3

 lim
x:0

  
2ƒsxd - g sxd

sƒsxd + 7d2>3 =

lim
x:0

 s2ƒsxd - g sxdd

lim
x:0

 sƒsxd + 7d2>3

limx:0 g sxd = -5.limx:0 ƒsxd = 1
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Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

occur frequently in calculus. In Exercises 57–62, evaluate this limit
for the given value of x and function ƒ.

57. 58.

59. 60.

61. 62.

Using the Sandwich Theorem

63. If for find 

64. If for all x, find 

65. a. It can be shown that the inequalities

hold for all values of x close to zero. What, if anything, does
this tell you about

Give reasons for your answer.

b. Graph

together for Comment on the behavior
of the graphs as 

66. a. Suppose that the inequalities

hold for values of x close to zero. (They do, as you will see in
Section 10.9.) What, if anything, does this tell you about

Give reasons for your answer.

b. Graph the equations 
and together for 

Comment on the behavior of the graphs as 

Estimating Limits
You will find a graphing calculator useful for Exercises 67–76.

67. Let 

a. Make a table of the values of ƒ at the points 
and so on as far as your calculator can go.

Then estimate What estimate do you arrive at if
you evaluate ƒ at instead?

b. Support your conclusions in part (a) by graphing ƒ near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically, as in Example 7.

68. Let 

a. Make a table of the values of g at the points 
and so on through successive decimal approximations

of Estimate limx:22  g sxd .22.

1.414 ,
x = 1.4, 1.41,

g sxd = sx2
- 2d>(x - 22).

limx:-3 ƒsxd
x : -3.

x0 = -3

x = -2.9, -2.99, -2.999, Á

limx:-3 ƒsxd .
-3.01, -3.001 ,

x = -3.1,

ƒsxd = sx2
- 9d>sx + 3d .

x : 0.
-2 … x … 2.y = 1>2y = s1 - cos xd>x2 ,

y = s1>2d - sx2>24d,

lim
x:0

 
1 - cos x

x2 ?

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

x : 0.
-2 … x … 2.y = 1

y = 1 - sx2>6d, y = sx sin xd>s2 - 2 cos xd,  and 

lim
x:0

  
x sin x

2 - 2 cos x
?

1 -

x2

6
6

x sin x
2 - 2 cos x

6 1

limx:0 g sxd .2 - x2
… g sxd … 2 cos x

ƒsxd .limx:0

-1 … x … 1,25 - 2x2
… ƒsxd … 25 - x2

ƒsxd = 23x + 1, x = 0ƒsxd = 2x, x = 7

ƒsxd = 1>x, x = -2ƒsxd = 3x - 4, x = 2

ƒsxd = x2, x = -2ƒsxd = x2, x = 1

lim
h:0

 
ƒsx + hd - ƒsxd

h

2.2 Limit of a Function and Limit Laws 75

b. Support your conclusion in part (a) by graphing g near

and using Zoom and Trace to estimate y-values on
the graph as 

c. Find algebraically.

69. Let 

a. Make a table of the values of G at 
and so on. Then estimate What estimate do
you arrive at if you evaluate G at 

instead?

b. Support your conclusions in part (a) by graphing G and
using Zoom and Trace to estimate y-values on the graph as

c. Find algebraically.

70. Let 

a. Make a table of the values of h at and so
on. Then estimate What estimate do you arrive
at if you evaluate h at instead?

b. Support your conclusions in part (a) by graphing h near
and using Zoom and Trace to estimate y-values on the

graph as 

c. Find algebraically.

71. Let 

a. Make tables of the values of ƒ at values of x that
approach from above and below. Then estimate

b. Support your conclusion in part (a) by graphing ƒ near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically.

72. Let 

a. Make tables of values of F at values of x that
approach from above and below. Then estimate

b. Support your conclusion in part (a) by graphing F near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically.

73. Let 

a. Make a table of the values of g at values of that approach
from above and below. Then estimate 

b. Support your conclusion in part (a) by graphing g near

74. Let 

a. Make tables of values of G at values of t that approach 
from above and below. Then estimate 

b. Support your conclusion in part (a) by graphing G near

75. Let 

a. Make tables of values of ƒ at values of x that approach 
from above and below. Does ƒ appear to have a limit as

If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near
x0 = 1.

x : 1?

x0 = 1

ƒsxd = x1>s1 - xd .

t0 = 0.

limt:0 Gstd .
t0 = 0

Gstd = s1 - cos td>t2 .

u0 = 0.

limu:0 g sud .u0 = 0
u

g sud = ssin ud>u .

limx:-2 Fsxd
x : -2.

x0 = -2

limx:-2 Fsxd .
x0 = -2

Fsxd = sx2
+ 3x + 2d>s2 - ƒ x ƒ d .

limx:-1 ƒsxd
x : -1.

x0 = -1

limx:-1 ƒsxd .
x0 = -1

ƒsxd = sx2
- 1d>s ƒ x ƒ - 1d .

limx:3 hsxd
x : 3.

x0 = 3

x = 3.1, 3.01, 3.001, Á

limx:3 hsxd .
x = 2.9, 2.99, 2.999,

hsxd = sx2
- 2x - 3d>sx2

- 4x + 3d .

limx:-6 Gsxd
x : -6.

-6.001, Á

x = -6.1, -6.01,
limx:-6 Gsxd .

x = -5.9, -5.99, -5.999,

Gsxd = sx + 6d>sx2
+ 4x - 12d .

limx:22  g sxd
x : 22.

x0 = 22

T

T

T
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76 Chapter 2: Limits and Continuity

76. Let 

a. Make tables of values of ƒ at values of x that approach 
from above and below. Does ƒ appear to have a limit as

If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near 

Theory and Examples
77. If for x in and for

and at what points c do you automatically know
What can you say about the value of the limit at

these points?

78. Suppose that for all and suppose that

Can we conclude anything about the values of ƒ, g, and h at
Could Could Give reasons

for your answers.

79. If find 

80. If find

a. b.

81. a. If find lim
x:2

 ƒsxd .lim
x:2

 
ƒsxd - 5

x - 2
= 3,

lim
x: -2

 
ƒsxd

xlim
x: -2

 ƒsxd

lim
x: -2

 
ƒsxd

x2 = 1,

lim
x:4

 ƒsxd .lim
x:4

 
ƒsxd - 5

x - 2
= 1,

limx:2 ƒsxd = 0?ƒs2d = 0?x = 2?

lim
x:2

 g sxd = lim
x:2

 hsxd = -5.

x Z 2g sxd … ƒsxd … hsxd

limx:c ƒsxd?
x 7 1,x 6 -1

x2
… ƒsxd … x4[-1, 1]x4

… ƒsxd … x2

x0 = 0.

x : 0?

x0 = 0

ƒsxd = s3x
- 1d>x .

b. If find 

82. If find

a. b.

83. a. Graph to estimate zooming
in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

84. a. Graph to estimate zooming
in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS
Graphical Estimates of Limits
In Exercises 85–90, use a CAS to perform the following steps:

a. Plot the function near the point being approached.

b. From your plot guess the value of the limit.

85. 86.

87. 88.

89. 90. lim
x:0

  
2x2

3 - 3 cos x
lim
x:0

  
1 - cos x

x sin x

lim
x:3

  
x2

- 9

2x2
+ 7 - 4

lim
x:0

  
23 1 + x - 1

x

lim
x: -1

  
x3

- x2
- 5x - 3

sx + 1d2lim
x:2

  
x4

- 16
x - 2

x0

limx:0 hsxd ,hsxd = x2 cos s1>x3d

limx:0 g sxd ,g sxd = x sin s1>xd

lim
x:0

 
ƒsxd

xlim
x:0

 ƒsxd

lim
x:0

 
ƒsxd

x2 = 1,

lim
x:2

 ƒsxd .lim
x:2

 
ƒsxd - 5

x - 2
= 4,

T

2.3 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. We replace vague phrases
like “gets arbitrarily close to” in the informal definition with specific conditions that can
be applied to any particular example. With a precise definition, we can prove the limit
properties given in the preceding section and establish many important limits.

To show that the limit of ƒ(x) as equals the number L, we need to show that the
gap between ƒ(x) and L can be made “as small as we choose” if x is kept “close enough” to

Let us see what this would require if we specified the size of the gap between ƒ(x) and L.

EXAMPLE 1 Consider the function near Intuitively it appears that
y is close to 7 when x is close to 4, so However, how close to

does x have to be so that differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is To find the answer we
first express in terms of x:

The question then becomes: what values of x satisfy the inequality To
find out, we solve the inequality:

Keeping x within 1 unit of will keep y within 2 units of (Figure 2.15).y0 = 7x0 = 4

 -1 6 x - 4 6 1.

 3 6 x 6 5

 6 6 2x 6 10

 -2 6 2x - 8 6 2

 ƒ 2x - 8 ƒ 6 2

ƒ 2x - 8 ƒ 6 2?

ƒ y - 7 ƒ = ƒ s2x - 1d - 7 ƒ = ƒ 2x - 8 ƒ .

ƒ y - 7 ƒ

ƒ y - 7 ƒ 6 2?

y = 2x - 1x0 = 4
limx:4 s2x - 1d = 7.

x0 = 4.y = 2x - 1

x0 .

x : x0

T

⎧
⎪
⎨
⎪
⎩

⎧ ⎨ ⎩

x

y

0

5

3 54

7

9
To satisfy
this

Restrict
to this

Lower bound:
y � 5

Upper bound:
y � 9

y � 2x � 1

FIGURE 2.15 Keeping x within 1 unit of
will keep y within 2 units of
(Example 1).y0 = 7

x0 = 4
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In the previous example we determined how close x must be to a particular value to
ensure that the outputs ƒ(x) of some function lie within a prescribed interval about a limit
value L. To show that the limit of ƒ(x) as actually equals L, we must be able to show
that the gap between ƒ(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to 

Definition of Limit

Suppose we are watching the values of a function ƒ(x) as x approaches (without taking
on the value of itself). Certainly we want to be able to say that ƒ(x) stays within one-
tenth of a unit from L as soon as x stays within some distance of (Figure 2.16). But
that in itself is not enough, because as x continues on its course toward what is to pre-
vent ƒ(x) from jittering about within the interval from to without
tending toward L?

We can be told that the error can be no more than or or .
Each time, we find a new about so that keeping x within that interval satisfies
the new error tolerance. And each time the possibility exists that ƒ(x) jitters away from L at
some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents to prove that the limit
does not exist or, more precisely, that there is room for doubt. The scholar answers every
challenge with a around that keeps the function values within of L.

How do we stop this seemingly endless series of challenges and responses? By prov-
ing that for every error tolerance that the challenger can produce, we can find, calculate,
or conjure a matching distance that keeps x “close enough” to to keep ƒ(x) within that
tolerance of L (Figure 2.17). This leads us to the precise definition of a limit.

x0d

P

Px0d-interval

P-challenges

x0d-interval
1>100,0001>10001>100

L + (1>10)L - (1>10)
x0 ,

x0d

x0

x0

x0 .

x : x0

x0

2.3 The Precise Definition of a Limit 77

0

L

x
��

x

y

x0 � � x0 x0 � �

f (x)

for all x � x0
in here

f (x) lies
in here

L �
1
10

L �
1
10

FIGURE 2.16 How should we define
so that keeping x within the interval

will keep ƒ(x) within the

interval aL -

1
10

, L +

1
10
b ?

sx0 - d, x0 + dd
d 7 0

DEFINITION Let ƒ(x) be defined on an open interval about except pos-
sibly at itself. We say that the limit of ƒ(x) as x approaches is the 
number L, and write

if, for every number there exists a corresponding number such that
for all x,

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0,

lim
x:x0

 ƒsxd = L ,

x0x0

x0 ,

x

y

0

L

x
��

f (x) lies
in here

for all x � x0
in here

L � �

L � �

f (x)

x0 � � x0 x0 � �

FIGURE 2.17 The relation of and in
the definition of limit.

Pd

One way to think about the definition is to suppose we are machining a generator
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must
be satisfied with a diameter ƒ(x) somewhere between and The is the
measure of how accurate our control setting for x must be to guarantee this degree of accu-
racy in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we
may have to adjust That is, the value of how tight our control setting must be, de-
pends on the value of the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it en-
ables us to verify that a suspected limit is correct. The following examples show how the
definition can be used to verify limit statements for specific functions. However, the real
purpose of the definition is not to do calculations like this, but rather to prove general the-
orems so that the calculation of specific limits can be simplified.

P ,
d ,d .

dL + P .L - P
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78 Chapter 2: Limits and Continuity

EXAMPLE 2 Show that

Solution Set and in the definition of limit. For any given
we have to find a suitable so that if and x is within distance of
that is, whenever

it is true that ƒ(x) is within distance of so

ƒ ƒsxd - 2 ƒ 6 P .

L = 2,P

0 6 ƒ x - 1 ƒ 6 d ,

x0 = 1,
dx Z 1d 7 0P 7 0,

L = 2x0 = 1, ƒsxd = 5x - 3,

lim
x:1

 s5x - 3d = 2.

y

x

L

L �
1
10

L �
1
10

0

y � f (x)

x0

The challenge:

     Make 
 f (x) – L 
 � � � 1
10

y

x

L

L �
1
10

L �
1
10

0

y � f (x)

x0
x0 � �1/10 x0 � �1/10

Response:

      
 x � x0 
 � �1/10 (a number)

y

x

L

L �
1

100

L �
1

100

0

y � f (x)

x0

New challenge:

     Make 
 f (x) – L 
 � � � 1
100

y

x

L

L �
1

100

L �
1

100

0

y � f (x)

x0
x0 � �1/100 x0 � �1/100

Response:

      
 x � x0 
 � �1/100

y

x

L

L �
1

1000

L �
1

1000

0

y � f (x)

x0

New challenge:

       � � 1
1000

y

x

L

L �
1

1000

L � �

L � �

L �
1

1000

0

y � f (x)

x0

Response:

      
 x � x0 
 � �1/1000

y

x

L

L �
1

100,000

L �
1

100,000

0

y � f (x)

x0

New challenge:
1

100,000
� �

y

x
0

y � f (x)

x0

Response:

      
 x � x0 
 � �1/100,000

L

L �
1

100,000

L �
1

100,000

y

L

0

y � f (x)

x0

New challenge:

       � � ...

x
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We find by working backward from the 

Thus, we can take (Figure 2.18). If then

which proves that 
The value of is not the only value that will make imply

Any smaller positive will do as well. The definition does not ask for a
“best” positive just one that will work.

EXAMPLE 3 Prove the following results presented graphically in Section 2.2.

(a) (b) (k constant)

Solution

(a) Let be given. We must find such that for all x

The implication will hold if equals or any smaller positive number (Figure 2.19).
This proves that 

(b) Let be given. We must find such that for all x

Since we can use any positive number for and the implication will hold
(Figure 2.20). This proves that

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about for which was less than 
was symmetric about and we could take to be half the length of that interval. When
such symmetry is absent, as it usually is, we can take to be the distance from to the
interval’s nearer endpoint.

EXAMPLE 4 For the limit find a that works for 
That is, find a such that for all x

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality to find an interval containing on
which the inequality holds for all

2 6 x 6 10

1 6 x - 1 6 9

1 6 2x - 1 6 3

-1 6 2x - 1 - 2 6 1

ƒ2x - 1 - 2 ƒ 6 1

x Z x0 .
x0 = 5ƒ2x - 1 - 2 ƒ 6 1

0 6 ƒ x - 5 ƒ 6 d Q ƒ2x - 1 - 2 ƒ 6 1.

d 7 0
P = 1.d 7 0limx:52x - 1 = 2,

x0d

dx0

Pƒ ƒsxd - L ƒx0

limx:x0 k = k.
dk - k = 0,

0 6 ƒ x - x0 ƒ 6 d implies ƒ k - k ƒ 6 P .

d 7 0P 7 0

limx:x0 x = x0 .
Pd

0 6 ƒ x - x0 ƒ 6 d implies ƒ x - x0 ƒ 6 P .

d 7 0P 7 0

lim
x:x0

 k = klim
x:x0

 x = x0

d ,
dƒ 5x - 5 ƒ 6 P .

0 6 ƒ x - 1 ƒ 6 dd = P>5limx:1s5x - 3d = 2.

ƒ s5x - 3d - 2 ƒ = ƒ 5x - 5 ƒ = 5 ƒ x - 1 ƒ 6 5sP>5d = P ,

0 6 ƒ x - 1 ƒ 6 d = P>5,d = P>5
 ƒ x - 1 ƒ 6 P>5.

 5 ƒ x - 1 ƒ 6 P

 ƒ s5x - 3d - 2 ƒ = ƒ 5x - 5 ƒ 6 P

P-inequality:d

2.3 The Precise Definition of a Limit 79

x

y

0

2

1

2 � �

2 � �

y � 5x � 3

1 �
5
� 1 �

5
�

–3

NOT TO SCALE

k � �

k � �
k

0 x0 � � x0 � �x0

x

y

y � k

FIGURE 2.18 If then
guarantees that

(Example 2).ƒ ƒsxd - 2 ƒ 6 P

0 6 ƒ x - 1 ƒ 6 P>5
ƒsxd = 5x - 3,

x0 � �

x0 � �

x0 � �

x0 � �

x0

0 x0 � � x0 � �x0
x

y

y � x

FIGURE 2.19 For the function 
we find that will
guarantee whenever

(Example 3a).d … P

ƒ ƒsxd - x0 ƒ 6 P

0 6 ƒ x - x0 ƒ 6 d

ƒsxd = x ,

FIGURE 2.20 For the function 
we find that for any
positive (Example 3b).d

ƒ ƒsxd - k ƒ 6 P

ƒsxd = k ,
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80 Chapter 2: Limits and Continuity

The inequality holds for all x in the open interval (2, 10), so it holds for all in
this interval as well.

2. Find a value of to place the centered interval (centered
at ) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) is 3 (Figure 2.21). If we take or any smaller positive number, then the
inequality will automatically place x between 2 and 10 to make

(Figure 2.22):

0 6 ƒ x - 5 ƒ 6 3 Q ƒ2x - 1 - 2 ƒ 6 1.

ƒ2x - 1 - 2 ƒ 6 1

0 6 ƒ x - 5 ƒ 6 d

d = 3
x0 = 5

5 - d 6 x 6 5 + dd 7 0

x Z 5

EXAMPLE 5 Prove that if

Solution Our task is to show that given there exists a such that for all x

1. Solve the inequality to find an open interval containing on
which the inequality holds for all

For we have and the inequality to solve is 

The inequality holds for all in the open interval 

(Figure 2.23).

2. Find a value of that places the centered interval inside the in-

terval

Take to be the distance from to the nearer endpoint of 

In other words, take the minimum (the d = min E2 - 24 - P, 24 + P - 2F ,
A24 - P, 24 + P B .x0 = 2d

A24 - P, 24 + P B .
s2 - d, 2 + ddd 7 0

24 + P B A24 - P,x Z 2ƒ ƒsxd - 4 ƒ 6 P

 24 - P 6 x 6 24 + P .

 24 - P 6 ƒ x ƒ 6 24 + P

 4 - P 6 x2
6 4 + P

 -P 6 x2
- 4 6 P

ƒ x2
- 4 ƒ 6 P

ƒ x2
- 4 ƒ 6 P :ƒsxd = x2 ,x Z x0 = 2,

x Z x0 .
x0 = 2ƒ ƒsxd - 4 ƒ 6 P

0 6 ƒ x - 2 ƒ 6 d Q ƒ ƒsxd - 4 ƒ 6 P .

d 7 0P 7 0

ƒsxd = e x2, x Z 2

1, x = 2.

limx:2 ƒsxd = 4

x

y

0 1 2 5 8 10

1

2

3

3 3

y � �x � 1

NOT TO SCALE

How to Find Algebraically a for a Given ƒ, L, and 

The process of finding a such that for all x

can be accomplished in two steps.

1. Solve the inequality to find an open interval (a, b) containing
on which the inequality holds for all 

2. Find a value of that places the open interval centered
at inside the interval (a, b). The inequality will hold for all

in this d-interval.x Z x0

ƒ ƒsxd - L ƒ 6 Px0

sx0 - d, x0 + ddd 7 0

x Z x0 .x0

ƒ ƒsxd - L ƒ 6 P

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P

d 7 0

P>0x0 ,D

x
102 8

3

5

3

FIGURE 2.21 An open interval of
radius 3 about will lie inside the
open interval (2, 10).

x0 = 5

FIGURE 2.22 The function and intervals
in Example 4.

0

4

4 � �

4 � �

(2, 1)

(2, 4)

2
x

y

�4 � � �4 � �

y � x2

FIGURE 2.23 An interval containing
so that the function in Example 5

satisfies ƒ ƒsxd - 4 ƒ 6 P .
x = 2

Assumes see below.P 6 4 ;

An open interval about 
that solves the inequality

x0 = 2
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smaller) of the two numbers and If has this or any
smaller positive value, the inequality will automatically place x be-

tween and to make For all x,

This completes the proof for .
If , then we take to be the distance from to the nearer endpoint of 

the interval . In other words, take (See
Figure 2.23.)

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as those
in the preceding examples. Rather we appeal to general theorems about limits, in particular
the theorems of Section 2.2. The definition is used to prove these theorems (Appendix 4). As
an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6 Given that and prove that

Solution Let be given. We want to find a positive number such that for all x

Regrouping terms, we get

Since there exists a number such that for all x

Similarly, since there exists a number such that for all x

Let the smaller of and If then 
so and so Therefore

This shows that 

Next we prove Theorem 5 of Section 2.2.

EXAMPLE 7 Given that and and that 
for all x in an open interval containing c (except possibly c itself), prove that 

Solution We use the method of proof by contradiction. Suppose, on the contrary, that
Then by the limit of a difference property in Theorem 1,

lim
x:c

 s g sxd - ƒsxdd = M - L .

L 7 M .

L … M .
ƒsxd … g sxdlimx:c g sxd = M ,limx:c ƒsxd = L

limx:c sƒsxd + g sxdd = L + M .

ƒ ƒsxd + g sxd - sL + Md ƒ 6
P

2
+

P

2
= P .

ƒ g sxd - M ƒ 6 P>2.ƒ x - c ƒ 6 d2 ,ƒ ƒsxd - L ƒ 6 P>2,
ƒ x - c ƒ 6 d1 ,0 6 ƒ x - c ƒ 6 dd2 .d1d = min 5d1, d26 ,

0 6 ƒ x - c ƒ 6 d2 Q ƒ g sxd - M ƒ 6 P>2.

d2 7 0limx:c g sxd = M ,

0 6 ƒ x - c ƒ 6 d1 Q ƒ ƒsxd - L ƒ 6 P>2.

d1 7 0limx:c ƒsxd = L ,

 … ƒ ƒsxd - L ƒ + ƒ g sxd - M ƒ .

 ƒ ƒsxd + g sxd - sL + Md ƒ = ƒ sƒsxd - Ld + sg sxd - Md ƒ

0 6 ƒ x - c ƒ 6 d Q ƒ ƒsxd + g sxd - sL + M d ƒ 6 P .

dP 7 0

lim
x:c 

sƒsxd + g sxdd = L + M .

limx:c g sxd = M ,limx:c ƒsxd = L

d = min E2, 24 + P - 2F .A0, 24 + P B x0 = 2dP Ú 4
P 6 4

0 6 ƒ x - 2 ƒ 6 d Q ƒ ƒsxd - 4 ƒ 6 P .

ƒ ƒsxd - 4 ƒ 6 P .24 + P24 - P

0 6 ƒ x - 2 ƒ 6 d

d24 + P - 2.2 - 24 - P

2.3 The Precise Definition of a Limit 81

Triangle Inequality:

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ
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82 Chapter 2: Limits and Continuity

Therefore, for any there exists such that

Since by hypothesis, we take in particular and we have a number
such that

Since for any number a, we have

which simplifies to

But this contradicts Thus the inequality must be false. Therefore
L … M .

L 7 Mƒsxd … g sxd .

g sxd 6 ƒsxd whenever 0 6 ƒ x - c ƒ 6 d .

sg sxd - ƒsxdd - sM - Ld 6 L - M whenever 0 6 ƒ x - c ƒ 6 d

a … ƒ a ƒ

ƒ sg sxd - ƒsxdd - sM - Ld ƒ 6 L - M whenever 0 6 ƒ x - c ƒ 6 d .

d 7 0
P = L - ML - M 7 0

ƒ sg sxd - ƒsxdd - sM - Ld ƒ 6 P whenever 0 6 ƒ x - c ƒ 6 d .

d 7 0P 7 0,

Exercises 2.3

Centering Intervals About a Point
In Exercises 1–6, sketch the interval (a, b) on the x-axis with the
point x0 inside. Then find a value of such that for all

1.

2.

3.

4.

5.

6.

Finding Deltas Graphically
In Exercises 7–14, use the graphs to find a such that for all x

7. 8.

x

y

0

7.65
7.5
7.35

NOT TO SCALE

–3
–3.1 –2.9

f (x) � –   x � 33
2

y � –   x � 33
2

� � 0.15
L � 7.5

x0 � –3

x

y

0

6.2
6

5.8

5
5.14.9

y � 2x � 4

f (x) � 2x � 4

NOT TO SCALE

x0 � 5
L � 6
� � 0.2

0 6 ƒ x - x0 ƒ 6 d   Q    ƒ ƒsxd - L ƒ 6 P .
d 7 0

a = 2.7591, b = 3.2391, x0 = 3

a = 4>9, b = 4>7, x0 = 1>2
a = -7>2, b = -1>2, x0 = -3>2
a = -7>2, b = -1>2, x0 = -3

a = 1, b = 7, x0 = 2

a = 1, b = 7, x0 = 5

x, 0 6 ƒ x - x0 ƒ 6 d Q  a 6 x 6 b .
d 7 0

9. 10.

11. 12.

3.25

3

2.75

y

x

y � 4 � x2

–1

L � 3

f (x) � 4 � x2

x0 � –1

� � 0.25

�5
2

– �3
2

–
0

NOT TO SCALE

L � 4

x

y

0

5

4

3

2

NOT TO SCALE

y � x2

f (x) � x2

x0 � 2

� � 1

�3 �5

f (x) � 2�x � 1

y � 2�x � 1

x

y

4.2
4

3.8

2

–1 0 2.61 3 3.41

NOT TO SCALE

� � 0.2
L � 4

x0 � 3

x

y

0

1

1

f (x) � �x

y � �x
1
4

� � 5
4

3
4

9
16

25
16

L � 1
x0 � 1
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13. 14.

Finding Deltas Algebraically

Each of Exercises 15–30 gives a function ƒ(x) and numbers , and
In each case, find an open interval about on which the in-

equality holds. Then give a value for such that
for all x satisfying the inequality 
holds.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
P = 0.05
ƒsxd = mx + b, m 7 0, L = m + b, x0 = 1,

x0 = 1>2, P = c 7 0
ƒsxd = mx + b, m 7 0, L = sm>2d + b,

P = c 7 0ƒsxd = mx, m 7 0, L = 3m, x0 = 3,

ƒsxd = mx,        m 7 0,        L = 2m,        x0 = 2,        P = 0.03

ƒsxd = 120>x, L = 5, x0 = 24, P = 1

ƒsxd = x2
- 5, L = 11, x0 = 4, P = 1

ƒsxd = 1>x, L = -1, x0 = -1, P = 0.1

ƒsxd = x2, L = 4, x0 = -2, P = 0.5

ƒsxd = x2, L = 3, x0 = 23, P = 0.1

ƒsxd = 1>x, L = 1>4, x0 = 4, P = 0.05

ƒsxd = 2x - 7, L = 4, x0 = 23, P = 1

ƒsxd = 219 - x, L = 3, x0 = 10, P = 1

ƒsxd = 2x, L = 1>2, x0 = 1>4, P = 0.1

ƒsxd = 2x + 1, L = 1, x0 = 0, P = 0.1

ƒsxd = 2x - 2, L = -6, x0 = -2, P = 0.02

ƒsxd = x + 1, L = 5, x0 = 4, P = 0.01

ƒ ƒsxd - L ƒ 6 P0 6 ƒ x - x0 ƒ 6 d

d 7 0ƒ ƒsxd - L ƒ 6 P

x0P 7 0.
L, x0

0

y

x

x0 �

L � 2
� � 0.01

y � 1
x

f (x) � 1
x
1
22.01

2

1.99

1
21

2.01
1

1.99
NOT TO SCALE

2.5

2

1.5

y

x
–1

L � 2

f (x) �

x0 � –1

� � 0.5

16
9

– 16
25

– 0

�–x
2

y �
�–x

2
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Using the Formal Definition
Each of Exercises 31–36 gives a function ƒ(x), a point , and a posi-
tive number Find Then find a number such

that for all x

31.

32.

33.

34.

35.

36.

Prove the limit statements in Exercises 37–50.

37. 38.

39. 40.

41.

42.

43. 44.

45. 46.

47.

48.

49.

x

y

y � x sin 1
x

1
�– 1

�

1
2�

– 1
2�

lim
x:0

 x sin 
1
x = 0

lim
x:0

 ƒsxd = 0 if ƒsxd = e2x, x 6 0

x>2, x Ú 0

lim
x:1

 ƒsxd = 2 if ƒsxd = e4 - 2x, x 6 1

6x - 4, x Ú 1

lim
x:1

  
x2

- 1
x - 1

= 2lim
x: -3

  
x2

- 9
x + 3

= -6

lim
x:23

  
1
x2 =

1
3

lim
x:1

 
1
x = 1

lim
x: -2

 ƒsxd = 4 if ƒsxd = e x2, x Z -2

1, x = -2

lim
x:1

 ƒsxd = 1 if ƒsxd = e x2, x Z 1

2, x = 1

lim
x:0
24 - x = 2lim

x:9
2x - 5 = 2

lim
x:3

 s3x - 7d = 2lim
x:4

 s9 - xd = 5

ƒsxd = 4>x, x0 = 2, P = 0.4

ƒsxd = 21 - 5x, x0 = -3, P = 0.5

ƒsxd =

x2
+ 6x + 5
x + 5

, x0 = -5, P = 0.05

ƒsxd =

x2
- 4

x - 2
, x0 = 2, P = 0.05

ƒsxd = -3x - 2, x0 = -1, P = 0.03

ƒsxd = 3 - 2x, x0 = 3, P = 0.02

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0L = lim
x:x0

 ƒsxd .P .
x0
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84 Chapter 2: Limits and Continuity

50.

Theory and Examples

51. Define what it means to say that 

52. Prove that if and only if 

53. A wrong statement about limits Show by example that the fol-
lowing statement is wrong.

The number L is the limit of ƒ(x) as x approaches 
if ƒ(x) gets closer to L as x approaches 

Explain why the function in your example does not have the given
value of L as a limit as 

54. Another wrong statement about limits Show by example that
the following statement is wrong.

The number L is the limit of ƒ(x) as x approaches if, given
any there exists a value of x for which 

Explain why the function in your example does not have the given
value of L as a limit as 

55. Grinding engine cylinders Before contracting to grind engine
cylinders to a cross-sectional area of you need to know how
much deviation from the ideal cylinder diameter of in.
you can allow and still have the area come within of the
required To find out, you let and look for the
interval in which you must hold x to make What
interval do you find?

56. Manufacturing electrical resistors Ohm’s law for electrical
circuits like the one shown in the accompanying figure states that

In this equation, V is a constant voltage, I is the current
in amperes, and R is the resistance in ohms. Your firm has been
asked to supply the resistors for a circuit in which V will be 120
volts and I is to be In what interval does R have to
lie for I to be within 0.1 amp of the value 

V RI
�

�

I0 = 5?
5 ; 0.1 amp.

V = RI .

ƒ A - 9 ƒ … 0.01 .
A = psx>2d29 in2 .

0.01 in2
x0 = 3.385

9 in2 ,

x : x0 .

ƒ ƒsxd - L ƒ 6 P .P 7 0,
x0

x : x0 .

x0 .
x0

lim
h:0

 ƒsh + cd = L .lim
x:c

 ƒsxd = L

lim
x:0

 g sxd = k .

x

y

1

–1

0 1–1

y � x2

y � –x2

y � x2 sin 1
x

2
�

2
�–

lim
x:0

 x2 sin 
1
x = 0 When Is a Number L Not the Limit of ƒ(x) as ? 

Showing L is not a limit We can prove that by
providing an such that no possible satisfies the condition

We accomplish this for our candidate by showing that for each
there exists a value of x such that

57.

a. Let Show that no possible satisfies the
following condition:

That is, for each show that there is a value of x such
that

This will show that 

b. Show that 

c. Show that limx:1 ƒsxd Z 1.5 .

limx:1 ƒsxd Z 1.

limx:1 ƒsxd Z 2.

0 6 ƒ x - 1 ƒ 6 d and ƒ ƒsxd - 2 ƒ Ú 1>2.

d 7 0

For all x, 0 6 ƒ x - 1 ƒ 6 d    Q     ƒ ƒsxd - 2 ƒ 6 1>2.

d 7 0P = 1>2.

x

y

y � x � 1

y � x

y � f (x)

1

1

2

Let ƒsxd = e x, x 6 1

x + 1, x 7 1.

y

x
0 x0 x0 � �x0 � �

L

L � �

L � �

y � f (x)

a value of x for which

0 � 
 x � x0
 � � and 
 f (x) � L 
 � �

 f (x)

0 6 ƒ x - x0 ƒ 6 d and ƒ ƒsxd - L ƒ Ú P .

d 7 0
P

for all x, 0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0
limx:x0 ƒsxd Z L

x : x0

T
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58.

Show that

a.

b.

c.

59. For the function graphed here, explain why

a.

b.

c.

60. a. For the function graphed here, show that 

b. Does appear to exist? If so, what is the value of
the limit? If not, why not?

limx : -1 g sxd
limx : -1 g sxd Z 2.

x

y

0 3

3

4

4.8

y � f (x)

lim
x:3

 ƒsxd Z 3

lim
x:3

 ƒsxd Z 4.8

lim
x:3

 ƒsxd Z 4

lim
x:2

 hsxd Z 2

lim
x:2

 hsxd Z 3

lim
x:2

 hsxd Z 4

x

y

0 2

1

2

3

4 y � h(x)

y � x2

y � 2

Let hsxd = •
x2, x 6 2

3, x = 2

2, x 7 2.

2.4 One-Sided Limits 85

COMPUTER EXPLORATIONS
In Exercises 61–66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a. Plot the function near the point being approached.

b. Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

c. Using the value graph the banding lines 
and together with the function ƒ near 

d. From your graph in part (c), estimate a such that for all x

Test your estimate by plotting and over the interval
For your viewing window use

and If any
function values lie outside the interval your
choice of was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for and
0.001.

61.

62.

63.

64.

65.

66. ƒsxd =

3x2
- s7x + 1d2x + 5

x - 1
, x0 = 1

ƒsxd =

23 x - 1
x - 1

, x0 = 1

ƒsxd =

xs1 - cos xd
x - sin x

, x0 = 0

ƒsxd =

sin 2x
3x

, x0 = 0

ƒsxd =

5x3
+ 9x2

2x5
+ 3x2 , x0 = 0

ƒsxd =

x4
- 81

x - 3
, x0 = 3

P = 0.1, 0.05 ,

d

[L - P, L + P] ,
L - 2P … y … L + 2P .x0 + 2dx0 - 2d … x …

0 6 ƒ x - x0 ƒ 6 d .
y2ƒ, y1 ,

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0

x0 .y2 = L + P

y1 = L - PP = 0.2 ,

x0y = ƒsxd

y

x

y � g(x)

–1 0

1

2

2.4 One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x ap-
proaches the number from the left-hand side (where ) or the right-hand side

only. 

One-Sided Limits

To have a limit L as x approaches c, a function ƒ must be defined on both sides of c and its
values ƒ(x) must approach L as x approaches c from either side. Because of this, ordinary
limits are called two-sided.

sx 7 cd
x 6 cc
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86 Chapter 2: Limits and Continuity

If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function (Figure 2.24) has limit 1 as x approaches 0 from the right,
and limit as x approaches 0 from the left. Since these one-sided limit values are not the
same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not
have a (two-sided) limit at 0.

Intuitively, if ƒ(x) is defined on an interval (c, b), where and approaches arbi-
trarily close to L as x approaches c from within that interval, then ƒ has right-hand limit L
at c. We write

The symbol means that we consider only values of x greater than c.
Similarly, if ƒ(x) is defined on an interval (a, c), where and approaches arbi-

trarily close to M as x approaches c from within that interval, then ƒ has left-hand limit M
at c. We write

The symbol means that we consider only x values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the

function in Figure 2.24 we have

lim
x:0+

 ƒsxd = 1 and lim
x:0-

 ƒsxd = -1.

ƒsxd = x> ƒ x ƒ

“x : c- ”

lim
x:c-

 ƒsxd = M .

a 6 c
“x : c+ ”

lim
x:c+

 ƒsxd = L .

c 6 b ,

-1
ƒsxd = x> ƒ x ƒ

x

y

1

0

–1

y �
x

x


FIGURE 2.24 Different right-hand and
left-hand limits at the origin.

x

y

0
x

y

c cx x

L f (x)

0

M
f (x)

lim    f (x) � L
x:c+

lim    f (x) � M(b)(a)
x:c

_

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

EXAMPLE 1 The domain of is its graph is the semicircle in
Figure 2.26. We have

The function does not have a left-hand limit at or a right-hand limit at It
does not have ordinary two-sided limits at either  or 2.

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The
theorems for limits of polynomials and rational functions hold with one-sided limits, as 
do the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the 
following way.

-2
x = 2.x = -2

lim
x: -2+

24 - x2
= 0 and lim

x:2-

24 - x2
= 0.

[-2, 2] ;ƒsxd = 24 - x2

x

y

0 2–2

y � �4 � x2

FIGURE 2.26 and

(Example 1).lim
x: - 2+

24 - x2
= 0

lim
x:2-

24 - x2
= 0

THEOREM 6 A function ƒ(x) has a limit as x approaches c if and only if it has
left-hand and right-hand limits there and these one-sided limits are equal:

lim
x:c

 ƒsxd = L 3 lim
x:c-

 ƒsxd = L and lim
x:c+

 ƒsxd = L .
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EXAMPLE 3 Prove that

Solution Let be given. Here and so we want to find a such
that for all x

or

0 6 x 6 d Q 2x 6 P .

0 6 x 6 d Q ƒ2x - 0 ƒ 6 P ,

d 7 0L = 0,x0 = 0P 7 0

lim
x:0+

2x = 0.

2.4 One-Sided Limits 87

EXAMPLE 2 For the function graphed in Figure 2.27,

At 

and do not exist. The function is not de-
fined to the left of 

At even though 

does not exist. The right- and left-hand limits are not
equal.

At 

even though 

At 

At even though 

and do not exist. The function is not de-
fined to the right of 

At every other point c in [0, 4], ƒ(x) has limit ƒ(c).

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided
limits.

x = 4.
limx:4 ƒsxdlimx:4+ ƒsxd

ƒs4d Z 1,limx:4- ƒsxd = 1x = 4:

limx:3- ƒsxd = limx:3+ ƒsxd = limx:3 ƒsxd = ƒs3d = 2.x = 3:

ƒs2d = 2.limx:2 ƒsxd = 1

limx:2+ ƒsxd = 1,

limx:2- ƒsxd = 1,x = 2:

limx:1 ƒsxd
limx:1+ ƒsxd = 1,

ƒs1d = 1,limx:1- ƒsxd = 0x = 1:

x = 0.
limx:0 ƒsxdlimx:0- ƒsxd

limx:0+ ƒsxd = 1,x = 0:

x

y

321

2

1

40

y � f (x)

FIGURE 2.27 Graph of the function
in Example 2.

DEFINITIONS We say that ƒ(x) has right-hand limit L at and write

(see Figure 2.28)

if for every number there exists a corresponding number such that
for all x

We say that ƒ has left-hand limit L at and write

(see Figure 2.29)

if for every number there exists a corresponding number such that
for all x

x0 - d 6 x 6 x0 Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

-

 ƒsxd = L

x0 ,

x0 6 x 6 x0 + d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

+

 ƒsxd = L

x0 ,

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0 x0 � �

FIGURE 2.28 Intervals associated with
the definition of right-hand limit.

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0x0 � �

FIGURE 2.29 Intervals associated with
the definition of left-hand limit.
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88 Chapter 2: Limits and Continuity

Squaring both sides of this last inequality gives

If we choose we have

or

According to the definition, this shows that (Figure 2.30).

The functions examined so far have had some kind of limit at each point of interest. In
general, that need not be the case.

EXAMPLE 4 Show that has no limit as x approaches zero from either
side (Figure 2.31).

y = sin s1>xd

limx:0+2x = 0

0 6 x 6 P
2 Q ƒ2x - 0 ƒ 6 P .

0 6 x 6 d = P
2 Q 2x 6 P ,

d = P
2

x 6 P
2 if 0 6 x 6 d .

x

y

�

f (x)

xL � 0 � � �2

 f (x) � �x

FIGURE 2.30 in Example 3.lim
x:0+

1x = 0

x

y

0

–1

1

y � sin 1
x

FIGURE 2.31 The function has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4).
The graph here omits values very near the y-axis.

y = sin s1>xd

Solution As x approaches zero, its reciprocal, , grows without bound and the values
of sin ( ) cycle repeatedly from to 1. There is no single number L that the function’s
values stay increasingly close to as x approaches zero. This is true even if we restrict x to
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at 

Limits Involving 

A central fact about is that in radian measure its limit as is 1. We can see
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see
the importance of this limit in Section 3.5, where instantaneous rates of change of the
trigonometric functions are studied.

u: 0ssin ud>u
(sin U)/U

x = 0.

-11>x 1>x

y

�

1

NOT TO SCALE

2��–�–2�–3� 3�

y � (radians)sin �
�

FIGURE 2.32 The graph of suggests that the right-
and left-hand limits as approaches 0 are both 1.u

ƒsud = ssin ud>u
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Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of less than 
(Figure 2.33). Notice that

We can express these areas in terms of as follows:

(2)

Thus,

This last inequality goes the same way if we divide all three terms by the number
( ) which is positive since 

Taking reciprocals reverses the inequalities:

Since (Example 11b, Section 2.2), the Sandwich Theorem gives

Recall that and are both odd functions (Section 1.1). Therefore, 
is an even function, with a graph symmetric about the y-axis (see Figure 2.32).

This symmetry implies that the left-hand limit at 0 exists and has the same value as the
right-hand limit:

so by Theorem 6.

EXAMPLE 5 Show that (a) and (b) lim
x:0

 
sin 2x

5x
=

2
5 .lim

h:0
 
cos h - 1

h
= 0

limu:0 ssin ud>u = 1

lim
u:0-

 
sin u
u

= 1 = lim
u:0+

 
sin u
u

,

ssin ud>u ƒsud =usin u

lim
u:0+

 
sin u
u

= 1.

limu:0+ cos u = 1

1 7

sin u
u

7 cos u.

1 6

u
sin u

6
1

cos u
.

0 6 u 6 p>2:sin u ,1>2

1
2

 sin u 6
1
2

 u 6
1
2

 tan u .

Area ¢OAT =
1
2

 base * height =
1
2

 s1dstan ud =
1
2

 tan u .

 Area sector OAP =
1
2

 r2u =
1
2

 s1d2u =

u
2

Area ¢OAP =
1
2

 base * height =
1
2

 s1dssin ud =
1
2

 sin u

u

Area ¢OAP 6  area sector OAP 6  area ¢OAT .

p>2u

2.4 One-Sided Limits 89

THEOREM 7

(1)lim
u:0

 
sin u
u

= 1 su in radiansd

x

y

O

1

1

Q

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
tan �

P

sin � 

cos � 

1

T

A(1, 0)

�

FIGURE 2.33 The figure for the proof of
Theorem 7. By definition, 
but so TA = tan u .OA = 1,

TA>OA = tan u ,

Equation (2) is where radian measure
comes in: The area of sector OAP is 
only if is measured in radians.u

u>2
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90 Chapter 2: Limits and Continuity

Solution

(a) Using the half-angle formula we calculate

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by :

EXAMPLE 6 Find .

Solution From the definition of tan t and sec 2t, we have

Eq. (1) and Example 11b
in Section 2.2=

1
3

 (1)(1)(1) =
1
3

.

lim
t:0

 
tan t sec 2t

3t
=

1
3

 lim
t:0

 
sin t

t
# 1
cos t

# 1
cos 2t

lim
t:0

 
tan t sec 2t

3t

 =
2
5 s1d =

2
5

 =
2
5 lim

x:0
 
sin 2x

2x

 lim
x:0

 
sin 2x

5x
= lim

x:0
 
s2>5d #  sin 2x

s2>5d # 5x

2>5

Eq. (1) and Example 11a
in Section 2.2 = - s1ds0d = 0.

Let u = h>2. = - lim
u:0

 
sin u
u

 sin u

 lim
h:0

 
cos h - 1

h
= lim

h:0
-

2 sin2 sh>2d
h

cos h = 1 - 2 sin2sh>2d ,

Exercises 2.4

Finding Limits Graphically
1. Which of the following statements about the function 

graphed here are true, and which are false?

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

2. Which of the following statements about the function 
graphed here are true, and which are false?

y = ƒsxd

lim
x:2+

 ƒsxd = 0lim
x: -1-

 ƒsxd does not exist .

lim
x:2-

 ƒsxd = 2lim
x:1

 ƒsxd = 0

lim
x:1

 ƒsxd = 1lim
x:0

 ƒsxd = 1

lim
x:0

 ƒsxd = 0lim
x:0

 ƒsxd exists.

lim
x:0-

 ƒsxd = lim
x:0+

 ƒsxdlim
x:0-

 ƒsxd = 1

lim
x:0-

 ƒsxd = 0lim
x: -1+

 ƒsxd = 1

x

y

21–1

1

0

y � f (x)

y = ƒsxd

a. b. does not exist.

c. d.

e. f. does not exist.

g.

h. exists at every c in the open interval 

i. exists at every c in the open interval (1, 3).

j. k. does not exist.lim
x:3+

 ƒsxdlim
x: -1-

 ƒsxd = 0

lim
x:c

 ƒsxd

s -1, 1d .lim
x:c

 ƒsxd

lim
x:0+

 ƒsxd = lim
x:0-

 ƒsxd

lim
x:1

 ƒsxdlim
x:1+

 ƒsxd = 1

lim
x:1-

 ƒsxd = 2lim
x:2

 ƒsxd = 2

lim
x:2

 ƒsxdlim
x: -1+

 ƒsxd = 1

x

y

0

1

2

1–1 2 3

y � f (x)

Now, Eq. (1) applies with
u = 2x.
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3. Let 

a. Find and 

b. Does exist? If so, what is it? If not, why not?

c. Find and 

d. Does exist? If so, what is it? If not, why not?

4. Let 

a. Find and ƒ(2).

b. Does exist? If so, what is it? If not, why not?

c. Find and 

d. Does exist? If so, what is it? If not, why not?

5. Let 

a. Does exist? If so, what is it? If not, why not?

b. Does exist? If so, what is it? If not, why not?

c. Does exist? If so, what is it? If not, why not?limx:0 ƒsxd
limx:0- ƒsxd
limx:0+ ƒsxd

x

y

0

–1

1

1
xsin    ,

⎧
⎪
⎨
⎪
⎩

y �
0, x � 0

x 	 0

ƒsxd = •
0, x … 0

sin 
1
x , x 7 0.

limx:-1 ƒsxd
limx:-1+ ƒsxd .limx:-1- ƒsxd

limx:2 ƒsxd
limx:2+ ƒsxd, limx:2- ƒsxd ,

x

y

y � 3 � x

0

3

2–2

y �
2
x

ƒsxd = d 3 - x, x 6 2

2, x = 2

x
2

, x 7 2.

limx:4 ƒsxd
limx:4+ ƒsxd .limx:4- ƒsxd

limx:2 ƒsxd
limx:2- ƒsxd .limx:2+ ƒsxd

x

y

3

20 4

y � 3 � x

y �    � 1x
2

ƒsxd = •
3 - x, x 6 2

x
2

+ 1, x 7 2.

2.4 One-Sided Limits 91

6. Let 

a. Does exist? If so, what is it? If not, why not?

b. Does exist? If so, what is it? If not, why not?

c. Does exist? If so, what is it? If not, why not?

7. a. Graph 

b. Find and 

c. Does exist? If so, what is it? If not, why not?

8. a. Graph 

b. Find and 

c. Does exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of ƒ?

b. At what points c, if any, does exist?

c. At what points does only the left-hand limit exist?

d. At what points does only the right-hand limit exist?

9.

10.

Finding One-Sided Limits Algebraically
Find the limits in Exercises 11–18.

11. 12.

13.

14.

15. lim
h:0+

 
2h2

+ 4h + 5 - 25
h

lim
x:1-

a 1
x + 1

b ax + 6
x b a3 - x

7
b

lim
x: -2+

a x
x + 1

b a2x + 5
x2

+ x
b

lim
x:1+A

x - 1
x + 2

lim
x: -0.5-A

x + 2
x + 1

ƒsxd = •
x,  -1 … x 6 0, or 0 6 x … 1

1,  x = 0

0,  x 6 -1 or x 7 1

ƒsxd = •
21 - x2,  0 … x 6 1

1,  1 … x 6 2

2,  x = 2

limx:c ƒsxd

limx:1 ƒsxd
limx:1- ƒsxd .limx:1+ ƒsxd

ƒsxd = e1 - x2, x Z 1

2, x = 1.

limx:1 ƒsxd
limx:1+ ƒsxd .limx:1- ƒsxd

ƒsxd = e x3, x Z 1

0, x = 1.

limx:0 g sxd
limx:0- g sxd
limx:0+ g sxd

x
0

–1

1

y

y � �x

y � –�x

11
�

1
2�

2
�

y � �x sin 1
x

g sxd = 2x sins1>xd .
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92 Chapter 2: Limits and Continuity

16.

17. a. b.

18. a. b.

Use the graph of the greatest integer function Figure 1.10 in
Section 1.1, to help you find the limits in Exercises 19 and 20.

19. a. b.

20. a. b.

Using 

Find the limits in Exercises 21–42.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40. lim
y:0

 
sin 3y cot 5y

y cot 4y
lim
x:0

  
tan 3x
sin 8x

lim
u:0

 sin u cot 2ulim
u:0

 u cos u

lim
x:0

  
sin 5x
sin 4x

lim
u:0

  
sin u

sin 2u

lim
h:0

 
sin ssin hd

sin h
lim
t:0

 
sin s1 - cos td

1 - cos t

lim
x:0

 
x - x cos x

sin2 3x
lim
u:0

 
1 - cos u

sin 2u

lim
x:0

 
x2

- x + sin x
2x

lim
x:0

 
x + x cos x
sin x cos x

lim
x:0

 6x2scot xdscsc 2xdlim
x:0

 
x csc 2x
cos 5x

lim
t:0

  
2t

tan tlim
x:0

 
tan 2x

x

lim
h:0-

 
h

sin 3h
lim
y:0

 
sin 3y

4y

lim
t:0

 
sin kt

t  sk constantdlim
u:0

 
sin22u

22u

lim
U:0

 
sin U
U

� 1

lim
t:4-

st - : t; dlim
t:4+

st - : t; d
lim
u:3-

 
:u;
u

lim
u:3+

 
:u;
u

y = :x; ,
lim

x:1-

 
22x sx - 1d

ƒ x - 1 ƒ

lim
x:1+

 
22x sx - 1d

ƒ x - 1 ƒ

lim
x: -2-

sx + 3d 
ƒ x + 2 ƒ

x + 2
lim

x: -2+

sx + 3d 
ƒ x + 2 ƒ

x + 2

lim
h:0-

 
26 - 25h2

+ 11h + 6
h

41. 42.

Theory and Examples
43. Once you know and at an interior point

of the domain of ƒ, do you then know Give reasons
for your answer.

44. If you know that exists, can you find its value by cal-
culating Give reasons for your answer.

45. Suppose that ƒ is an odd function of x. Does knowing that
tell you anything about Give rea-

sons for your answer.

46. Suppose that ƒ is an even function of x. Does knowing that
tell you anything about either or

Give reasons for your answer.

Formal Definitions of One-Sided Limits
47. Given find an interval such that if

x lies in I, then What limit is being verified and
what is its value?

48. Given find an interval such that if
x lies in I, then What limit is being verified and
what is its value?

Use the definitions of right-hand and left-hand limits to prove the
limit statements in Exercises 49 and 50.

49. 50.

51. Greatest integer function Find (a) and
(b) then use limit definitions to verify your find-
ings. (c) Based on your conclusions in parts (a) and (b), can you
say anything about Give reasons for your answer.

52. One-sided limits Let 

Find (a) and (b) then use limit defini-
tions to verify your findings. (c) Based on your conclusions in
parts (a) and (b), can you say anything about Give
reasons for your answer.

limx:0 ƒsxd?

limx:0- ƒsxd ;limx:0+ ƒsxd

ƒsxd = e x2 sin s1>xd, x 6 0

2x, x 7 0.

limx:400:x; ?

limx:400- :x; ;
limx:400+ :x;

lim
x:2+

 
x - 2
ƒ x - 2 ƒ

= 1lim
x:0-

 
x
ƒ x ƒ

= -1

24 - x 6 P .
I = s4 - d, 4d, d 7 0,P 7 0,

2x - 5 6 P .
I = s5, 5 + dd, d 7 0,P 7 0,

limx:-2+ ƒsxd?
limx:-2- ƒsxdlimx:2- ƒsxd = 7

limx:0- ƒsxd?limx:0+ ƒsxd = 3

limx:c+ ƒsxd?
limx:c ƒsxd

limx:a ƒsxd?
limx:a- ƒsxdlimx:a+ ƒsxd

lim
u:0

  
u cot 4u

sin2 u cot2 2u
lim
u:0

  
tan u

u2 cot 3u

2.5 Continuity

When we plot function values generated in a laboratory or collected in the field, we often
connect the plotted points with an unbroken curve to show what the function’s values are
likely to have been at the times we did not measure (Figure 2.34). In doing so, we are
assuming that we are working with a continuous function, so its outputs vary continuously
with the inputs and do not jump from one value to another without taking on the values
in between. The limit of a continuous function as x approaches c can be found simply by
calculating the value of the function at c. (We found this to be true for polynomials in
Theorem 2.)

Intuitively, any function whose graph can be sketched over its domain in one
continuous motion without lifting the pencil is an example of a continuous function. In
this section we investigate more precisely what it means for a function to be continuous.

y = ƒsxd
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We also study the properties of continuous functions, and see that many of the function
types presented in Section 1.1 are continuous.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.35, whose
limits we investigated in Example 2 in the last section.

EXAMPLE 1 Find the points at which the function ƒ in Figure 2.35 is continuous and
the points at which ƒ is not continuous.

Solution The function ƒ is continuous at every point in its domain [0, 4] except at
and At these points, there are breaks in the graph. Note the relation-

ship between the limit of ƒ and the value of ƒ at each point of the function’s domain.

Points at which ƒ is continuous:

At 

At 

At 

Points at which ƒ is not continuous:

At does not exist.

At but 

At but 

At these points are not in the domain of ƒ.

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit) (Figure 2.36).

c 6 0, c 7 4,

1 Z ƒs4d .lim
x:4-

 ƒsxd = 1,x = 4,

1 Z ƒs2d .lim
x:2

 ƒsxd = 1,x = 2,

lim
x:1

 ƒsxdx = 1,

lim
x:c

 ƒsxd = ƒscd .0 6 c 6 4, c Z 1, 2 ,

lim
x:3

 ƒsxd = ƒs3d .x = 3,

lim
x:0+

 ƒsxd = ƒs0d .x = 0,

x = 4.x = 1, x = 2,

2.5 Continuity 93
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Q2
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Q4

FIGURE 2.34 Connecting plotted points
by an unbroken curve from experimental
data for a falling object.Q1 , Q2 , Q3 , Á

x
a c b

y � f (x)

Continuity
from the left

Two-sided
continuity

Continuity
from the right

FIGURE 2.36 Continuity at points a, b,
and c.

x

y

321

2

1

40

y � f (x)

FIGURE 2.35 The function is continuous
on [0, 4] except at and

(Example 1).x = 4
x = 1, x = 2,

If a function ƒ is not continuous at a point c, we say that ƒ is discontinuous at c and
that c is a point of discontinuity of ƒ. Note that c need not be in the domain of ƒ.

A function ƒ is right-continuous (continuous from the right) at a point in its
domain if It is left-continuous (continuous from the left) at c if

Thus, a function is continuous at a left endpoint a of its domain if itlimx:c- ƒsxd = ƒscd .
limx:c+ ƒsxd = ƒscd .

x = c

DEFINITION
Interior point: A function is continuous at an interior point c of its
domain if

Endpoint: A function is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

lim
x:a+

 ƒsxd = ƒsad or lim
x:b-

 ƒsxd = ƒsbd, respectively.

y = ƒsxd

lim
x:c

 ƒsxd = ƒscd .

y = ƒsxd
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94 Chapter 2: Limits and Continuity

is right-continuous at a and continuous at a right endpoint b of its domain if it is left-
continuous at b. A function is continuous at an interior point c of its domain if and only if
it is both right-continuous and left-continuous at c (Figure 2.36).

EXAMPLE 2 The function is continuous at every point of its do-
main (Figure 2.37), including where ƒ is right-continuous, and

where ƒ is left-continuous.

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.38, is right-continuous at
but is neither left-continuous nor continuous there. It has a jump discontinuity at

We summarize continuity at a point in the form of a test.

x = 0.
x = 0,

x = 2,
x = -2,[-2, 2]

ƒsxd = 24 - x2
x

y

0–2 2

2
y � �4 � x2

FIGURE 2.37 A function that is
continuous at every domain point
(Example 2).

Continuity Test
A function ƒ(x) is continuous at an interior point of its domain if and only
if it meets the following three conditions.

1. ƒ(c) exists (c lies in the domain of ƒ).

2. exists (ƒ has a limit as ).

3. (the limit equals the function value).limx:c ƒsxd = ƒscd
x : climx:c ƒsxd

x = c

x

y

0

1
y � U(x)

FIGURE 2.38 A function
that has a jump discontinuity
at the origin (Example 3).

For one-sided continuity and continuity at an endpoint, the limits in parts 2 and 3 of
the test should be replaced by the appropriate one-sided limits.

EXAMPLE 4 The function introduced in Section 1.1 is graphed in Figure 2.39.
It is discontinuous at every integer because the left-hand and right-hand limits are not equal
as :

.

Since , the greatest integer function is right-continuous at every integer n (but not
left-continuous).

The greatest integer function is continuous at every real number other than the inte-
gers. For example,

In general, if n an integer, then

Figure 2.40 displays several common types of discontinuities. The function in Figure
2.40a is continuous at The function in Figure 2.40b would be continuous if it had

The function in Figure 2.40c would be continuous if ƒ(0) were 1 instead of 2.
The discontinuities in Figure 2.40b and c are removable. Each function has a limit as

and we can remove the discontinuity by setting ƒ(0) equal to this limit.
The discontinuities in Figure 2.40d through f are more serious: does not

exist, and there is no way to improve the situation by changing ƒ at 0. The step function in
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function in Figure 2.40e has an infinite discontinuity. The function
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as
x : 0.

ƒsxd = 1>x2

limx:0 ƒsxd
x : 0,

ƒs0d = 1.
x = 0.

lim
x:c
:x; = n - 1 = :c; .

n - 1 6 c 6 n ,

lim
x:1.5

:x; = 1 = :1.5; .

:n; = n

lim
x:n-

:x; = n - 1 and lim
x:n+

:x; = n

x : n

y = :x;

x

y

3

3

21–1

2

–2

1

4

4

y � ⎣x⎦

FIGURE 2.39 The greatest integer
function is continuous at every
noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).
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2.5 Continuity 95

Continuous Functions

A function is continuous on an interval if and only if it is continuous at every point of the
interval. For example, the semicircle function graphed in Figure 2.37 is continuous on the
interval which is its domain. A continuous function is one that is continuous at
every point of its domain. A continuous function need not be continuous on every interval.

EXAMPLE 5

(a) The function (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at however, because
it is not defined there; that is, it is discontinuous on any interval containing .

(b) The identity function and constant functions are continuous everywhere by
Example 3, Section 2.3.

Algebraic combinations of continuous functions are continuous wherever they are
defined.

ƒsxd = x

x = 0
x = 0,

y = 1>x

[-2, 2] ,

y

(a) (b) (c)

(e)

(d)

y

x
0

1

y y

0

0

1

x xx

x

y

000

y

x

111

2

(f)

1

–1

y � f (x) y � f (x) y � f (x)

y � f (x)

y � f (x) � 1
x2

y � sin 1
x

FIGURE 2.40 The function in (a) is continuous at the functions in (b) through (f )
are not.

x = 0;

THEOREM 8—Properties of Continuous Functions If the functions ƒ and
g are continuous at then the following combinations are continuous at

1. Sums:

2. Differences:

3. Constant multiples: for any number k

4. Products:

5. Quotients: , provided 

6. Powers: n a positive integer

7. Roots: , provided it is defined on an open interval
containing c, where n is a positive integer

2n ƒ

ƒn,

g scd Z 0ƒ>g
ƒ # g

k # ƒ,

ƒ - g

ƒ + g

x = c .
x = c ,

0
x

y

y � 1
x

FIGURE 2.41 The function is
continuous at every value of x except

It has a point of discontinuity at
(Example 5).x = 0

x = 0.

y = 1>x
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96 Chapter 2: Limits and Continuity

Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section
2.2. For instance, to prove the sum property we have

Sum Rule, Theorem 1

Continuity of ƒ, g at c

This shows that is continuous.

EXAMPLE 6

(a) Every polynomial is continuous because
by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function is continuous
wherever it is defined by Theorem 3, Section 2.2.

EXAMPLE 7 The function is continuous at every value of x. If we
have a polynomial. If we have another polynomial. Finally,
at the origin, 

The functions and are continuous at by Example 11 of
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 70). It
follows from Theorem 8 that all six trigonometric functions are then continuous wherever
they are defined. For example, is continuous on 

Inverse Functions and Continuity

The inverse function of any function continuous on an interval is continuous over its do-
main. This result is suggested from the observation that the graph of , being the reflec-
tion of the graph of ƒ across the line , cannot have any breaks in it when the graph of
ƒ has no breaks. A rigorous proof that is continuous whenever ƒ is continuous on an in-
terval is given in more advanced texts. It follows that the inverse trigonometric functions
are all continuous over their domains.

We defined the exponential function in Section 1.5 informally by its graph.
Recall that the graph was obtained from the graph of for x a rational number by
filling in the holes at the irrational points x, so the function was defined to be con-
tinuous over the entire real line. The inverse function is also continuous. In par-
ticular, the natural exponential function and the natural logarithm function

are both continuous over their domains.

Composites

All composites of continuous functions are continuous. The idea is that if ƒ(x) is continu-
ous at and g(x) is continuous at then is continuous at (Figure
2.42). In this case, the limit as is g(ƒ(c)).x : c

x = cg � ƒx = ƒscd ,x = c

y = ln x
y = ex

y = loga x
y = ax

y = ax
y = ax

ƒ-1
y = x

ƒ-1

sp>2, 3p>2d ´
Á .

Á
´ s -p>2, p>2d ´y = tan x

x = 0y = cos xy = sin x

limx:0 ƒ x ƒ = 0 = ƒ 0 ƒ .
ƒsxd = -x ,x 6 0,ƒsxd = x ,

x 7 0,ƒsxd = ƒ x ƒ

sQscd Z 0d
Psxd>Qsxd

lim
x:c

 Psxd = Pscd
Psxd = an xn

+ an - 1x
n - 1

+
Á

+ a0

ƒ + g

 = sƒ + gdscd .

 = ƒscd + g scd

 = lim
x:c

 ƒsxd + lim
x:c

 g sxd, 

 lim
x:c

sƒ + gdsxd = lim
x:c

sƒsxd + g sxdd

c

f g

 g ˚ f

Continuous at c

Continuous
at f (c)

Continuous
at c

f (c)  g( f (c))

FIGURE 2.42 Composites of continuous functions are continuous.
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Intuitively, Theorem 9 is reasonable because if x is close to c, then ƒ(x) is close to ƒ(c),
and since g is continuous at ƒ(c), it follows that g(ƒ(x)) is close to g(ƒ(c)).

The continuity of composites holds for any finite number of functions. The only re-
quirement is that each function be continuous where it is applied. For an outline of the
proof of Theorem 9, see Exercise 6 in Appendix 4.

EXAMPLE 8 Show that the following functions are continuous everywhere on their re-
spective domains.

(a) (b)

(c) (d)

Solution

(a) The square root function is continuous on because it is a root of the continu-
ous identity function (Part 7, Theorem 8). The given function is then the
composite of the polynomial with the square root function

and is continuous on its domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

(c) The quotient is continuous for all and the function
is the composition of this quotient with the continuous absolute value function
(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 70), the numerator term
x sin x is the product of continuous functions, and the denominator term is an
everywhere-positive polynomial. The given function is the composite of a quotient of
continuous functions with the continuous absolute value function (Figure 2.43).

Theorem 9 is actually a consequence of a more general result which we now state and
prove.

x2
+ 2

x Z ;22,sx - 2d>sx2
- 2d

g std = 2t ,
ƒsxd = x2

- 2x - 5
ƒsxd = x

[0, q d

y = ` x sin x
x2

+ 2
`y = ` x - 2

x2
- 2
`

y =
x2>3

1 + x4y = 2x2
- 2x - 5

2.5 Continuity 97

Proof Let be given. Since g is continuous at b, there exists a number such that

Since there exists a such that

If we let , we then have that

,

which implies from the first statement that 
whenever . From the definition of limit, this proves that
limx:c g(ƒ(x)) = g(b).

0 6 ƒ x - c ƒ 6 d
ƒ g( y) - g(b) ƒ = ƒ g(ƒ(x)) - g(b) ƒ 6 P

ƒ y - b ƒ 6 d1 whenever 0 6 ƒ x - c ƒ 6 d

y = ƒ(x)

ƒ ƒ(x) - b ƒ 6 d1 whenever 0 6 ƒ x - c ƒ 6 d.

d 7 0limx:c ƒ(x) = b,

ƒ g( y) - g(b) ƒ 6 P whenever 0 6 ƒ y - b ƒ 6 d1.

d1 7 0P 7 0

THEOREM 10—Limits of Continuous Functions If g is continuous at the point
b and then

limx:c g(ƒ(x)) = g(b) = g(limx:c ƒ(x)).

limx:c ƒ(x) = b,

x

y

0

0.1

0.2

0.3

0.4

2�–�–2� �

FIGURE 2.43 The graph suggests that
is continuous

(Example 8d).
y = ƒ sx sin xd>sx2

+ 2d ƒ

THEOREM 9—Composite of Continuous Functions If ƒ is continuous at c and
g is continuous at ƒ(c), then the composite is continuous at c.g � ƒ
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98 Chapter 2: Limits and Continuity

EXAMPLE 9 As an application of Theorem 10, we have the following calculations.

(a)

(b)

(c)

Continuous Extension to a Point

The function is continuous at every point except In this it is
like the function But is different from in that it has a fi-
nite limit as (Theorem 7). It is therefore possible to extend the function’s domain to
include the point in such a way that the extended function is continuous at 
We define a new function

The function F(x) is continuous at because

(Figure 2.44).

lim
x:0

 
sin x

x = Fs0d

x = 0

Fsxd = L
sin x

x , x Z 0

1, x = 0.

x = 0.x = 0
x : 0

y = 1>xy = ssin xd>xy = 1>x .
x = 0.y = ƒ(x) = ssin xd>x

 = 1 # e0
= 1

 lim
x:0

 2x + 1 e tan x
= lim

x:0
 2x + 1 # exp a lim

x:0
 tan xb

 = sin-1 
1
2

=
p
6

 = sin-1 a lim
x:1

 
1

1 + x
b

 lim
x:1

 sin-1 a 1 - x
1 - x2 b = sin-1 a lim

x:1
 

1 - x
1 - x2 b

= cos (p + sin 2p) = cos p = -1.

lim
x:p/2

 cos a2x + sin a3p
2

+ xb b = cos a lim
x:p/2

 2x + lim
x:p/2

 sin a3p
2

+ xb b

(0, 1)

(a)

�
2

�
2

– 0

f (x)

x

y

⎛
⎝

⎛
⎝

,�
2 �

2– ⎛
⎝

⎛
⎝

,�
2 �

2

(0, 1)

(b)

�
2

�
2

– 0

F(x)

x

y

⎛
⎝

⎛
⎝

,�
2 �

2– ⎛
⎝

⎛
⎝

,�
2 �

2

FIGURE 2.44 The graph (a) of for does not include
the point (0, 1) because the function is not defined at (b) We can remove the
discontinuity from the graph by defining the new function F(x) with and

everywhere else. Note that Fs0d = limx:0 ƒsxd .Fsxd = ƒsxd
Fs0d = 1

x = 0.
-p>2 … x … p>2ƒsxd = ssin xd>x

Exponential is
continuous.

Cancel common
factor (1 - x).

Arcsine is
continuous.

More generally, a function (such as a rational function) may have a limit even at a
point where it is not defined. If ƒ(c) is not defined, but exists, we can de-
fine a new function F(x) by the rule

Fsxd = eƒsxd, if x is in the domain of ƒ

L, if x = c.

limx:c ƒsxd = L

We sometimes denote by exp 
when is a complicated mathematical
expression.

u
ueu
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The function F is continuous at It is called the continuous extension of ƒ to
For rational functions ƒ, continuous extensions are usually found by canceling

common factors.

EXAMPLE 10 Show that

,

has a continuous extension to and find that extension.

Solution Although ƒ(2) is not defined, if we have

The new function

is equal to ƒ(x) for but is continuous at having there the value of . Thus
F is the continuous extension of ƒ to and

The graph of ƒ is shown in Figure 2.45. The continuous extension F has the same graph
except with no hole at (2, ). Effectively, F is the function ƒ with its point of discontinu-
ity at removed.

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A
function is said to have the Intermediate Value Property if whenever it takes on two val-
ues, it also takes on all the values in between.

x = 2
5>4

lim
x:2

 
x2

+ x - 6
x2

- 4
= lim

x:2
 ƒsxd =

5
4

.

x = 2,
5>4x = 2,x Z 2,

Fsxd =
x + 3
x + 2

ƒsxd =
x2

+ x - 6
x2

- 4
=

sx - 2dsx + 3d
sx - 2dsx + 2d

=
x + 3
x + 2

.

x Z 2

x = 2,

x Z 2ƒsxd =
x2

+ x - 6
x2

- 4

x = c .
x = c .

2.5 Continuity 99

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any hor-
izontal line crossing the y-axis between the numbers ƒ(a) and ƒ(b) will cross the
curve at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property
of the real number system (Appendix 6) and can be found in more advanced texts.

y = ƒsxd
y = y0

y

x

x

y

0

1

2

–1 1 2 3 4

0

1

2

–1 1 2 3 4

(a)

(b)

y �
x2 � x � 6

x2 � 4

5
4

y �
x � 3
x � 2

FIGURE 2.45 (a) The graph of
ƒ(x) and (b) the graph of its
continuous extension F(x)
(Example 10).

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If ƒ
is a continuous function on a closed interval [a, b], and if is any value between
ƒ(a) and ƒ(b), then for some c in [a, b].

x

y

0 a c b

y � f (x)

f (b)

f (a)

y0

y0 = ƒscd
y0
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100 Chapter 2: Limits and Continuity

The continuity of ƒ on the interval is essential to Theorem 11. If ƒ is discontinuous at
even one point of the interval, the theorem’s conclusion may fail, as it does for the function
graphed in Figure 2.46 (choose as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest
integer function (Figure 2.39), or separate branches like the graph of (Figure 2.41).

A Consequence for Root Finding We call a solution of the equation a root of
the equation or zero of the function ƒ. The Intermediate Value Theorem tells us that if ƒ is
continuous, then any interval on which ƒ changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point
where the function’s value is zero. 

EXAMPLE 11 Show that there is a root of the equation between 1 and 2.

Solution Let . Since and 
, we see that is a value between ƒ(1) and ƒ(2). Since ƒ is

continuous, the Intermediate Value Theorem says there is a zero of ƒ between 1 and 2.
Figure 2.47 shows the result of zooming in to locate the root near   x = 1.32.

y0 = 023
- 2 - 1 = 5 7 0

ƒ(2) =ƒ(1) = 1 - 1 - 1 = -1 6 0ƒ(x) = x3
- x - 1

x3
- x - 1 = 0

ƒsxd = 0

1>x

y0

EXAMPLE 12 Use the Intermediate Value Theorem to prove that the equation

has a solution (Figure 2.48).

Solution We rewrite the equation as

and set . Now is continuous on the interval
since it is the composite of the square root function with the nonnegative linear[-5>2, q)

g(x) = 22x + 5ƒ(x) = 22x + 5 + x2

22x + 5 + x2
= 4,

22x + 5 = 4 - x2

x

y

0

2

1

1 2 3 4

3

FIGURE 2.46 The function 

does not take on all values between
and it misses all the

values between 2 and 3.
ƒs4d = 3;ƒs1d = 0

ƒsxd = e2x - 2, 1 … x 6 2

3, 2 … x … 4

(a)

5

–2

2–1

(b)

1

–1

1.61

(c)

0.02

–0.02

1.3301.320

(d)

0.003

–0.003

1.32481.3240

FIGURE 2.47 Zooming in on a zero of the function The zero is near
(Example 11).x = 1.3247

ƒsxd = x3
- x - 1.

1

0 2

4

3

2

x

y

y 5 4 2 x2

y 5 �2x 1 5

c

FIGURE 2.48 The curves 
and have the same value at

where 
(Example 12).

22x + 5 = 4 - x2x = c
y = 4 - x2

y = 22x + 5
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2.5 Continuity 101

Exercises 2.5

Continuity from Graphs
In Exercises 1–4, say whether the function graphed is continuous on

If not, where does it fail to be continuous and why?

1. 2.

3. 4.

Exercises 5–10 refer to the function

graphed in the accompanying figure.

The graph for Exercises 5–10.

2

x

y

0 3

(1, 2)

21–1

(1, 1)

 

y � f (x)

y � –2x � 4

y � x2 � 1 –1

y � 2x

ƒsxd = e
  x2

- 1, -1 … x 6 0

  2x,   0 6 x 6 1

  1,   x = 1

-2x + 4,   1 6 x 6 2

  0,   2 6 x 6 3

x

y

0 1–1 3

1

2

2

y � k(x)

x

y

0 1 3

2

–1 2

1

y � h(x)

x

y

0 1–1 3

1

2

2

y � g(x)

x

y

0 1–1 3

1

2

2

y � f (x)

[-1, 3] .

5. a. Does exist?

b. Does exist?

c. Does 

d. Is ƒ continuous at 

6. a. Does ƒ(1) exist?

b. Does exist?

c. Does 

d. Is ƒ continuous at 

7. a. Is ƒ defined at (Look at the definition of ƒ.)

b. Is ƒ continuous at 

8. At what values of x is ƒ continuous?

9. What value should be assigned to ƒ(2) to make the extended func-
tion continuous at 

10. To what new value should ƒ(1) be changed to remove the discon-
tinuity?

Applying the Continuity Test
At which points do the functions in Exercises 11 and 12 fail to be con-
tinuous? At which points, if any, are the discontinuities removable?
Not removable? Give reasons for your answers.

11. Exercise 1, Section 2.4 12. Exercise 2, Section 2.4

At what points are the functions in Exercises 13–30 continuous?

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. y = s2 - xd1>5y = s2x - 1d1>3
y = 24 3x - 1y = 22x + 3

y =

2x4
+ 1

1 + sin2 x
y =

x tan x

x2
+ 1

y = tan 
px
2

y = csc 2x

y =

x + 2
cos xy =

cos x
x

y =

1
ƒ x ƒ + 1

-

x2

2
y = ƒ x - 1 ƒ + sin x

y =

x + 3
x2

- 3x - 10
y =

x + 1
x2

- 4x + 3

y =

1
sx + 2d2 + 4y =

1
x - 2

- 3x

x = 2?

x = 2?

x = 2?

x = 1?

limx:1 ƒsxd = ƒs1d?

limx:1 ƒsxd

x = -1?

limx:-1+ ƒsxd = ƒs -1d?

limx: -1+ ƒsxd
ƒs -1d

function . Then ƒ is the sum of the function g and the quadratic function
and the quadratic function is continuous for all values of x. It follows that

is continuous on the interval . By trial and error, we

find the function values and and note that ƒ is
also continuous on the finite closed interval . Since the value is
between the numbers 2.24 and 7, by the Intermediate Value Theorem there is a number

such that That is, the number c solves the original equation.ƒ(c) = 4.c H [0, 2]

y0 = 4[0, 2] ( [-5>2, q)
ƒ(2) = 29 + 4 = 7,ƒ(0) = 25 L 2.24

[-5>2, q)ƒ(x) = 22x + 5 + x2
y = x2,

y = 2x + 5

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:34 PM  Page 101



102 Chapter 2: Limits and Continuity

29.

30.

Limits Involving Trigonometric Functions
Find the limits in Exercises 31–38. Are the functions continuous at the
point being approached?

31. 32.

33.

34.

35. 36.

37. 38.

Continuous Extensions
39. Define g(3) in a way that extends to be

continuous at 

40. Define h(2) in a way that extends 
to be continuous at 

41. Define ƒ(1) in a way that extends to
be continuous at 

42. Define g(4) in a way that extends

to be continuous at 

43. For what value of a is

continuous at every x?

44. For what value of b is

continuous at every x?

45. For what values of a is

continuous at every x?

46. For what value of b is

continuous at every x?

gsxd = •
x - b
b + 1

, x 6 0

x2
+ b, x 7 0

ƒsxd = ba2x - 2a, x Ú 2

12, x 6 2

g sxd = e x, x 6 -2

bx2, x Ú -2

ƒsxd = e x2
- 1, x 6 3

2ax, x Ú 3

x = 4.

sx2
- 3x - 4dg sxd = sx2

- 16d>

s = 1.
ƒssd = ss3

- 1d>ss2
- 1d

t = 2.
hstd = st2

+ 3t - 10d>st - 2d
x = 3.

g sxd = sx2
- 9d>sx - 3d

lim
x:1

 cos-1 (ln 2x)lim
x:0+

 sin ap
2

 e2xb

lim
x:p/6

 2csc2 x + 513 tan xlim
t:0

 cos a p

219 - 3 sec 2t
b

lim
x:0

 tan ap
4

 cos ssin x1>3db
lim
y:1

 sec s y sec2 y - tan2 y - 1d

lim
t:0

 sin ap
2

 cos stan tdblim
x:p

 sin sx - sin xd

ƒsxd = d x3
- 8

x2
- 4

, x Z 2, x Z -2

3, x = 2

4, x = -2

gsxd = •
x2

- x - 6
x - 3

, x Z 3

5, x = 3

47. For what values of a and b is

continuous at every x?

48. For what values of a and b is

continuous at every x?

In Exercises 49–52, graph the function ƒ to see whether it appears to
have a continuous extension to the origin. If it does, use Trace and Zoom
to find a good candidate for the extended function’s value at 
If the function does not appear to have a continuous extension, can it be
extended to be continuous at the origin from the right or from the left? 
If so, what do you think the extended function’s value(s) should be?

49. 50.

51. 52.

Theory and Examples
53. A continuous function is known to be negative at 

and positive at Why does the equation have at
least one solution between and Illustrate with a
sketch.

54. Explain why the equation has at least one solution.

55. Roots of a cubic Show that the equation 
has three solutions in the interval 

56. A function value Show that the function 
takes on the value for some value of x.

57. Solving an equation If show that
there are values c for which ƒ(c) equals (a) (b)
(c) 5,000,000.

58. Explain why the following five statements ask for the same infor-
mation.

a. Find the roots of 

b. Find the x-coordinates of the points where the curve 
crosses the line 

c. Find all the values of x for which 

d. Find the x-coordinates of the points where the cubic curve
crosses the line 

e. Solve the equation 

59. Removable discontinuity Give an example of a function ƒ(x)
that is continuous for all values of x except where it has
a removable discontinuity. Explain how you know that ƒ is dis-
continuous at and how you know the discontinuity is
removable.

60. Nonremovable discontinuity Give an example of a function
g(x) that is continuous for all values of x except where it
has a nonremovable discontinuity. Explain how you know that g is
discontinuous there and why the discontinuity is not removable.

x = -1,

x = 2,

x = 2,

x3
- 3x - 1 = 0.

y = 1.y = x3
- 3x

x3
- 3x = 1.

y = 3x + 1.
y = x3

ƒsxd = x3
- 3x - 1.

-23;p ;
ƒsxd = x3

- 8x + 10,

sa + bd>2sx - bd2
+ x

Fsxd = sx - ad2 #

[-4, 4] .
x3

- 15x + 1 = 0

cos x = x

x = 1?x = 0
ƒsxd = 0x = 1.

x = 0y = ƒsxd

ƒsxd = s1 + 2xd1>xƒsxd =

sin x
ƒ x ƒ

ƒsxd =

10 ƒ x ƒ
- 1

xƒsxd =

10x
- 1

x

x = 0.

gsxd = •
ax + 2b, x … 0

x2
+ 3a - b, 0 6 x … 2

3x - 5, x 7 2

ƒsxd = •
-2, x … -1

ax - b, -1 6 x 6 1

3, x Ú 1

T
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61. A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that the
function

is discontinuous at every point.

b. Is ƒ right-continuous or left-continuous at any point?

62. If functions ƒ(x) and g(x) are continuous for could
possibly be discontinuous at a point of [0, 1]? Give rea-

sons for your answer.

63. If the product function is continuous at 
must ƒ(x) and g(x) be continuous at Give reasons for your
answer.

64. Discontinuous composite of continuous functions Give an ex-
ample of functions ƒ and g, both continuous at for which
the composite is discontinuous at Does this contra-
dict Theorem 9? Give reasons for your answer.

65. Never-zero continuous functions Is it true that a continuous
function that is never zero on an interval never changes sign on
that interval? Give reasons for your answer.

66. Stretching a rubber band Is it true that if you stretch a rubber
band by moving one end to the right and the other to the left,
some point of the band will end up in its original position? Give
reasons for your answer.

67. A fixed point theorem Suppose that a function ƒ is continuous
on the closed interval [0, 1] and that for every x in
[0, 1]. Show that there must exist a number c in [0, 1] such that

(c is called a fixed point of ƒ).ƒscd = c

0 … ƒsxd … 1

x = 0.ƒ � g
x = 0,

x = 0?
x = 0,hsxd = ƒsxd # g sxd

ƒ(x)>g (x)
0 … x … 1,

ƒsxd = e1, if x is rational

0, if x is irrational

2.6 Limits Involving Infinity; Asymptotes of Graphs 103

68. The sign-preserving property of continuous functions Let ƒ
be defined on an interval (a, b) and suppose that at some
c where ƒ is continuous. Show that there is an interval

about c where ƒ has the same sign as ƒ(c). 

69. Prove that ƒ is continuous at c if and only if

70. Use Exercise 69 together with the identities

to prove that both and are continuous
at every point 

Solving Equations Graphically
Use the Intermediate Value Theorem in Exercises 71–78 to prove that
each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

71.

72.

73.

74.

75.

76.

77. Make sure you are using radian mode.

78. Make sure you are using radian
mode.
2 sin x = x sthree rootsd .

cos x = x sone rootd .

x3
- 15x + 1 = 0 sthree rootsd

2x + 21 + x = 4

xx
= 2

xsx - 1d2
= 1 sone rootd

2x3
- 2x2

- 2x + 1 = 0

x3
- 3x - 1 = 0

x = c .
g sxd = cos xƒsxd = sin x

sin h sin ccos h cos c -cos sh + cd =

cos h sin c ,sin h cos c +sin sh + cd =

lim
h:0

 ƒsc + hd = ƒscd .

sc - d, c + dd

ƒscd Z 0

2.6 Limits Involving Infinity; Asymptotes of Graphs

In this section we investigate the behavior of a function when the magnitude of the inde-
pendent variable x becomes increasingly large, or . We further extend the concept
of limit to infinite limits, which are not limits as before, but rather a new use of the term
limit. Infinite limits provide useful symbols and language for describing the behavior of
functions whose values become arbitrarily large in magnitude. We use these limit ideas to
analyze the graphs of functions having horizontal or vertical asymptotes.

Finite Limits as 

The symbol for infinity does not represent a real number. We use to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
For example, the function is defined for all (Figure 2.49). When x is
positive and becomes increasingly large, becomes increasingly small. When x is
negative and its magnitude becomes increasingly large, again becomes small. We
summarize these observations by saying that has limit 0 as or

or that 0 is a limit of at infinity and negative infinity. Here are 
precise definitions.

ƒsxd = 1>xx : - q ,
x : qƒsxd = 1>x1>x1>x x Z 0ƒsxd = 1>x

qs q d

x : —ˆ

x : ;q

T

y

0

1

–1
1–1 2 3 4

2

3

4

x

1
xy �

FIGURE 2.49 The graph of 
approaches 0 as or .x : - qx : q

y = 1>x
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104 Chapter 2: Limits and Continuity

Intuitively, if, as x moves increasingly far from the origin in the positive
direction, ƒ(x) gets arbitrarily close to L. Similarly, if, as x moves in-
creasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions and We then extended these results to other functions by applying
Theorem 1 on limits of algebraic combinations. Here we do the same thing, except that the
starting functions are and instead of and 

The basic facts to be verified by applying the formal definition are

(1)

We prove the second result and leave the first to Exercises 87 and 88.

EXAMPLE 1 Show that

(a) (b)

Solution

(a) Let be given. We must find a number M such that for all x

The implication will hold if or any larger positive number (Figure 2.50).
This proves 

(b) Let be given. We must find a number N such that for all x

The implication will hold if or any number less than (Figure 2.50).
This proves 

Limits at infinity have properties similar to those of finite limits.

limx:-q s1>xd = 0.
-1>PN = -1>P

x 6 N Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

limx:q s1>xd = 0.
M = 1>P

x 7 M Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

lim
x: -q

  
1
x = 0.lim

x: q

  
1
x = 0

lim
x: ;q

 k = k  and  lim
x: ;q

  
1
x = 0.

y = x .y = ky = 1>xy = k

y = x .y = k

x : ; q

limx:-q ƒsxd = L
limx:q ƒsxd = L

x

y
No matter what
positive number � is,
the graph enters
this band at x �
and stays.

1
�

y � �

M � 1
�

N � – 1
�

y � –�

0

No matter what
positive number � is,
the graph enters
this band at x � –
and stays.

1
�

�

–�

y � 1
x

FIGURE 2.50 The geometry behind the
argument in Example 1.

THEOREM 12 All the limit laws in Theorem 1 are true when we replace
by or . That is, the variable x may approach a finite

number c or ; q .
limx:- qlimx: qlimx:c

DEFINITIONS
1. We say that ƒ(x) has the limit L as x approaches infinity and write

if, for every number there exists a corresponding number M such that for all x

2. We say that ƒ(x) has the limit L as x approaches minus infinity and write

if, for every number there exists a corresponding number N such that for all x

x 6 N Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: -q

 ƒsxd = L

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: q

 ƒsxd = L
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2.6 Limits Involving Infinity; Asymptotes of Graphs 105

EXAMPLE 2 The properties in Theorem 12 are used to calculate limits in the same way
as when x approaches a finite number c.

(a) Sum Rule

Known limits

(b)

Product Rule

Known limits

Limits at Infinity of Rational Functions

To determine the limit of a rational function as we first divide the numerator
and denominator by the highest power of x in the denominator. The result then depends on
the degrees of the polynomials involved.

EXAMPLE 3 These examples illustrate what happens when the degree of the numerator
is less than or equal to the degree of the denominator.

(a)

(b)

A case for which the degree of the numerator is greater than the degree of the denom-
inator is illustrated in Example 10.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph ap-
proaches the line asymptotically and that the line is an asymptote of the graph.

Looking at (see Figure 2.49), we observe that the x-axis is an asymptote
of the curve on the right because

and on the left because

We say that the x-axis is a horizontal asymptote of the graph of ƒsxd = 1>x .

lim
x: -q

 
1
x = 0.

lim
x: q

 
1
x = 0

ƒsxd = 1>x

See Fig. 2.52. =
0 + 0
2 - 0

= 0

Divide numerator and
denominator by x3. lim

x: -q

 
11x + 2
2x3

- 1
= lim

x: -q

 
s11>x2d + s2>x3d

2 - s1>x3d

See Fig. 2.51. =
5 + 0 - 0

3 + 0
=

5
3

Divide numerator and
denominator by x2. lim

x: q

 
5x2

+ 8x - 3
3x2

+ 2
= lim

x: q

 
5 + s8>xd - s3>x2d

3 + s2>x2d

x : ; q ,

 = p23 # 0 # 0 = 0

 = lim
x: -q

 p23 # lim
x: -q

 
1
x

# lim
x: -q

 
1
x

lim
x: -q

 
p23

x2 = lim
x: -q

 p23 # 1
x

# 1
x

 = 5 + 0 = 5

 lim
x: q

a5 +
1
x b = lim

x: q

 5 + lim
x: q

 
1
x

x

y

0

–2

–4

–6

–8

2–2–4 4 6

2

4

6

8
y �

11x � 2

2x3 � 1

FIGURE 2.52 The graph of the
function in Example 3b. The graph
approaches the x-axis as increases.ƒ x ƒ

DEFINITION A line is a horizontal asymptote of the graph of a func-
tion if either

lim
x: q

 ƒsxd = b or lim
x: -q

 ƒsxd = b .

y = ƒsxd
y = b

x

y

0

–1

–2

1

2

5–5 10

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

Line y � 5
3

FIGURE 2.51 The graph of the function
in Example 3a. The graph approaches the
line as increases.ƒ x ƒy = 5>3
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106 Chapter 2: Limits and Continuity

The graph of the function

sketched in Figure 2.51 (Example 3a) has the line as a horizontal asymptote on
both the right and the left because

EXAMPLE 4 Find the horizontal asymptotes of the graph of

Solution We calculate the limits as 

The horizontal asymptotes are and The graph is displayed in Figure 2.53.
Notice that the graph crosses the horizontal asymptote for a positive value
of x.

EXAMPLE 5 The x-axis (the line ) is a horizontal asymptote of the graph of
because

To see this, we use the definition of a limit as x approaches . So let be given, but
arbitrary. We must find a constant N such that for all x,

Now , so the condition that needs to be satisfied whenever is

Let be the number where . Since is an increasing function, if ,
then . We find N by taking the natural logarithm of both sides of the equation

, so (see Figure 2.54). With this value of N the condition is satisfied, and
we conclude that 

EXAMPLE 6 Find (a) and (b)

Solution

(a) We introduce the new variable From Example 1, we know that as
(see Figure 2.49). Therefore,

lim
x: q

 sin 
1
x = lim

t:0+

 sin t = 0.

x : q

t : 0+t = 1>x .

lim
x: ;q

 x sin s1>xd.lim
x: q

 sin s1>xd

limx:-q e
x

= 0.
N = ln PeN

=  P
ex

6  P
x 6 Nexex

=  Px = N

ex
6 P.

x 6 Nƒex
- 0 ƒ = ex

x 6 N Q  ƒex
- 0 ƒ 6 P.

P 7 0-q

lim
x: - q

 ex
= 0.

y = ex
y = 0

y = -1
y = 1.y = -1

For x 6 0: lim
x: -q

 
x3

- 2

ƒ x ƒ
3

+ 1
= lim

x: -q

 
x3

- 2
(-x)3

+ 1
= lim

x: -q

 
1 - (2>x3)

-1 + (1>x3)
= -1.

For x Ú 0: lim
x: q

 
x3

- 2

ƒ x ƒ
3

+ 1
= lim

x: q

 
x3

- 2
x3

+ 1
= lim

x: q

 
1 - (2>x3)

1 + (1>x3)
= 1.

x : ; q .

ƒsxd =
x3

- 2

ƒ x ƒ
3

+ 1.

lim
x: q

 ƒsxd =
5
3
 and lim

x: -q

 ƒsxd =
5
3

.

y = 5>3
ƒsxd =

5x2
+ 8x - 3

3x2
+ 2

FIGURE 2.53 The graph of the
function in Example 4 has two
horizontal asymptotes.

0

–2

2

x

y

y � –1

f(x) � x3 – 2
�x �3 + 1

y � 1

1

x

y

y � ex

N � ln �

�

FIGURE 2.54 The graph of 
approaches the x-axis as 
(Example 5).

x : - q

y = ex
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(b) We calculate the limits as and 

The graph is shown in Figure 2.55, and we see that the line is a horizontal 
asymptote.

Likewise, we can investigate the behavior of as by investigating
as , where .

EXAMPLE 7 Find .

Solution We let . From Figure 2.49, we can see that as . (We
make this idea more precise further on.) Therefore,

Example 5

(Figure 2.56).

The Sandwich Theorem also holds for limits as You must be sure, though,
that the function whose limit you are trying to find stays between the bounding functions
at very large values of x in magnitude consistent with whether or 

EXAMPLE 8 Using the Sandwich Theorem, find the horizontal asymptote of the curve

Solution We are interested in the behavior as Since

and we have by the Sandwich Theorem.
Hence,

and the line is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many

times.

EXAMPLE 9 Find 

Solution Both of the terms x and approach infinity as so what hap-
pens to the difference in the limit is unclear (we cannot subtract from because the
symbol does not represent a real number). In this situation we can multiply the numerator
and the denominator by the conjugate radical expression to obtain an equivalent algebraic
result: 

.= lim
x: q

 
x2

- (x2
+ 16)

x + 2x2
+ 16

= lim
x: q

 
-16

x + 2x2
+ 16

lim
x: q

 Ax - 2x2
+ 16 B = lim

x: q

 Ax - 2x2
+ 16 B  x + 2x2

+ 16

x + 2x2
+ 16

qq

x : q ,2x2
+ 16

lim
x: q

 Ax - 2x2
+ 16 B .

y = 2

lim
x: ;q

a2 +
sin x

x b = 2 + 0 = 2,

limx:;q ssin xd>x = 0limx:;q ƒ 1>x ƒ = 0,

0 … ` sin x
x ` … ` 1x `

x : ; q.

y = 2 +
sin x

x .

x : - q .x : q

x : ; q .

lim
x:0-

e1>x
= lim

t: - q

et
= 0

x : 0-t : -qt = 1>x
lim

x:0-

e1>x

t = 1>xt : ; qy = ƒ(t)
x : 0y = ƒ(1>x)

y = 1

lim
x: q

 x sin 
1
x = lim

t:0+

 
sin t

t = 1  and  lim
x: -q

 x sin 
1
x = lim

t:0-

 
sin t

t = 1.

x : - q :x : q
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1

–1 1
x

y

y � x sin 1
x

FIGURE 2.55 The line is a
horizontal asymptote of the function
graphed here (Example 6b).

y = 1

x

y

1

0

2

2��–�–2�–3� 3�

y � 2 � sin x
x

FIGURE 2.57 A curve may cross one of
its asymptotes infinitely often (Example 8).

y � e1 ⁄x

–1–2–3 0

0.2
0.4
0.6
0.8

1

y

x

FIGURE 2.56 The graph of 
for shows 
(Example 7).

limx:0- e1>x
= 0x 6 0

y = e1>x
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108 Chapter 2: Limits and Continuity

As the denominator in this last expression becomes arbitrarily large, so we see that
the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws: 

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the de-
nominator, the graph has an oblique or slant line asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express ƒ as a linear function plus a
remainder that goes to zero as 

EXAMPLE 10 Find the oblique asymptote of the graph of

in Figure 2.58.

Solution We are interested in the behavior as . We divide into

This tells us that

As , the remainder, whose magnitude gives the vertical distance between the
graphs of ƒ and g, goes to zero, making the slanted line

an asymptote of the graph of ƒ (Figure 2.58). The line is an asymptote both to the
right and to the left. The next subsection will confirm that the function ƒ(x) grows arbitrarily
large in absolute value as (where the denominator is zero), as shown in the graph.

Notice in Example 10 that if the degree of the numerator in a rational function is greater
than the degree of the denominator, then the limit as becomes large is or de-
pending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function As the values of ƒ grow without
bound, eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of ƒ become larger still (Figure 2.59).

x : 0+ ,ƒsxd = 1>x .

- q ,+ qƒ x ƒ

x : 2

y = g(x)

g(x) =
x
2

+ 1

x : ; q

ƒsxd =
x2

- 3
2x - 4

= ¢ x
2

+ 1≤ + ¢ 1
2x - 4 ≤  .

x
2

+ 1   

2x - 4�x2
- 3  

x2
- 2x  

2x - 3

2x - 4

1

sx2
- 3d :

s2x - 4dx : ; q

ƒsxd =
x2

- 3
2x - 4

x : ; q .

lim
x: q

 
-16

x + 2x2
+ 16

= lim
x: q

 
-  

16
x

1 + A
x2

x2 +
16
x2

=
0

1 + 21 + 0
= 0.

x : q ,

You can get as high
as you want by
taking x close enough
to 0.  No  matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low –B is,  the
graph goes lower.

x

x

B

–B

y � 1
x

0

FIGURE 2.59 One-sided infinite limits:

lim
x:0+

 
1
x = q  and  lim

x:0-

 
1
x = - q .

x

y

0 1 2 3 4 x–1

1

–1

–2

–3

2

3

4

5

6

x 5 2 Oblique
asymptote

The vertical distance
between curve and
line goes to zero as x → `

y 5    1 1x
2

y 5 5 1 1 1x2 2 3
2x 2 4

1
2x 2 4

x
2

FIGURE 2.58 The graph of the function
in Example 10 has an oblique asymptote.

123
linear g(x)

14243
remainder
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Thus, ƒ has no limit as It is nevertheless convenient to describe the behavior of ƒ
by saying that ƒ(x) approaches as We write

In writing this equation, we are not saying that the limit exists. Nor are we saying that there
is a real number for there is no such number. Rather, we are saying that 
does not exist because becomes arbitrarily large and positive as

As the values of become arbitrarily large and negative. Given
any negative real number the values of ƒ eventually lie below (See Figure 2.59.)
We write

Again, we are not saying that the limit exists and equals the number There is no real
number We are describing the behavior of a function whose limit as does not
exist because its values become arbitrarily large and negative.

EXAMPLE 11 Find and

Geometric Solution The graph of is the graph of shifted 1 unit
to the right (Figure 2.60). Therefore, behaves near 1 exactly the way

behaves near 0:

Analytic Solution Think about the number and its reciprocal. As we have
and As we have and 

EXAMPLE 12 Discuss the behavior of

Solution As x approaches zero from either side, the values of are positive and be-
come arbitrarily large (Figure 2.61). This means that

The function shows no consistent behavior as We have if
but if All we can say about is that it does not

exist. The function is different. Its values approach infinity as x approaches zero
from either side, so we can say that 

EXAMPLE 13 These examples illustrate that rational functions can behave in various
ways near zeros of the denominator.

(a)

(b) lim
x:2

  
x - 2
x2

- 4
= lim

x:2
  

x - 2
sx - 2dsx + 2d

= lim
x:2

  
1

x + 2
=

1
4

lim
x:2

  
sx - 2d2

x2
- 4

= lim
x:2

  
sx - 2d2

sx - 2dsx + 2d
= lim

x:2
  
x - 2
x + 2

= 0

limx:0 s1>x2d = q .
y = 1>x2

limx:0 s1>xdx : 0- .1>x : - qx : 0+ ,
1>x : qx : 0.y = 1>x

lim
x:0

 ƒsxd = lim
x:0

 
1
x2 = q .

1>x2

ƒsxd =
1
x2    as    x : 0.

- q .
1>sx - 1d :sx - 1d : 0-x : 1- ,1>sx - 1d : q .sx - 1d : 0+

x : 1+ ,x - 1

lim
x:1+

 
1

x - 1
= q  and  lim

x:1-

 
1

x - 1
= - q .

y = 1>x y = 1>sx - 1d
y = 1>xy = 1>sx - 1d

lim
x:1-

 
1

x - 1
.lim

x:1+

 
1

x - 1

x : 0-

- q .
- q .

lim
x:0-

 ƒsxd = lim
x:0-

 
1
x = - q .

-B .-B ,
ƒsxd = 1>xx : 0- ,

x : 0+ .1>x limx:0+ s1>xdq ,

lim
x:0+

 ƒsxd = lim
x:0+

 
1
x = q .

x : 0+ .q

x : 0+ .

2.6 Limits Involving Infinity; Asymptotes of Graphs 109

x

y

1

0 1 2 3–1

y �
x � 1

1

FIGURE 2.60 Near the function
behaves the way the

function behaves near 
Its graph is the graph of shifted 
1 unit to the right (Example 11).

y = 1>x
x = 0.y = 1>x

y = 1>sx - 1d
x = 1,

FIGURE 2.61 The graph of in
Example 12 approaches infinity as .x : 0

ƒ(x)

x

y

No matter how
high B is, the graph
goes higher.

B

0x x

f (x) � 1
x2
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110 Chapter 2: Limits and Continuity

(c)

(d)

(e)

(f)

In parts (a) and (b) the effect of the zero in the denominator at is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f ),
where cancellation still leaves a zero factor in the denominator.

Precise Definitions of Infinite Limits

Instead of requiring ƒ(x) to lie arbitrarily close to a finite number L for all x sufficiently
close to the definitions of infinite limits require ƒ(x) to lie arbitrarily far from zero. Ex-
cept for this change, the language is very similar to what we have seen before. Figures 2.62
and 2.63 accompany these definitions.

x0 ,

x = 2

lim
x:2

  
2 - x

sx - 2d3 = lim
x:2

  
- sx - 2d
sx - 2d3 = lim

x:2
  

-1
sx - 2d2 = - q

lim
x:2

  
x - 3
x2

- 4
= lim

x:2
  

x - 3
sx - 2dsx + 2d

  does not exist .

lim
x:2-

  
x - 3
x2

- 4
= lim

x:2-

  
x - 3

sx - 2dsx + 2d
= q

lim
x:2+

  
x - 3
x2

- 4
= lim

x:2+

  
x - 3

sx - 2dsx + 2d
= - q

The precise definitions of one-sided infinite limits at are similar and are stated in the
exercises.

EXAMPLE 14 Prove that 

Solution Given we want to find such that

Now,

or, equivalently,

ƒ x ƒ 6
1

2B
.

1
x2 7 B if and only if x2

6
1
B

0 6 ƒ x - 0 ƒ 6 d implies 1
x2 7 B .

d 7 0B 7 0,

lim
x:0

  
1
x2 = q .

x0

y

x
0

B

y � f (x)

x0 � � x0 � �
x0

FIGURE 2.62 For 
the graph of ƒ(x) lies above the line y = B.

x0 - d 6 x 6 x0 + d,

x

y

0

–B

y � f (x)

x0 � � x0 � �
x0

FIGURE 2.63 For 
the graph of ƒ(x) lies below the line
y = -B.

x0 - d 6 x 6 x0 + d,

The values are positive
for near 2.x 6 2, x

See parts (c) and (d).

The values are negative
for near 2.x 7 2, x

DEFINITIONS
1. We say that ƒ(x) approaches infinity as x approaches x0 , and write

if for every positive real number B there exists a corresponding such
that for all x

2. We say that ƒ(x) approaches minus infinity as x approaches x0 , and write

if for every negative real number there exists a corresponding such
that for all x

0 6 ƒ x - x0 ƒ 6 d Q ƒsxd 6 -B .

d 7 0-B

lim
x:x0

 ƒsxd = - q ,

0 6 ƒ x - x0 ƒ 6 d Q ƒsxd 7 B .

d 7 0

lim
x:x0

 ƒsxd = q ,

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:34 PM  Page 110



Thus, choosing (or any smaller positive number), we see that

Therefore, by definition,

Vertical Asymptotes

Notice that the distance between a point on the graph of and the y-axis
approaches zero as the point moves vertically along the graph and away from the origin
(Figure 2.64). The function is unbounded as x approaches 0 because

We say that the line (the y-axis) is a vertical asymptote of the graph of .
Observe that the denominator is zero at and the function is undefined there.x = 0

ƒ(x) = 1>xx = 0

lim
x:0+

 
1
x = q and lim

x:0-

 
1
x = - q .

ƒ(x) = 1>x
ƒsxd = 1>x

lim
x:0

  
1
x2 = q .

ƒ x ƒ 6 d implies 1
x2 7

1
d2 Ú B .

d = 1>2B

2.6 Limits Involving Infinity; Asymptotes of Graphs 111

x

y

0
–1

–2

–3

–4

1–1–2–3–4–5

1

2 3

2

3

4

5

6

y �
x � 3
x � 2

� 1 �
1

x � 2

Vertical
asymptote,
x � –2

Horizontal
asymptote,
y � 1

FIGURE 2.65 The lines and
are asymptotes of the curve in

Example 15.
x = -2

y = 1

x
0

1

1

y

Horizontal
asymptote,
y � 0

Horizontal
asymptote

Vertical asymptote

Vertical asymptote,
x � 0

y � 1
x

FIGURE 2.64 The coordinate axes are
asymptotes of both branches of the
hyperbola y = 1>x .

DEFINITION A line is a vertical asymptote of the graph of a function
if either

lim
x:a+

 ƒsxd = ; q or lim
x:a-

 ƒsxd = ; q .

y = ƒsxd
x = a

EXAMPLE 15 Find the horizontal and vertical asymptotes of the curve

Solution We are interested in the behavior as and the behavior as 
where the denominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial
with a remainder, by dividing into 

This result enables us to rewrite y as:

As , the curve approaches the horizontal asymptote as the curve
approaches the vertical asymptote . We see that the curve in question is the graph
of shifted 1 unit up and 2 units left (Figure 2.65). The asymptotes, instead of
being the coordinate axes, are now the lines  and  x = -2.y = 1

ƒ(x) = 1>x x = -2
x : -2,y = 1;x : ; q

y = 1 +
1

x + 2
.

1   
x + 2�x + 3

x + 2

1

sx + 3d:sx + 2d

x : -2,x : ; q

y =
x + 3
x + 2

.
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112 Chapter 2: Limits and Continuity

EXAMPLE 16 Find the horizontal and vertical asymptotes of the graph of

Solution We are interested in the behavior as and as where the
denominator is zero. Notice that ƒ is an even function of x, so its graph is symmetric with
respect to the y-axis.

(a) The behavior as Since the line is a horizontal 
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well
(Figure 2.66). Notice that the curve approaches the x-axis from only the negative side
(or from below). Also, 

(b) The behavior as Since

the line is a vertical asymptote both from the right and from the left. By sym-
metry, the line is also a vertical asymptote.

There are no other asymptotes because ƒ has a finite limit at every other point.

EXAMPLE 17 The graph of the natural logarithm function has the y-axis (the line )
as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which is the
reflection of the graph of the natural exponential function across the line ) and the
fact that the x-axis is a horizontal asymptote of (Example 5). Thus,

The same result is true for whenever 

EXAMPLE 18 The curves

both have vertical asymptotes at odd-integer multiples of where (Figure 2.68).cos x = 0p>2,

y = sec x =
1

cos x and y = tan x =
sin x
cos x

a 7 1.y = loga x

lim
x:0+

 ln x = - q .

y = ex
y = x

x = 0

x = -2
x = 2

lim
x:2+

 ƒsxd = - q and lim
x:2-

 ƒsxd = q ,

x : ;2.

ƒs0d = 2.

y = 0limx:q ƒsxd = 0,x : ; q .

x : ;2,x : ; q

ƒsxd = -
8

x2
- 4

.

x

y

0 1–1

1

Vertical
asymptote, x � 2

Horizontal
asymptote, y � 02

3
4
5
6
7
8

3 42–2–3–4

Vertical
asymptote,

x � –2

y � – 8
x2 � 4

FIGURE 2.66 Graph of the function in
Example 16. Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided.

–1 1 2 3 4
–1

1

2

3

4

x

y
y � ex

y � ln x

FIGURE 2.67 The line is a vertical
asymptote of the natural logarithm
function (Example 17).

x = 0

x

y

0

1
x

y

0

1

–1

y � sec x y � tan x

�
2

�
2

�–� 3�
2

3�
2

––�
2

�
2

�–� 3�
2

3�
2

––

FIGURE 2.68 The graphs of sec x and tan x have infinitely many vertical 
asymptotes (Example 18).

Dominant Terms

In Example 10 we saw that by long division we could rewrite the function

ƒ(x) =
x2

- 3
2x - 4

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:34 PM  Page 112



2.6 Limits Involving Infinity; Asymptotes of Graphs 113

as a linear function plus a remainder term:

This tells us immediately that

For x numerically large, is near 0.

For x near 2, this term is very large.

If we want to know how ƒ behaves, this is the way to find out. It behaves like
when x is numerically large and the contribution of to the total

value of ƒ is insignificant. It behaves like when x is so close to 2 that
makes the dominant contribution.

We say that dominates when x is numerically large, and we say that
dominates when x is near 2. Dominant terms like these help us predict a

function’s behavior.

EXAMPLE 19 Let and Show that
although ƒ and g are quite different for numerically small values of x, they are virtually
identical for very large, in the sense that their ratios approach 1 as or

.

Solution The graphs of ƒ and g behave quite differently near the origin (Figure 2.69a),
but appear as virtually identical on a larger scale (Figure 2.69b).

We can test that the term in ƒ, represented graphically by g, dominates the polyno-
mial ƒ for numerically large values of x by examining the ratio of the two functions as

We find that

which means that ƒ and g appear nearly identical for large.

Summary

In this chapter we presented several important calculus ideas that are made meaningful
and precise by the concept of the limit. These include the three ideas of the exact rate of
change of a function, the slope of the graph of a function at a point, and the continuity of a
function. The primary methods used for calculating limits of many functions are captured
in the algebraic limit laws of Theorem 1 and in the Sandwich Theorem, all of which are
proved from the precise definition of the limit. We saw that these computational rules also
apply to one-sided limits and to limits at infinity. Moreover, we can sometimes apply these
rules to calculating limits of simple transcendental functions, as illustrated by our exam-
ples or in cases like the following:

 lim
x:0

  
ex

- 1
e2x

- 1
= lim

x:0
  

ex
- 1

(ex
- 1)(ex

+ 1)
= lim

x:0
  

1
ex

+ 1
=

1
1 + 1

=
1
2

 .

ƒ x ƒ

 = 1, 

 = lim
x: ;q

a1 -
2
3x

+
1
x2 -

5
3x3 +

2
x4 b

 lim
x: ;q

 
ƒsxd
g sxd

= lim
x: ;q

 
3x4

- 2x3
+ 3x2

- 5x + 6
3x4

x : ; q .

3x4

x : - q

x : qƒ x ƒ

g sxd = 3x4 .ƒsxd = 3x4
- 2x3

+ 3x2
- 5x + 6

1>s2x - 4d
sx>2d + 1

1>s2x - 4d
1>s2x - 4d

1>s2x - 4dy = sx>2d + 1

 ƒsxd L
1

2x - 4

1
2x - 4

 ƒsxd L
x
2

+ 1

ƒ(x) = ¢ x
2

+ 1≤ + ¢ 1
2x - 4 ≤ .

x

y

–20 –10 10 20

–100,000

0

100,000

300,000

500,000

(b)

x

y

f (x)

–2 –1 1 2

–5

0

5

10

15

20

(a)

g(x) � 3x4

FIGURE 2.69 The graphs of ƒ and g
are (a) distinct for small, and
(b) nearly identical for large
(Example 19).

ƒ x ƒ

ƒ x ƒ
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114 Chapter 2: Limits and Continuity

Exercises 2.6

Finding Limits
1. For the function ƒ whose graph is given, determine the following

limits.

a. b. c.

d. e. f.

g. h. i.

2. For the function ƒ whose graph is given, determine the following
limits.

a. b. c.

d. e. f.

g. h. i.

j. k. l.

In Exercises 3–8, find the limit of each function (a) as and
(b) as (You may wish to visualize your answer with a
graphing calculator or computer.)

3. 4. ƒsxd = p -

2
x2ƒsxd =

2
x - 3

x : - q .
x : q

y

x

–2

–3

2 3 4 5 61–1–2–3–4–5–6

f
3

2

1

–1

lim
x: -q

 ƒ(x)lim
x: q

 ƒ(x)lim
x:0

 ƒ(x)

lim
x:0 -

 ƒ(x)lim
x:0 +

 ƒ(x)lim
x: -3

 ƒ(x)

lim
x: -3 -

 ƒ(x)lim
x: -3 +

 ƒ(x)lim
x:2

 ƒ(x)

lim
x:2 -

 ƒ(x)lim
x:2 +

 ƒ(x)lim
x:4

 ƒ(x)

y

x

–2

–1

1

2

3

–3

2 3 4 5 61–1–2–3–4–5–6

f

lim
x: -q

 ƒ(x)lim
x: q

 ƒ(x)lim
x:0

 ƒ(x)

lim
x:0 -

 ƒ(x)lim
x:0 +

 ƒ(x)lim
x: -3

 ƒ(x)

lim
x: -3 -

 ƒ(x)lim
x: -3 +

 ƒ(x)lim
x:2

 ƒ(x)

5. 6.

7. 8.

Find the limits in Exercises 9–12.

9. 10.

11. 12.

Limits of Rational Functions
In Exercises 13–22, find the limit of each rational function (a) as

and (b) as 

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Limits as or 
The process by which we determine limits of rational functions
applies equally well to ratios containing noninteger or negative
powers of x: divide numerator and denominator by the highest
power of x in the denominator and proceed from there. Find the lim-
its in Exercises 23–36.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. lim
x: -q

  
23 x - 5x + 3

2x + x2>3
- 4

lim
x: q

  
2x5>3

- x1>3
+ 7

x8>5
+ 3x + 2x

lim
x: q

  
x-1

+ x-4

x-2
- x-3lim

x: -q

  
23 x -

52x

23 x +
52x

lim
x: q

  
2 + 2x

2 - 2x
lim

x: q

  
22x + x-1

3x - 7

lim
x: q

 A
x2

- 5x

x3
+ x - 2

lim
x: -q

 ¢ 1 - x3

x2
+ 7x

≤5

lim
x: -q

 ¢ x2
+ x - 1

8x2
- 3

≤1>3
lim

x: q

 A
8x2

- 3
2x2

+ x

x : � ˆx : ˆ

hsxd =

-x4

x4
- 7x3

+ 7x2
+ 9

hsxd =

-2x3
- 2x + 3

3x3
+ 3x2

- 5x

hsxd =

9x4
+ x

2x4
+ 5x2

- x + 6
g sxd =

10x5
+ x4

+ 31
x6

g sxd =

1
x3

- 4x + 1
hsxd =

7x3

x3
- 3x2

+ 6x

ƒsxd =

3x + 7
x2

- 2
ƒsxd =

x + 1
x2

+ 3

ƒsxd =

2x3
+ 7

x3
- x2

+ x + 7
ƒsxd =

2x + 3
5x + 7

x : - q .x : q

lim
r: q

  
r + sin r

2r + 7 - 5 sin r
lim

t: -q

 
2 - t + sin t

t + cos t

lim
u: -q

 
cos u

3u
lim

x: q

 
sin 2x

x

hsxd =

3 - s2>xd

4 + (22>x2)
hsxd =

-5 + s7>xd

3 - s1>x2d

g sxd =

1
8 - s5>x2d

g sxd =

1
2 + s1>xd

However, calculating more complicated limits involving transcendental functions such as

and

requires more than simple algebraic techniques. The derivative is exactly the tool we need
to calculate limits in these kinds of cases (see Section 4.5), and this notion is the main sub-
ject of our next chapter.

lim
x:0

 a1 +
1
x b

x

lim
x:0

  
x

e2x
- 1

, lim
x:0

  
ln x
x ,
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2.6 Limits Involving Infinity; Asymptotes of Graphs 115

33. 34.

35. 36.

Infinite Limits
Find the limits in Exercises 37–48.

37. 38.

39. 40.

41. 42.

43. 44.

45. a. b.

46. a. b.

47. 48.

Find the limits in Exercises 49–52.

49. 50.

51. 52.

Find the limits in Exercises 53–58.

53.

a. b.

c. d.

54.

a. b.

c. d.

55.

a. b.

c. d.

56.

a. b.
c. d.

57.

a. b.
c. d.

e. What, if anything, can be said about the limit as 

58.

a. b.
c. d.

e. What, if anything, can be said about the limit as x : 0?

x : 1+x : 0-

x : -2+x : 2+

lim 
x2

- 3x + 2
x3

- 4x
  as

x : 0?

x : 2x : 2-

x : 2+x : 0+

lim 
x2

- 3x + 2
x3

- 2x2  as

x : 0-x : 1+

x : -2-x : -2+

lim 
x2

- 1
2x + 4

 as

x : -1x : 23 2

x : 0-x : 0+

lim ax2

2
-

1
x b  as

x : -1-x : -1+

x : 1-x : 1+

lim 
x

x2
- 1

 as

x : -2-x : -2+

x : 2-x : 2+

lim 
1

x2
- 4

 as

lim
u:0

 s2 - cot udlim
u:0-  

s1 + csc ud

lim
x: s-p>2d+

 sec xlim
x: sp>2d-

 tan x

lim
x:0

  
1

x2>3lim
x:0

  
4

x2>5

lim
x:0-

 
2

x1>5lim
x:0+

 
2

x1>5

lim
x:0-

 
2

3x1>3lim
x:0+

 
2

3x1>3

lim
x:0

  
-1

x2sx + 1d
lim
x:7

  
4

sx - 7d2

lim
x: -5-

 
3x

2x + 10
lim

x: -8+

 
2x

x + 8

lim
x:3+

 
1

x - 3
lim

x:2-

 
3

x - 2

lim
x:0-

 
5
2x

lim
x:0+

 
1
3x

lim
x: -q

 
4 - 3x3

2x6
+ 9

lim
x: q

 
x - 3

24x2
+ 25

lim
x: -q

 
2x2

+ 1
x + 1

lim
x: q

 
2x2

+ 1
x + 1

Find the limits in Exercises 59–62.

59.

a. b.

60.

a. b.

61.

a. b.

c. d.

62.

a. b.

c. d.

Graphing Simple Rational Functions
Graph the rational functions in Exercises 63–68. Include the graphs
and equations of the asymptotes and dominant terms.

63. 64.

65. 66.

67. 68.

Inventing Graphs and Functions
In Exercises 69–72, sketch the graph of a function that satis-
fies the given conditions. No formulas are required—just label the coor-
dinate axes and sketch an appropriate graph. (The answers are not unique,
so your graphs may not be exactly like those in the answer section.)

69. and

70. and

71.

72.

In Exercises 73–76, find a function that satisfies the given conditions
and sketch its graph. (The answers here are not unique. Any function
that satisfies the conditions is acceptable. Feel free to use formulas de-
fined in pieces if that will help.)

73.

74.

75. and

76. lim
x: ;q

 k sxd = 1, lim
x:1-

 k sxd = q , and lim
x:1+

 k sxd = - q

 lim
x:0+

 hsxd = 1

lim
x: -q

 hsxd = -1, lim
x: q

 hsxd = 1, lim
x:0-

 hsxd = -1,

lim
x: ;q

 g sxd = 0, lim
x:3-

 g sxd = - q , and lim
x:3+

 g sxd = q

lim
x: ;q

 ƒsxd = 0, lim
x:2-

 ƒsxd = q , and lim
x:2+

 ƒsxd = q

 lim
x:0-

 ƒsxd = - q , and lim
x: -q

 ƒsxd = 1

ƒs2d = 1, ƒs -1d = 0, lim
x: q

 ƒsxd = 0, lim
x:0+

 ƒsxd = q ,

lim
x:1 +

 ƒsxd = - q , and lim
x: -1-

 ƒsxd = - q

ƒs0d = 0, lim
x: ;q

 ƒsxd = 0, lim
x:1-

 ƒsxd = lim
x: -1+

 ƒsxd = q , 

lim
x:0-

 ƒsxd = -2

ƒs0d = 0, lim
x: ;q

 ƒsxd = 0, lim
x:0+

 ƒsxd = 2, 

lim
x: q

 ƒsxd = 1

ƒs0d = 0, ƒs1d = 2, ƒs -1d = -2, lim
x: -q

 ƒsxd = -1,

y = ƒsxd

y =

2x
x + 1

y =

x + 3
x + 2

y =

-3
x - 3

y =

1
2x + 4

y =

1
x + 1

y =

1
x - 1

x : 1-x : 1+

x : 0-x : 0+

lim a 1

x1>3 -

1

sx - 1d4>3 b  as

x : 1-x : 1+

x : 0-x : 0+

lim a 1

x2>3 +

2

sx - 1d2>3 b  as

t : 0-t : 0+

lim a 1

t3>5 + 7b  as

t : 0-t : 0+

lim a2 -

3

t1>3 b  as
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116 Chapter 2: Limits and Continuity

77. Suppose that ƒ(x) and g(x) are polynomials in x and that
Can you conclude anything about

Give reasons for your answer.

78. Suppose that ƒ(x) and g(x) are polynomials in x. Can the graph of
have an asymptote if g(x) is never zero? Give reasons

for your answer.

79. How many horizontal asymptotes can the graph of a given ra-
tional function have? Give reasons for your answer.

Finding Limits of Differences when 
Find the limits in Exercises 80–86.

80.

81.

82.

83.

84.

85.

86.

Using the Formal Definitions
Use the formal definitions of limits as to establish the limits
in Exercises 87 and 88.

87. If ƒ has the constant value then 

88. If ƒ has the constant value then 

Use formal definitions to prove the limit statements in Exercises
89–92.

89. 90.

91. 92.

93. Here is the definition of infinite right-hand limit.

lim
x: -5

  
1

sx + 5d2 = qlim
x:3

  
-2

sx - 3d2 = - q

lim
x:0

  
1
ƒ x ƒ

= qlim
x:0

  
-1
x2 = - q

lim
x: -q

 ƒsxd = k .ƒsxd = k ,

lim
x: q

 ƒsxd = k .ƒsxd = k ,

x : ; q

lim
x: q

A2x2
+ x - 2x2

- x B
lim

x: q

 A2x2
+ 3x - 2x2

- 2x B
lim

x: q

 A29x2
- x - 3x B

lim
x: -q

 A2x + 24x2
+ 3x - 2 B

lim
x: -q

 A2x2
+ 3 + x B

lim
x: q

 A2x2
+ 25 - 2x2

- 1 B
lim

x: q

 A2x + 9 - 2x + 4 B
x : ; ˆ

ƒ(x)>g (x)

limx:-q sƒsxd>g sxdd?
limx:q sƒsxd>g sxdd = 2.

Modify the definition to cover the following cases.

a.

b.

c.

Use the formal definitions from Exercise 93 to prove the limit state-
ments in Exercises 94–98.

94. 95.

96. 97.

98.

Oblique Asymptotes
Graph the rational functions in Exercises 99–104. Include the graphs
and equations of the asymptotes.

99. 100.

101. 102.

103. 104.

Additional Graphing Exercises
Graph the curves in Exercises 105–108. Explain the relationship
between the curve’s formula and what you see.

105. 106.

107. 108.

Graph the functions in Exercises 109 and 110. Then answer the fol-
lowing questions.

a. How does the graph behave as 

b. How does the graph behave as 

c. How does the graph behave near and 

Give reasons for your answers.

109. 110. y =

3
2

 a x
x - 1

b2>3
y =

3
2

 ax -

1
x b

2>3

x = -1?x = 1

x : ; q?

x : 0+?

y = sin a p

x2
+ 1
by = x2>3

+

1

x1>3

y =

-1

24 - x2
y =

x

24 - x2

y =

x3
+ 1

x2y =

x2
- 1
x

y =

x2
- 1

2x + 4
y =

x2
- 4

x - 1

y =

x2
+ 1

x - 1
y =

x2

x - 1

lim
x:1-

 
1

1 - x2 = q

lim
x:2+

 
1

x - 2
= qlim

x:2-

 
1

x - 2
= - q

lim
x:0-

 
1
x = - qlim

x:0+

 
1
x = q

lim
x:x0

-

 ƒsxd = - q

lim
x:x0

+

 ƒsxd = - q

lim
x:x0

-

 ƒsxd = q

Chapter 2 Questions to Guide Your Review

1. What is the average rate of change of the function g(t) over the in-
terval from to How is it related to a secant line?

2. What limit must be calculated to find the rate of change of a func-
tion g(t) at t = t0 ?

t = b?t = a
3. Give an informal or intuitive definition of the limit

Why is the definition “informal”? Give examples.

lim
x:x0

 ƒsxd = L.

We say that ƒ(x) approaches infinity as x approaches 
from the right, and write

if, for every positive real number B, there exists a corre-
sponding number such that for all x

x0 6 x 6 x0 + d Q ƒsxd 7 B .

d 7 0

lim
x:x0

+

ƒsxd = q ,

x0

T

T
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Chapter 2 Practice Exercises 117

13. What does it mean for a function to be right-continuous at a
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

14. What does it mean for a function to be continuous on an interval?
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected
intervals within the domain.

15. What are the basic types of discontinuity? Give an example of
each. What is a removable discontinuity? Give an example.

16. What does it mean for a function to have the Intermediate Value
Property? What conditions guarantee that a function has this
property over an interval? What are the consequences for graph-
ing and solving the equation 

17. Under what circumstances can you extend a function ƒ(x) to be
continuous at a point Give an example.

18. What exactly do and mean?
Give examples.

19. What are (k a constant) and How do
you extend these results to other functions? Give examples.

20. How do you find the limit of a rational function as 
Give examples.

21. What are horizontal and vertical asymptotes? Give examples.

x : ; q ?

limx:;q s1>xd?limx:;q k

limx:-q ƒsxd = Llimx:q ƒsxd = L

x = c?

ƒsxd = 0?

Chapter 2 Practice Exercises

Limits and Continuity
1. Graph the function

Then discuss, in detail, limits, one-sided limits, continuity, and
one-sided continuity of ƒ at and 1. Are any of the dis-
continuities removable? Explain.

2. Repeat the instructions of Exercise 1 for

3. Suppose that ƒ(t) and g(t) are defined for all t and that 
and Find the limit as of the

following functions.

a. 3ƒ(t) b.

c. d.
ƒstd

g std - 7
ƒstd # g std

sƒstdd2

t : t0limt:t0 g std = 0.ƒstd = -7
limt:t0

ƒsxd = d   0, x … -1

1>x, 0 6 ƒ x ƒ 6 1

  0, x = 1

  1, x 7 1.

x = -1, 0 ,

ƒsxd = e
  1, x … -1

-x, -1 6 x 6 0

  1, x = 0

-x, 0 6 x 6 1

  1, x Ú 1.

e. cos (g(t)) f.

g. h.

4. Suppose the functions ƒ(x) and g(x) are defined for all x and that
and Find the limits as

of the following functions.

a. b.

c. d.

e. f.

In Exercises 5 and 6, find the value that must have if the
given limit statements hold.

5.

6.

7. On what intervals are the following functions continuous?

a. b.

c. d.

8. On what intervals are the following functions continuous?

a. b.

c. d. ksxd =

sin x
xhsxd =

cos x
x - p

g sxd = csc xƒsxd = tan x

ksxd = x-1>6hsxd = x-2>3
g sxd = x3>4ƒsxd = x1>3

lim
x: -4

ax lim
x:0

 g sxdb = 2

lim
x:0
a4 - g sxd

x b = 1

limx:0 g sxd

ƒsxd #  cos x

x - 1
x + ƒsxd

1>ƒ(x)ƒsxd + g sxd
g sxd # ƒsxd-g sxd

x : 0
limx:0 g sxd = 22.limx:0 ƒsxd = 1>2

1>ƒ(t)ƒstd + g std
ƒ ƒstd ƒ

4. Does the existence and value of the limit of a function ƒ(x) as x
approaches ever depend on what happens at Explain
and give examples.

5. What function behaviors might occur for which the limit may fail
to exist? Give examples.

6. What theorems are available for calculating limits? Give exam-
ples of how the theorems are used.

7. How are one-sided limits related to limits? How can this relation-
ship sometimes be used to calculate a limit or prove it does not
exist? Give examples.

8. What is the value of Does it matter whether 
is measured in degrees or radians? Explain.

9. What exactly does mean? Give an example in
which you find a for a given and in the pre-
cise definition of limit.

10. Give precise definitions of the following statements.

a. b.

c. d.

11. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

12. How can looking at the graph of a function help you tell where
the function is continuous?

limx:2 ƒsxd = - qlimx:2 ƒsxd = q

limx:2+ ƒsxd = 5limx:2- ƒsxd = 5

P 7 0ƒ, L, x0 ,d 7 0
limx:x0 ƒsxd = L

ulim u:0 sssin ud>ud?

x = x0 ?x0

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:34 PM  Page 117



118 Chapter 2: Limits and Continuity

Finding Limits
In Exercises 9–28, find the limit or explain why it does not exist.

9.

a. as b. as 

10.

a. as b. as 

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, find the limit of g (x) as x approaches the indi-
cated value.

29.

30.

31.

32.

Continuous Extension
33. Can be extended to be continuous at

or Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

34. Explain why the function has no continuous ex-
tension to 

In Exercises 35–38, graph the function to see whether it appears to
have a continuous extension to the given point a. If it does, use Trace
and Zoom to find a good candidate for the extended function’s value
at a. If the function does not appear to have a continuous extension,
can it be extended to be continuous from the right or left? If so, what
do you think the extended function’s value should be?

x = 0.
ƒsxd = sin s1>xd

-1?x = 1
ƒsxd = xsx2

- 1d> ƒ x2
- 1 ƒ

lim
x: -2

  
5 - x2

2g sxd
= 0

lim
x:1

  
3x2

+ 1
g sxd

= q

lim
x:25

   
1

x + g sxd
= 2

lim
x:0+ 

s4g sxdd1>3
= 2

lim
z:0+

 
2e1>z

e1>z
+ 1

lim
u:0+

2uecos (p>u)

lim
t:1

 t2 ln A2 - 2t Blim
t:3+

 ln (t - 3)

lim
x:0

 
cos 2x - 1

sin x
lim
x:0

  
8x

3 sin x - x

lim
x:p

 cos2 sx - tan xdlim
x:p

 sin ax
2

+ sin xb
lim

x:p-

 csc xlim
x:0

 
tan (2x)

tan (px)

lim
x:64

 
x2>3

- 16

2x - 8
lim
x:1

 
x1>3

- 1

2x - 1

lim
x:0

 
s2 + xd3

- 8
xlim

x:0
 

1
2 + x

-

1
2

x

lim
x:0

 
sx + hd2

- x2

h
lim
h:0

 
sx + hd2

- x2

h

lim
x:a

  
x2

- a2

x4
- a4lim

x:1
 
1 - 2x

1 - x

x : -1x : 0

lim 
x2

+ x

x5
+ 2x4

+ x3

x : 2x : 0

lim 
x2

- 4x + 4
x3

+ 5x2
- 14x

35.

36.

37.

38.

Roots
39. Let 

a. Use the Intermediate Value Theorem to show that ƒ has a zero
between and 2.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

40. Let 

a. Use the Intermediate Value Theorem to show that ƒ has a zero
between and 0.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

Limits at Infinity
Find the limits in Exercises 41–54.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53. 54. lim
t: -q

 e3t sin-1 
1
tlim

x: -q

 tan-1 x

lim
t: q

 ln a1 +

1
t blim

x: q

 e1>x cos  
1
x

lim
x: q

  
x2>3

+ x-1

x2>3
+ cos2 x

lim
x: q

 
x + sin x + 22x

x + sin x

lim
u: q

 
cos u - 1
u
 sIf you have a grapher, try graphing

ƒsxd = xscos s1>xd - 1d near the origin to

“see” the limit at infinity.d

lim
x: q

  
sin x:x; sIf you have a grapher, try graphing the function

for -5 … x … 5.d

lim
x: q

  
x4

+ x3

12x3
+ 128

lim
x: -q

 
x2

- 7x
x + 1

lim
x: q

  
1

x2
- 7x + 1

lim
x: -q

 
x2

- 4x + 8
3x3

lim
x: -q

  
2x2

+ 3
5x2

+ 7
lim

x: q

  
2x + 3
5x + 7

aA
19
27

- 1b1>3
- aA

19
27

+ 1b1>3
.

10-4 .
ƒsud = 0

-2

ƒsud = u3
- 2u + 2.

a1
2

+

269
18
b1>3

+ a1
2

-

269
18
b1>3

.

10-8 .
ƒsxd = 0

-1

ƒsxd = x3
- x - 1.

k sxd =

x

1 - 2 ƒ x ƒ

, a = 0

hstd = s1 + ƒ t ƒd1>t, a = 0

g sud =

5 cos u

4u - 2p
 , a = p>2

ƒsxd =

x - 1

x -
42x

 , a = 1

T

T

T
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T

Chapter 2 Additional and Advanced Exercises

1. Assigning a value to The rules of exponents tell us that
if a is any number different from zero. They also tell us

that if n is any positive number.
If we tried to extend these rules to include the case we

would get conflicting results. The first rule would say 
whereas the second would say 

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define to have any value we wanted as long as
we could persuade others to agree.

What value would you like to have? Here is an example
that might help you to decide. (See Exercise 2 below for another
example.)

a. Calculate for 0.01, 0.001, and so on as far as your
calculator can go. Record the values you get. What pattern do
you see?

b. Graph the function for Even though the
function is not defined for the graph will approach the
y-axis from the right. Toward what y-value does it seem to be
headed? Zoom in to further support your idea.

2. A reason you might want 00 to be something other than 0 or 1
As the number x increases through positive values, the numbers

and 1 (ln x) both approach zero. What happens to the number

as x increases? Here are two ways to find out.

a. Evaluate ƒ for 100, 1000, and so on as far as your
calculator can reasonably go. What pattern do you see?

b. Graph ƒ in a variety of graphing windows, including windows
that contain the origin. What do you see? Trace the y-values
along the graph. What do you find?

3. Lorentz contraction In relativity theory, the length of an ob-
ject, say a rocket, appears to an observer to depend on the speed at
which the object is traveling with respect to the observer. If the
observer measures the rocket’s length as at rest, then at speed y
the length will appear to be

This equation is the Lorentz contraction formula. Here, c is the
speed of light in a vacuum, about What happens
to L as y increases? Find Why was the left-hand limit
needed?

limy:c- L .
3 * 108 m>sec .

L = L0B1 -

y2

c2 .

L0

x = 10,

ƒsxd = a1x b
1>sln xd

>1>x

x … 0,
0 6 x … 1.y = xx

x = 0.1 ,xx

00

00

00
= 0.

00
= 1,

00 ,
0n

= 0
a0

= 1
00 4. Controlling the flow from a draining tank Torricelli’s law

says that if you drain a tank like the one in the figure shown, the
rate y at which water runs out is a constant times the square root of
the water’s depth x. The constant depends on the size and shape of
the exit valve.

Suppose that for a certain tank. You are trying to
maintain a fairly constant exit rate by adding water to the tank
with a hose from time to time. How deep must you keep the water
if you want to maintain the exit rate

a. within of the rate 

b. within of the rate 

5. Thermal expansion in precise equipment As you may know,
most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the shop where the equipment is made must be held
at the same temperature as the laboratory where the equipment is
to be used. A typical aluminum bar that is 10 cm wide at 70°F
will be

centimeters wide at a nearby temperature t. Suppose that you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to

must you maintain the temperature to ensure that this
tolerance is not exceeded?

6. Stripes on a measuring cup The interior of a typical 1-L
measuring cup is a right circular cylinder of radius 6 cm (see
accompanying figure). The volume of water we put in the cup is
therefore a function of the level h to which the cup is filled, the
formula being

How closely must we measure h to measure out 1 L of water
with an error of no more than 1% s10 cm3d?s1000 cm3d

V = p62h = 36ph .

t0 = 70°F

y = 10 + st - 70d * 10-4

y0 = 1 ft3>min?0.1 ft3>min

y0 = 1 ft3>min?0.2 ft3>min

y = 2x>2

x
Exit rate y ft3�min

Horizontal and Vertical Asymptotes
55. Use limits to determine the equations for all vertical asymptotes.

a. b.

c. y =

x2
+ x - 6

x2
+ 2x - 8

ƒ(x) =

x2
- x - 2

x2
- 2x + 1

y =

x2
+ 4

x - 3

56. Use limits to determine the equations for all horizontal asymptotes.

a. b.

c. d. y = A x2
+ 9

9x2
+ 1

g(x) =

2x2
+ 4

x

ƒ(x) =

2x + 4

2x + 4
y =

1 - x2

x2
+ 1

T
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120 Chapter 2: Limits and Continuity

A 1-L measuring cup (a), modeled as a right circular cylinder (b)
of radius 

Precise Definition of Limit
In Exercises 7–10, use the formal definition of limit to prove that the
function is continuous at 

7. 8.

9. 10.

11. Uniqueness of limits Show that a function cannot have two dif-
ferent limits at the same point. That is, if and

then 

12. Prove the limit Constant Multiple Rule:

13. One-sided limits If and 
find

a. b.

c. d.

14. Limits and continuity Which of the following statements are
true, and which are false? If true, say why; if false, give a coun-
terexample (that is, an example confirming the falsehood).

a. If exists but does not exist, then
does not exist.

b. If neither nor exists, then
does not exist.

c. If ƒ is continuous at x, then so is 

d. If is continuous at a, then so is ƒ.

In Exercises 15 and 16, use the formal definition of limit to prove that
the function has a continuous extension to the given value of x.

15. 16. g sxd =

x2
- 2x - 3
2x - 6

, x = 3ƒsxd =

x2
- 1

x + 1
, x = -1

ƒ ƒ ƒ

ƒ ƒ ƒ .

limx:a sƒsxd + g sxdd
limx:a g sxdlimx:a ƒsxd

limx:asƒsxd + g sxdd
limx:a g sxdlimx:a ƒsxd

limx:0- ƒsx2
- x4dlimx:0+ ƒsx2

- x4d
limx:0- ƒsx3

- xdlimx:0+ ƒsx3
- xd

limx:0- ƒsxd = B ,limx:0+ ƒsxd = A

lim
x:c

 kƒsxd = k lim
x:c

 ƒsxd  for any constant k .

L1 = L2 .limx:x0 ƒsxd = L2 ,
limx:x0 ƒsxd = L1

Fsxd = 29 - x, x0 = 5hsxd = 22x - 3, x0 = 2

g sxd = 1>s2xd, x0 = 1>4ƒsxd = x2
- 7, x0 = 1

x0 .

r = 6 cm

Stripes
about
1 mm
wide

r � 6 cm

Liquid volume
V � 36�h

(a)

(b)

h

17. A function continuous at only one point Let

a. Show that ƒ is continuous at 

b. Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show
that ƒ is not continuous at any nonzero value of x.

18. The Dirichlet ruler function If x is a rational number, then x
can be written in a unique way as a quotient of integers 
where and m and n have no common factors greater than 1.
(We say that such a fraction is in lowest terms. For example, 
written in lowest terms is .) Let ƒ(x) be defined for all x in the
interval [0, 1] by

For instance, 
and so on.

a. Show that ƒ is discontinuous at every rational number in [0, 1].

b. Show that ƒ is continuous at every irrational number in [0, 1].
(Hint: If is a given positive number, show that there are only
finitely many rational numbers r in [0, 1] such that )

c. Sketch the graph of ƒ. Why do you think ƒ is called the “ruler
function”?

19. Antipodal points Is there any reason to believe that there is al-
ways a pair of antipodal (diametrically opposite) points on Earth’s
equator where the temperatures are the same? Explain.

20. If and find

21. Roots of a quadratic equation that is almost linear The equa-
tion where a is a constant, has two roots if

and one positive and one negative:

a. What happens to as As 

b. What happens to as As 

c. Support your conclusions by graphing and as
functions of a. Describe what you see.

d. For added support, graph simultane-
ously for and 0.05.

22. Root of an equation Show that the equation 
has at least one solution.

23. Bounded functions A real-valued function ƒ is bounded from
above on a set D if there exists a number N such that 
for all x in D. We call N, when it exists, an upper bound for ƒ on
D and say that ƒ is bounded from above by N. In a similar manner,
we say that ƒ is bounded from below on D if there exists a num-
ber M such that for all x in D. We call M, when it
exists, a lower bound for ƒ on D and say that ƒ is bounded from
below by M. We say that ƒ is bounded on D if it is bounded from
both above and below.

a. Show that ƒ is bounded on D if and only if there exists a num-
ber B such that for all x in D.ƒ ƒsxd ƒ … B

ƒsxd Ú M

ƒsxd … N

x + 2 cos x = 0

a = 1, 0.5, 0.2, 0.1,
ƒsxd = ax2

+ 2x - 1

r-sadr+sad
a : -1+ ?a : 0?r-sad
a : -1+ ?a : 0?r+sad

r+sad =

-1 + 21 + a
a , r-sad =

-1 - 21 + a
a .

a Z 0,a 7 -1
ax2

+ 2x - 1 = 0,

lim
x:c

 ƒsxdg sxd .

lim
x:c

 sƒsxd - g sxdd = -1,lim
x:c

 sƒsxd + g sxdd = 3

ƒsrd Ú P .
P

ƒs1>4d = ƒs3>4d = 1>4,1>3,
ƒs1>3d = ƒ(2>3) =ƒs1>2d = 1>2,ƒs0d = ƒs1d = 1,

ƒsxd = e1>n, if x = m>n is a rational number in lowest terms

0, if x is irrational.

3>2 6>4n 7 0
m>n

x = 0.

ƒsxd = e x, if x is rational

0, if x is irrational.
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Chapter 2 Technology Application Projects 121

b. Suppose that ƒ is bounded from above by N. Show that if
then 

c. Suppose that ƒ is bounded from below by M. Show that if
then 

24. Max and min

a. Show that the expression

equals a if and equals b if In other words,
max {a, b} gives the larger of the two numbers a and b.

b. Find a similar expression for min , the smaller of
a and b.

Generalized Limits Involving 

The formula can be generalized. If 
and ƒ(x) is never zero in an open interval containing the

point except possibly c itself, then

Here are several examples.

a.

b. lim
x:0

 
sin x 2

x = lim
x:0

 
sin x 2

x 2  lim
x:0

 
x 2

x = 1 # 0 = 0

lim
x:0

 
sin x 2

x 2 = 1

lim
x:c

 
sin ƒsxd

ƒsxd
= 1.

x = c ,
ƒsxd = 0

limx:cssin ud>u = 1limu:0

sin U
U

5a, b6
b Ú a .a Ú b

max 5a, b6 =

a + b
2

+

ƒ a - b ƒ

2

5a, b65a, b6
L Ú M .limx:x0 ƒsxd = L ,

L … N .limx:x0 ƒsxd = L , c.

d.

Find the limits in Exercises 25–30.

25. 26.

27. 28.

29. 30.

Oblique Asymptotes
Find all possible oblique asymptotes in Exercises 31–34.

31. 32.

33. 34. y = 2x2
+ 2xy = 2x2

+ 1

y = x + x sin (1>x)y =

2x3>2
+ 2x - 3

2x + 1

lim
x:9

 
sin A2x - 3 B

x - 9
lim
x:2

 
sin sx2

- 4d
x - 2

lim
x:0

 
sin sx2

+ xd
xlim

x:0
 
sin ssin xd

x

lim
x:0+

 
sin x

sin2x
lim
x:0

 
sin s1 - cos xd

x

1 # lim
x:1

 
A1 - 2x B A1 + 2x B
sx - 1d A1 + 2x B = lim

x:1
 

1 - x

sx - 1d A1 + 2x B = -

1
2

lim
x:1

 
sin A1 - 2x B

x - 1
= lim

x:1
 
sin A1 - 2x B

1 - 2x
 
1 - 2x

x - 1
=

lim
x: -1

 
sx2

- x - 2d
x + 1

= 1 # lim
x: -1

 
sx + 1dsx - 2d

x + 1
= -3

lim
x: -1

 
sin sx2

- x - 2d
x + 1

= lim
x: -1

 
sin sx2

- x - 2d
sx2

- x - 2d
#

Chapter 2 Technology Application Projects

Mathematica/Maple Modules:
Take It to the Limit
Part I
Part II (Zero Raised to the Power Zero: What Does it Mean?)
Part III (One-Sided Limits)
Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)
See how sensitive limits can be with various powers of x.

Going to Infinity
Part I (Exploring Function Behavior as or )
This module provides four examples to explore the behavior of a function as or 
Part II (Rates of Growth)
Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you
may find surprising.

x : - q .x : q

x : �ˆx : ˆ
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3
DIFFERENTIATION

OVERVIEW In the beginning of Chapter 2 we discussed how to determine the slope of a
curve at a point and how to measure the rate at which a function changes. Now that we
have studied limits, we can define these ideas precisely and see that both are interpreta-
tions of the derivative of a function at a point. We then extend this concept from a single
point to the derivative function, and we develop rules for finding this derivative function
easily, without having to calculate any limits directly. These rules are used to find deriva-
tives of most of the common functions reviewed in Chapter 1, as well as various combina-
tions of them. The derivative is one of the key ideas in calculus, and we use it to solve a
wide range of problems involving tangents and rates of change.

3.1 Tangents and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative
of a function at a point. Later in the chapter we interpret the derivative as the instanta-
neous rate of change of a function, and apply this interpretation to the study of certain
types of motion.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve at a point we use the procedure
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point

We then investigate the limit of the slope as (Figure 3.1). If the
limit exists, we call it the slope of the curve at P and define the tangent at P to be the line
through P having this slope.

h : 0Qsx0 + h, ƒsx0 + hdd .

Psx0 , ƒsx0dd ,y = ƒ(x)

DEFINITIONS The slope of the curve at the point is the
number

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

m = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 

Psx0 , ƒsx0ddy = ƒsxd
0

h

y

x

y � f (x)

Q(x0 � h,  f (x0 � h))

f (x0 � h) � f (x0)

P(x0,  f (x0))

x0 � hx0

FIGURE 3.1 The slope of the tangent 

line at P is lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 .

In Section 2.1, Example 3, we applied these definitions to find the slope of the
parabola at the point P(2, 4) and the tangent line to the parabola at P. Let’s look
at another example.

ƒ(x) = x2
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3.1 Tangents and the Derivative at a Point 123

EXAMPLE 1

(a) Find the slope of the curve at any point What is the slope at the
point 

(b) Where does the slope equal 

(c) What happens to the tangent to the curve at the point (a, ) as a changes?

Solution

(a) Here The slope at (a, ) is

Notice how we had to keep writing before each fraction until the stage
where we could evaluate the limit by substituting The number a may be posi-
tive or negative, but not 0. When the slope is (Figure 3.2).

(b) The slope of at the point where is It will be provided
that

This equation is equivalent to so or The curve has slope
at the two points (2, ) and (Figure 3.3).

(c) The slope is always negative if As the slope approaches 
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as

As a moves away from the origin in either direction, the slope approaches 
and the tangent levels off to become horizontal.

Rates of Change: Derivative at a Point

The expression

is called the difference quotient of ƒ at with increment h. If the difference quotient
has a limit as h approaches zero, that limit is given a special name and notation.

x0

ƒsx0 + hd - ƒsx0d
h

, h Z 0

0a : 0- .

- qa : 0+,a Z 0.-1>a2

s -2, -1>2d1>2-1>4 a = -2.a = 2a2
= 4,

-
1
a2 = -

1
4

.

-1>4-1>a2.x = ay = 1>x
-1>(-1)2

= -1a = -1,
h = 0.

“limh:0”

 = lim
h:0

  
-h

hasa + hd
= lim

h:0
  

-1
asa + hd

= -
1
a2 .

lim
h:0

 
ƒsa + hd - ƒsad

h
= lim

h:0
 

1
a + h

-
1
a

h
= lim

h:0
  
1
h

 
a - sa + hd

asa + hd

1>aƒsxd = 1>x .

1>a
-1>4?

x = -1?
x = a Z 0.y = 1>x

x

y

2,⎛
⎝

⎛
⎝

y � 1
x

1
2

–2,⎛
⎝

⎛
⎝

1
2

– slope is – 1
4

slope is – 1
4

FIGURE 3.3 The two tangent lines to
having slope (Example 1).-1>4y = 1>x

x

y

y 5 1
x

slope is – 1
a2

slope is –1
at x 5 –1 

a0

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

DEFINITION The derivative of a function ƒ at a point , denoted , is

provided this limit exists.

ƒ¿(x0) = lim
h:0

 
ƒ(x0 + h) - ƒ(x0)

h

ƒ¿(x0)x0

If we interpret the difference quotient as the slope of a secant line, then the deriva-
tive gives the slope of the curve at the point Exercise 31 showsP(x0, ƒ(x0)).y = ƒ(x)
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that the derivative of the linear function at any point is simply the slope
of the line, so

which is consistent with our definition of slope.
If we interpret the difference quotient as an average rate of change (Section 2.1), the

derivative gives the function’s instantaneous rate of change with respect to x at the point
We study this interpretation in Section 3.4.

EXAMPLE 2 In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling
freely from rest near the surface of the earth. We knew that the rock fell feet dur-
ing the first t sec, and we used a sequence of average rates over increasingly short intervals
to estimate the rock’s speed at the instant What was the rock’s exact speed at this
time?

Solution We let The average speed of the rock over the interval between
and seconds, for was found to be

The rock’s speed at the instant is then

Our original estimate of 32 ft sec in Section 2.1 was right.

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point. All of these ideas refer to the same
limit.

>
lim
h:0

 16sh + 2d = 16s0 + 2d = 32 ft>sec.

t = 1

ƒs1 + hd - ƒs1d
h

=

16s1 + hd2
- 16s1d2

h
=

16sh2
+ 2hd

h
= 16sh + 2d .

h 7 0,t = 1 + ht = 1
ƒstd = 16t 2 .

t = 1.

y = 16t 2

x = x0 .

ƒ¿(x0) = m,

x0ƒ(x) = mx + b

124 Chapter 3: Differentiation

The following are all interpretations for the limit of the difference quotient,

1. The slope of the graph of at 

2. The slope of the tangent to the curve at 

3. The rate of change of ƒ(x) with respect to x at 

4. The derivative at a pointƒ¿(x0)

x = x0

x = x0y = ƒsxd
x = x0y = ƒsxd

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

In the next sections, we allow the point to vary across the domain of the function ƒ.x0
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3.1 Tangents and the Derivative at a Point 125

Exercises 3.1

Slopes and Tangent Lines
In Exercises 1–4, use the grid and a straight edge to make a rough esti-
mate of the slope of the curve (in y-units per x-unit) at the points 
and 

1. 2.

3. 4.

In Exercises 5–10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, find the slope of the curve at the point indicated.

19. 20.

21. 22. y =

x - 1
x + 1

 , x = 0y =

1
x - 1

 , x = 3

y = 1 - x2, x = 2y = 5x2, x = -1

ƒsxd = 2x + 1, s8, 3dƒsxd = 2x, s4, 2d
hstd = t3

+ 3t, s1, 4dhstd = t3, s2, 8d

g sxd =

8
x2 , s2, 2dg sxd =

x
x - 2

 , s3, 3d

ƒsxd = x - 2x2, s1, -1dƒsxd = x2
+ 1, s2, 5d

y =

1
x 3 , a-2, -

1
8
by = x3, s -2, -8d

y =

1
x 2 , s -1, 1dy = 22x, s1, 2d

y = sx - 1d2
+ 1, s1, 1dy = 4 - x2, s -1, 3d

y

0 1–1

1

2

3

x

4

–2 2

P1 P2

x

y

1 2

2

1

0

P1
P2

x

y

0 1 2

2

1

–1

–2

P1

P2

–1–2

x

y

1

2

10

P1

P2

P2 .
P1

Tangent Lines with Specified Slopes
At what points do the graphs of the functions in Exercises 23 and 24
have horizontal tangents?

23. 24.

25. Find equations of all lines having slope that are tangent to the
curve 

26. Find an equation of the straight line having slope that is tan-
gent to the curve 

Rates of Change
27. Object dropped from a tower An object is dropped from the

top of a 100-m-high tower. Its height above ground after t sec is
How fast is it falling 2 sec after it is dropped?

28. Speed of a rocket At t sec after liftoff, the height of a rocket is
How fast is the rocket climbing 10 sec after liftoff ?

29. Circle’s changing area What is the rate of change of the area of
a circle with respect to the radius when the radius is

30. Ball’s changing volume What is the rate of change of the vol-
ume of a ball with respect to the radius when the
radius is 

31. Show that the line is its own tangent line at any
point 

32. Find the slope of the tangent to the curve at the point
where 

Testing for Tangents
33. Does the graph of

have a tangent at the origin? Give reasons for your answer.

34. Does the graph of

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that a continuous curve has a vertical tangent at the
point where if or 
For example, has a vertical tangent at (see accompa-
nying figure):

 = lim
h:0

 
1

h2>3 = q .

 lim
h:0

 
ƒs0 + hd - ƒs0d

h
= lim

h:0
 
h1>3

- 0
h

x = 0y = x1>3
- q .lim h:0 sƒsx0 + hd - ƒsx0dd>h = qx = x0

y = ƒsxd

g sxd = e x sin s1>xd, x Z 0

0, x = 0

ƒsxd = e x2 sin s1>xd, x Z 0

0, x = 0

x = 4.
y = 1>2x

(x0, mx0 + b).
y = mx + b

r = 2?
sV = s4>3dpr3d

r = 3?
sA = pr2d

3t2 ft.

100 - 4.9t2 m.

y = 2x .
1>4

y = 1>sx - 1d .
-1

g sxd = x3
- 3xƒsxd = x2

+ 4x - 1
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However, has no vertical tangent at (see next figure):

does not exist, because the limit is from the right and from the
left.

35. Does the graph of

have a vertical tangent at the origin? Give reasons for your answer.

ƒsxd = •
-1, x 6 0

0, x = 0

1, x 7 0

x

y

0
NO VERTICAL TANGENT AT ORIGIN

y � g(x) � x2�3

- qq

 = lim
h:0

 
1

h1>3

 lim
h:0

 
g s0 + hd - g s0d

h
= lim

h:0
 
h2>3

- 0
h

x = 0y = x2>3

x

y

0

VERTICAL TANGENT AT ORIGIN

y � f (x) � x1�3
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36. Does the graph of

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

Graph the curves in Exercises 37–46.

a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations. But
before you do, read the introduction to Exercises 35 and 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 47–50:

a. Plot over the interval 

b. Holding fixed, the difference quotient

at becomes a function of the step size h. Enter this function
into your CAS workspace.

c. Find the limit of q as 

d. Define the secant lines for 
and 1. Graph them together with ƒ and the tangent line over the
interval in part (a).

47. 48.

49.

50. ƒsxd = cos x + 4 sin s2xd, x0 = p

ƒsxd = x + sin s2xd, x0 = p>2
ƒsxd = x +

5
x  , x0 = 1ƒsxd = x3

+ 2x, x0 = 0

h = 3, 2 ,y = ƒsx0d + q # sx - x0d
h : 0.

x0

qshd =

ƒsx0 + hd - ƒsx0d
h

x0

sx0 - 1>2d … x … sx0 + 3d .y = ƒsxd

y = 2 ƒ 4 - x ƒy = e -2ƒ x ƒ , x … 0

2x, x 7 0

y = x1>3
+ sx - 1d1>3y = x2>3

- sx - 1d1>3
y = x5>3

- 5x2>3y = 4x2>5
- 2x

y = x3>5y = x1>5
y = x4>5y = x2>5

Usxd = e0, x 6 0

1, x Ú 0

T

3.2 The Derivative as a Function

In the last section we defined the derivative of at the point to be the limit

We now investigate the derivative as a function derived from ƒ by considering the limit at
each point x in the domain of ƒ.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0y = ƒsxd

DEFINITION The derivative of the function ƒ(x) with respect to the variable x is
the function whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿

HISTORICAL ESSAY

The Derivative
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We use the notation ƒ(x) in the definition to emphasize the independent variable x
with respect to which the derivative function is being defined. The domain of is
the set of points in the domain of ƒ for which the limit exists, which means that the domain
may be the same as or smaller than the domain of ƒ. If exists at a particular x, we say
that ƒ is differentiable (has a derivative) at x. If exists at every point in the domain of
ƒ, we call ƒ differentiable.

If we write then and h approaches 0 if and only if z approaches x.
Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This
formula is sometimes more convenient to use when finding a derivative function.

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿ƒ¿(x)

3.2 The Derivative as a Function 127

Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

x z � x � h

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.4 Two forms for the difference
quotient.

Derivative of the Reciprocal Function

d
dx
a1x b = -

1
x2, x Z 0

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function when For x representing any point in
the domain, we get the formula

Here are two more examples in which we allow x to be any point in the domain of ƒ.

EXAMPLE 1 Differentiate 

Solution We use the definition of derivative, which requires us to calculate and

then subtract to obtain the numerator in the difference quotient. We have

and

Definition

Simplify.

Cancel .h Z 0 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-
x

x - 1
h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , soƒsxd =
x

x - 1

ƒ(x)

ƒ(x + h)

ƒsxd =
x

x - 1
.

d
dx
a1x b = -

1
x2 .

x = a.y = 1>xƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,
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EXAMPLE 2

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the alternative formula to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.5):

Notations

There are many ways to denote the derivative of a function where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

The symbols and D indicate the operation of differentiation. We read as
“the derivative of y with respect to x,” and and ( )ƒ(x) as “the derivative of ƒ
with respect to x.” The “prime” notations and come from notations that Newton
used for derivatives. The notations are similar to those used by Leibniz. The sym-
bol should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number we use the notation

For instance, in Example 2

Graphing the Derivative

We can often make a reasonable plot of the derivative of by estimating the slopes
on the graph of ƒ. That is, we plot the points in the xy-plane and connect them
with a smooth curve, which represents y = ƒ¿sxd .

sx, ƒ¿sxdd
y = ƒsxd

ƒ¿s4d =
d
dx

 1x `
x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

ƒ¿sad =

dy
dx
`
x = a

=

df
dx
`
x = a

=
d
dx

 ƒsxd `
x = a

.

x = a,

dy>dx
d>dx

ƒ¿y¿

d>dxdƒ>dx
dy>dxd>dx

ƒ¿sxd = y¿ =

dy
dx

=

dƒ
dx

=
d
dx

 ƒsxd = Dsƒdsxd = Dx ƒsxd .

y = ƒsxd ,

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
1

1z + 1x
=

1
21x

 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.ƒsxd = 1x

128 Chapter 3: Differentiation

Derivative of the Square Root
Function

d
dx

 2x =

1

22x
 , x 7 0

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.5 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x
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EXAMPLE 3 Graph the derivative of the function in Figure 3.6a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their
slopes to estimate the values of at these points. We plot the corresponding 
pairs and connect them with a smooth curve as sketched in Figure 3.6b.

What can we learn from the graph of At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function is differentiable on an open interval (finite or infinite) if it has a
derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it
is differentiable on the interior (a, b) and if the limits

Right-hand derivative at a

Left-hand derivative at b

exist at the endpoints (Figure 3.7).
Right-hand and left-hand derivatives may be defined at any point of a function’s do-

main. Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if
it has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function is differentiable on and 
but has no derivative at 

Solution From Section 3.1, the derivative of is the slope m. Thus, to the
right of the origin,

To the left,

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ
there:

 = lim
h:0-

-1 = -1.

 = lim
h:0-

 
-h
h

 Left-hand derivative of ƒ x ƒ at zero = lim
h:0-

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0-

 
ƒ h ƒ

h

 = lim
h:0+

1 = 1

 = lim
h:0+

 
h
h

 Right-hand derivative of ƒ x ƒ at zero = lim
h:0+

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0+

 
ƒ h ƒ

h

ƒ x ƒ = -x
d
dx

 s ƒ x ƒ d =
d
dx

 s -xd =
d
dx

 s -1 # xd = -1

ƒ x ƒ = x
d
dx

 smx + bd = m ,
d
dx

 s ƒ x ƒ d =
d
dx

 sxd =
d
dx

 s1 # xd = 1.

y = mx + b

x = 0.
s0, q ds - q , 0dy = ƒ x ƒ

lim
h:0-

 
ƒsb + hd - ƒsbd

h

lim
h:0+

 
ƒsa + hd - ƒsad

h

y = ƒsxd

y = ƒ¿sxd?

sx, ƒ¿sxddƒ¿sxd

y = ƒsxd
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0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

–1

–2

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ ⎪ ⎨ ⎪ ⎩

(b)

Slope –1

4
3

Slope 

y � f (x)

� 8

� 4 x-units

A'

y � f '(x)

B'
C'

D'

E'

Vertical coordinate –1

y

x

x

Slope

–

FIGURE 3.6 We made the graph of
in (b) by plotting slopes from 

the graph of in (a). The vertical
coordinate of is the slope at B and so on.
The slope at E is approximately 
In (b) we see that the rate of change of ƒ is
negative for x between and the rate 
of change is positive for x to the right of D¿.

D¿;A¿

8>4 = 2.
B¿

y = ƒsxd
y = ƒ¿sxd

a ba � h
h � 0

b � h
h � 0

lim
h→0�

f (a � h) � f (a)
h

Slope �

y � f (x)

lim
h→0�

f (b � h) � f (b)
h

Slope �

x

FIGURE 3.7 Derivatives at endpoints are
one-sided limits.

ƒ h ƒ = h when h 7 0

ƒ h ƒ = -h when h 6 0
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EXAMPLE 5 In Example 2 we found that for 

We apply the definition to examine if the derivative exists at 

Since the (right-hand) limit is not finite, there is no derivative at Since the slopes
of the secant lines joining the origin to the points on a graph of approach

the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9).

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point if the slopes of the secant lines through 
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the
secants fail to take up a limiting position or become vertical as Q approaches P, the derivative
does not exist. Thus differentiability is a “smoothness” condition on the graph of ƒ. A
function can fail to have a derivative at a point for many reasons, including the existence of
points where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ approaches
derivatives differ. from one side and from the other.

3. a vertical tangent, a discontinuity (two examples shown).
where the slope of PQ
approaches from both
sides or approaches 
from both sides (here, ).- q

- q

q

- qq

P

Q�

Q�

P

Q� Q�

Psx0, ƒsx0ddx0

q ,
y = 1x(h, 1h)

x = 0.

lim
h:0+

 
20 + h - 20

h
= lim

h:0+

 
1
1h

= q .

x = 0:

d
dx

 1x =
1

21x
 .

x 7 0,
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x

y

0
y' not defined at x � 0:
right-hand derivative
� left-hand derivative

y' � –1 y' � 1

y �⏐x⏐

FIGURE 3.8 The function is
not differentiable at the origin where
the graph has a “corner” (Example 4).

y = ƒ x ƒ

P

Q�

Q�

P

Q�

Q�

P

Q�

Q�

4.
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Another case in which the derivative may fail to exist occurs when the function’s slope is
oscillating rapidly near P, as with near the origin, where it is discontinu-
ous (see Figure 2.31).

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

ƒ(x) = sin (1>x)

3.2 The Derivative as a Function 131

THEOREM 1—Differentiability Implies Continuity If ƒ has a derivative at
then ƒ is continuous at x = c .x = c ,

Proof Given that exists, we must show that or equivalently,
that If then

Now take limits as By Theorem 1 of Section 2.2, 

Similar arguments with one-sided limits show that if ƒ has a derivative from one side
(right or left) at then ƒ is continuous from that side at 

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump
discontinuity), then it cannot be differentiable there. The greatest integer function

fails to be differentiable at every integer (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at
a point where it is continuous, as we saw in Example 4.

x = ny = :x;

x = c .x = c

 = ƒscd.

 = ƒscd + 0

 = ƒscd + ƒ¿scd # 0

 lim
h:0

 ƒsc + hd = lim
h:0

 ƒscd + lim
h:0

 
ƒsc + hd - ƒscd

h
# lim

h:0
h

h : 0.

 = ƒscd +

ƒsc + hd - ƒscd
h

# h .

 ƒsc + hd = ƒscd + sƒsc + hd - ƒscdd

h Z 0,limh:0 ƒsc + hd = ƒscd .
limx:c ƒsxd = ƒscd ,ƒ¿scd

Exercises 3.2

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exer-
cises 1–6. Then find the values of the derivatives as specified.

1.

2.

3.

4.

5. psud = 23u ; p¿s1d, p¿s3d, p¿s2>3d

k szd =

1 - z
2z

 ; k¿s -1d, k¿s1d, k¿ A22 B
g std =

1
t2 ; g¿s -1d, g¿s2d, g¿ A23 B

Fsxd = sx - 1d2
+ 1; F¿s -1d, F¿s0d, F¿s2d

ƒsxd = 4 - x2; ƒ¿s -3d, ƒ¿s0d, ƒ¿s1d

6.

In Exercises 7–12, find the indicated derivatives.

7. 8.

9. 10.

11. 12.
dz
dw

 if z =

1

23w - 2

dp

dq
 if p =

1

2q + 1

dy
dt
 if y = t -

1
t

ds
dt
 if s =

t
2t + 1

dr
ds
 if r = s3

- 2s2
+ 3

dy

dx
 if y = 2x3

r ssd = 22s + 1 ; r¿s0d, r¿s1d, r¿s1>2d
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132 Chapter 3: Differentiation

Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13. 14.

15. 16.

In Exercises 17–18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

17.

18.

In Exercises 19–22, find the values of the derivatives.

19.

20.

21.

22.

Using the Alternative Formula for Derivatives
Use the formula

to find the derivative of the functions in Exercises 23–26.

23. 24.

25. 26.

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives
graphed in the accompanying figures (a)–(d).

y'

0
x

(d)

y'

0
x

(c)

y'

0
x

(a)

y'

0
x

(b)

g sxd = 1 + 1xg sxd =

x
x - 1

ƒsxd = x2
- 3x + 4ƒsxd =

1
x + 2

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

dw
dz
`
z = 4

 if w = z + 1z

dr
du
`
u= 0

 if r =

2

24 - u

dy

dx
`
x =23

 if y = 1 -

1
x

ds
dt
`
t = -1

 if s = 1 - 3t2

w = g szd = 1 + 24 - z, sz, wd = s3, 2d

y = ƒsxd =

8

2x - 2
 , sx, yd = s6, 4d

y =

x + 3
1 - x

, x = -2s = t3
- t2, t = -1

k sxd =

1
2 + x

 , x = 2ƒsxd = x +

9
x  , x = -3

27. 28.

29. 30.

31. a. The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval

is not defined? Give reasons for your answer.

b. Graph the derivative of ƒ.
The graph should show a step function.

32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over
the closed interval 

i) The graph of ƒ is made of closed line segments joined
end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ is the step function in the figure
shown here.

b. Repeat part (a) assuming that the graph starts at 
instead of s -2, 3d .

s -2, 0d

x
0 1–2 3 5

1

y'

y' � f '(x)

–2

s -2, 3d .

[-2, 5] .

x

y

0 1 6

(0, 2) (6, 2)

(–4, 0)

y � f (x)

(4, –2)(1, –2)

ƒ¿[-4, 6]

y

0
x

y � f4(x)

y

0
x

y � f3(x)

x

y

0

y � f2(x)

x

y

0

y � f1(x)
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3.2 The Derivative as a Function 133

36. Weight loss Jared Fogle, also known as the “Subway Sandwich
Guy,” weighed 425 lb in 1997 before losing more than 240 lb in
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chart
showing his possible dramatic weight loss is given in the accom-
panying figure.

a. Estimate Jared’s rate of weight loss when

i) ii) iii)

b. When does Jared lose weight most rapidly and what is this
rate of weight loss?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that
the functions in Exercises 37–40 are not differentiable at the point P.

37. 38.

39. 40.

In Exercises 41 and 42, determine if the piecewise defined function is
differentiable at the origin.

41.

42. gsxd = e x2>3, x Ú 0

x1>3, x 6 0

ƒsxd = e2x - 1, x Ú 0

x2
+ 2x + 7, x 6 0

y

y � 1
x

y � f (x)

x

P(1, 1)

y � x
1

1

y

y � f (x)

y � 2x � 1

x

P(1, 1)

0

1

1

y � �x

x

y

y � f (x)

y � 2x

y � 2

1

2

0 1 2

P(1, 2)

x

y

y � f (x)y � x2

y � x

P(0, 0)

t = 11t = 4t = 1

3 4 5 7 8 10 111 20

100

200

300

425

500

6 9 12

Time (months)

W
ei

gh
t (

lb
s)

W

t

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change in the U.S.
gross national product (GNP) for the years 1983–1988. Graph

(where defined).

34. Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriva-
tive of the fruit fly population. The graph of the population is
reproduced here.

b. During what days does the population seem to be increasing
fastest? Slowest?

35. Temperature The given graph shows the temperature T in °F at
Davis, CA, on April 18, 2008, between 6 A.M. and 6 P.M.

a. Estimate the rate of temperature change at the times

i) 7 A.M. ii) 9 A.M. iii) 2 P.M. iv) 4 P.M.

b. At what time does the temperature increase most rapidly? De-
crease most rapidly? What is the rate for each of those times?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of temperature T versus time t.

30

40

50

60

70

80

6 9 12
9 a.m.6 a.m. 12 noon 3 p.m. 6 p.m.

Time (hrs)

Te
m

pe
ra

tu
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)

T

t
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50
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N
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 f
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s

p

t

1983 1984 1985 1986 1987 1988
0
1

2
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4

5

6

7%

dy>dt

y = ƒstd
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Differentiability and Continuity on an Interval
Each figure in Exercises 43–48 shows the graph of a function over a
closed interval D. At what domain points does the function appear to be

a. differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

Give reasons for your answers.

43. 44.

45. 46.

47. 48.

Theory and Examples
In Exercises 49–52,

a. Find the derivative of the given function 

b. Graph and side by side using separate sets of
coordinate axes, and answer the following questions.

c. For what values of x, if any, is positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function
increase as x increases? Decrease as x increases? How

is this related to what you found in part (c)? (We will say more
about this relationship in Section 4.3.)

49. 50.

51. 52.

53. Tangent to a parabola Does the parabola 
have a tangent whose slope is If so, find an equation for the
line and the point of tangency. If not, why not?

-1?
y = 2x2

- 13x + 5

y = x4>4y = x3>3
y = -1>xy = -x2

y = ƒsxd

ƒ¿

y = ƒ¿sxdy = ƒsxd
y = ƒsxd .ƒ¿sxd

y � f (x)
D:  –3 � x � 3

x

y
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2
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y
y � f (x)
D:  –1 � x � 2

–1 0 1 2

1

x

y
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D:  –2 � x � 3
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y � f (x)
D:  –3 � x � 2
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54. Tangent to Does any tangent to the curve 
cross the x-axis at If so, find an equation for the line
and the point of tangency. If not, why not?

55. Derivative of Does knowing that a function ƒ(x) is differen-
tiable at tell you anything about the differentiability of the
function at Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g (t) is
differentiable at tell you anything about the differentiability
of the function 3g at Give reasons for your answer.

57. Limit of a quotient Suppose that functions g(t) and h(t) are 
defined for all values of t and Can

exist? If it does exist, must it equal zero?
Give reasons for your answers.

58. a. Let ƒ(x) be a function satisfying for 
Show that ƒ is differentiable at and find 

b. Show that

is differentiable at and find 

59. Graph in a window that has Then, on
the same screen, graph

for Then try Explain what
is going on.

60. Graph in a window that has 
Then, on the same screen, graph

for Then try Explain what is
going on.

61. Derivative of Graph the derivative of Then
graph What can you conclude?

62. Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function

is

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in
Exercises 63–68.

a. Plot to see that function’s global behavior.

b. Define the difference quotient q at a general point x, with
general step size h.

c. Take the limit as What formula does this give?

d. Substitute the value and plot the function 
together with its tangent line at that point.

y = ƒsxdx = x0

h : 0.

y = ƒsxd

  + s2>3d3 cos s93pxd +
Á

+ s2>3d7 cos s97pxd .

 g sxd = cos spxd + s2>3d1 cos s9pxd + s2>3d2 cos s92pxd

g
q

n = 0 s2>3dn cos s9npxdƒ(x) =

y = s ƒ x ƒ - 0d>sx - 0d = ƒ x ƒ >x .
ƒsxd = ƒ x ƒ .y � �x �

h = -2, -1, -0.2 .h = 2, 1, 0.2 .

y =

sx + hd3
- x3

h

-2 … x … 2, 0 … y … 3.y = 3x2

h = -1, -0.5, -0.1 .h = 1, 0.5, 0.1 .

y =

1x + h - 1x
h

0 … x … 2.y = 1> A21x B
ƒ¿s0d .x = 0

ƒsxd = L x2 sin 
1
x , x Z 0

0, x = 0

ƒ¿s0d .x = 0
-1 … x … 1.ƒ ƒsxd ƒ … x2

limt:0 sg stdd>shstdd
g s0d = hs0d = 0.

t = 7?
t = 7

x = x0 ?-ƒ
x = x0

�ƒ

x = -1?
y = 1xy � 1x

T

T

T

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:21 PM  Page 134



e. Substitute various values for x larger and smaller than into
the formula obtained in part (c). Do the numbers make sense
with your picture?

f. Graph the formula obtained in part (c). What does it mean
when its values are negative? Zero? Positive? Does this
make sense with your plot from part (a)? Give reasons for
your answer.

63. ƒsxd = x3
+ x2

- x, x0 = 1

x0

3.3 Differentiation Rules 135

64.

65.

66.

67.

68. ƒsxd = x2 cos x, x0 = p>4
ƒsxd = sin 2x, x0 = p>2
ƒsxd =

x - 1
3x2

+ 1
, x0 = -1

ƒsxd =

4x

x2
+ 1

, x0 = 2

ƒsxd = x1>3
+ x2>3, x0 = 1

Proof We apply the definition of the derivative to the function whose outputs
have the constant value c (Figure 3.9). At every value of x, we find that

From Section 3.1, we know that

From Example 2 of the last section we also know that

.

These two examples illustrate a general rule for differentiating a power . We first prove
the rule when n is a positive integer.

xn

d
dx

 A2x B =
1

22x
,  or d

dx
 Ax1>2 B =

1
2

 x - 1>2

d
dx
a1x b = -

1
x2,  or d

dx Ax - 1 B = -x - 2.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=
d
dx

 scd = 0.

ƒsxd = c ,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.9 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0

Power Rule for Positive Integers:

If n is a positive integer, then

d
dx

 xn
= nxn - 1 .
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Proof of the Positive Integer Power Rule The formula

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

n terms

The Power Rule is actually valid for all real numbers n. We have seen examples for a
negative integer and fractional power, but n could be an irrational number as well. To apply
the Power Rule, we subtract 1 from the original exponent n and multiply the result by n.
Here we state the general version of the rule, but postpone its proof until Section 3.8.

 = nxn - 1.

 = lim
z:x

sz n - 1
+ z n - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
z n

- xn

z - x

z n
- xn

= sz - xdsz n - 1
+ z n - 2 x +

Á
+ zx n - 2

+ xn - 1d
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HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)

EXAMPLE 1 Differentiate the following powers of x.

(a) (b) (c) (d) (e) (f)

Solution

(a) (b)

(c) (d)

(e)

(f)

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

d
dx A2x 2 +p B =

d
dx Ax1 + (p>2) B = a1 +

p
2
bx1 + (p>2) - 1

=
1
2

(2 + p)2xp

d
dx

 (x-4>3) = -
4
3

 x-(4>3) - 1
= -

4
3

 x-7>3

d
dx
a 1

x4 b =
d
dx

(x-4) = -4x-4 - 1
= -4x-5

= -
4
x5

d
dx Ax22 B = 22x22 - 1

d
dx

 (x2>3) =
2
3

 x (2>3) - 1
=

2
3

 x-1>3d
dx

(x3) = 3x3 - 1
= 3x2

2x2 +px-4>31
x4x22x2/3x3

Power Rule (General Version)
If n is any real number, then

,

for all x where the powers and are defined.xn - 1xn

d
dx

 x n
= nx n - 1

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

In particular, if n is any real number, then

d
dx

 scxnd = cnxn - 1 .
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Proof

Constant Multiple Limit Property

u is differentiable.

EXAMPLE 2

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3, then
we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with gives

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

d
dx

 s -ud =
d
dx

 s -1 # ud = -1 # d
dx

 sud = -
du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h
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x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.10 The graphs of and
Tripling the y-coordinate triples

the slope (Example 2).
y = 3x2 .

y = x2

For example, if , then y is the sum of and We
then have

Proof We apply the definition of the derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:

d
dx

 su - yd =
d
dx

 [u + s -1dy] =
du
dx

+ s -1d 
dy
dx

=
du
dx

-
dy
dx

 .

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+
dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

dy
dx

=
d
dx

 (x4) +
d
dx

 (12x) = 4x3
+ 12.

y(x) = 12x.u(x) = x4y = x4
+ 12x

Derivative definition

with ƒsxd = cusxd

Derivative Sum Rule
If u and are differentiable functions of x, then their sum is differentiable
at every point where u and are both differentiable. At such points,

d
dx

 su + yd =
du
dx

+
dy
dx

.

y

u + yy

Denoting Functions by u and
The functions we are working with when
we need a differentiation formula are
likely to be denoted by letters like ƒ and g.
We do not want to use these same letters
when stating general differentiation rules,
so we use letters like u and instead that
are not likely to be already in use.

y

Y
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The Sum Rule also extends to finite sums of more than two functions. If
are differentiable at x, then so is and

For instance, to see that the rule holds for three functions we compute

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3 Find the derivative of the polynomial 

Solution Sum and Difference Rules

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4 Does the curve have any horizontal tangents? If so,
where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is
an important and useful procedure.

Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of
the derivative to  ƒ(x) � ax, we get

Derivative definition

ax�h = ax ah

Factoring out ax

ax is constant as  

(1)= ¢ lim
h:0

 
ah

- 1
h
≤ # ax.

h : 0.= ax # lim
h:0

 
ah

- 1
h

= lim
h:0

a x # ah
- 1
h

#
= lim

h:0

a x # ah
- a x

h

d
dx

(ax
 ) = lim

h:0

a x + h
- ax

h

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=
d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

 = 3x2
+

4
3

# 2x - 5 + 0 = 3x2
+

8
3

 x - 5

dy
dx

=
d
dx

 x3
+

d
dx

 a4
3

 x2b -
d
dx

 s5xd +
d
dx

 s1d

y = x3
+

4
3

 x2
- 5x + 1.

d
dx

 su1 + u2 + u3d =

d
dx

 ssu1 + u2d + u3d =

d
dx

 su1 + u2d +  
du3

dx
=

du1

dx
+

du2

dx
+

du3

dx
 .

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,u1 , u2 , Á , un
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(++)++*

a fixed numberL

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.11 The curve in Example 4
and its horizontal tangents.
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Thus we see that the derivative of is a constant multiple L of . The constant L is a limit
unlike any we have encountered before. Note, however, that it equals the derivative of

at :

.

The limit L is therefore the slope of the graph of where it crosses the y-axis. In
Chapter 7, where we carefully develop the logarithmic and exponential functions, we
prove that the limit L exists and has the value ln a. For now we investigate values of L by
graphing the function and studying its behavior as h approaches 0.

Figure 3.12 shows the graphs of for four different values of a. The
limit L is approximately 0.69 if , about 0.92 if , and about 1.1 if . It ap-
pears that the value of L is 1 at some number a chosen between 2.5 and 3. That number is
given by With this choice of base we obtain the natural exponen-
tial function as in Section 1.5, and see that it satisfies the property

(2)

That the limit is 1 implies an important relationship between the natural exponential func-
tion and its derivative:

Eq. (1) with

Eq. (2)

Therefore the natural exponential function is its own derivative.

=  1 # ex
= ex.

a = e
d
dx

 (ex) = lim
h:0 
¢ eh

- 1
h
≤ # ex

ex

ƒ¿(0) = lim
h:0 

eh
- 1
h

= 1.

ƒ(x) = ex
a = e L 2.718281828.

a = 3a = 2.5a = 2
y = (ah

- 1)>hy = (ah
- 1)>h

ƒ(x) = ax

ƒ¿(0) = lim
h:0

ah
- a0

h
=  lim

h:0

ah
- 1
h

= L

x = 0ƒ(x) = ax

axax
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EXAMPLE 5 Find an equation for a line that is tangent to the graph of and goes
through the origin.

Solution Since the line passes through the origin, its equation is of the form ,
where m is the slope. If it is tangent to the graph at the point , the slope is

The slope of the natural exponential at is . Because these
slopes are the same, we then have that . It follows that and , so the
equation of the tangent line is . See Figure 3.13.

We might ask if there are functions other than the natural exponential function that are
their own derivatives. The answer is that the only functions that satisfy the property that

are functions that are constant multiples of the natural exponential function,
, c any constant. We prove this fact in Section 7.2. Note from the Constant

Multiple Rule that indeed

d
dx

 (c # ex) = c # d
dx

 (ex) = c # ex.

ƒ(x) = c # ex
ƒ¿(x) = ƒ(x)

y = ex
m = ea = 1ea

= ea>a eax = am = (ea
- 0)>(a - 0).

(a, ea)
y = mx

y = ex

h

y
a � 3 a � 2.5

a � 2

a � e

1.1

0

1.0

0.92

0.69 y �            , a � 0ah � 1
h

FIGURE 3.12 The position of the curve
varies continu-

ously with a.
y = (ah

- 1)>h, a 7 0,

–1 a

2

4

6

x

y

(a, ea)

y � e x

FIGURE 3.13 The line through the origin
is tangent to the graph of when

(Example 5).a = 1
y = ex

Derivative of the Natural Exponential Function

d
dx

 (ex) = ex
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Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =
d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

Derivative Product Rule
If u and are differentiable at x, then so is their product u , and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

yy

The derivative of the product u is u times the derivative of plus times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 6 Find the derivative of (a) , (b)

Solution

(a) We apply the Product Rule with and 

(b)

Proof of the Derivative Product Rule

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and , we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxdy

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

d
dx

 (e2x) =
d
dx

 (ex # ex) = ex # d
dx

 (ex) + ex # d
dx

 (ex) = 2ex # ex
= 2e2x

 = 1 + (x - 1) 
ex

x2 .

 = 2 +
ex

x - 1 -
ex

x2

 
d
dx

 c1x  Ax2
+ ex B d =

1
x  A2x + ex B + Ax2

+ ex B a- 1
x2 b
y = x2

+ ex :u = 1>x

y = e2x.y =
1
x  Ax2

+ ex B
d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .
yyy

d
dx

 a1x b = -

1

x2

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

0

y(x � h)

y(x)

	y

u(x)y(x)

u(x � h) 	y

y(x) 	u

u(x � h)u(x)
	u

Then the change in the product uy is the
difference in areas of the larger and
smaller “squares,” which is the sum of the
upper and right-hand reddish-shaded
rectangles. That is,

Division by h gives

The limit as gives the Product
Rule.

h : 0 +

¢(uy)

h
= u(x + h)

¢y

h
+ y(x)

¢u
h

.

= u(x + h)¢y + y(x)¢u.
¢(uy) = u(x + h)y(x + h) - u(x)y(x)

Picturing the Product Rule

Suppose u(x) and (x) are positive and
increase when x increases, and h 7 0.

y
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EXAMPLE 7 Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

The derivative of the quotient of two functions is given by the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C sx2
+ 1dsx3

+ 3d D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .
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Derivative Quotient Rule
If u and are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,y

In function notation,

EXAMPLE 8 Find the derivative of (a) (b) .

Solution

(a) We apply the Quotient Rule with and 

.

(b)
d
dx

 (e - x) =  
d
dx
a 1

ex b =
ex # 0 - 1 # ex

(ex)2 =
-1
ex = -e - x

 =
- t4

+ 3t2
+ 2t

st3
+ 1d2

 =
2t4

+ 2t - 3t4
+ 3t2

st3
+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st3
+ 1d # 2t - st2

- 1d # 3t2

st3
+ 1d2

y = t3
+ 1:u = t2

- 1

y = e-xy =
t2

- 1
t3

+ 1
,

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.

d
dx

 suyd = u 
dy
dx

+ y 
du
dx
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Proof of the Derivative Quotient Rule

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and , we subtract and add (x)u(x) in the numerator. We then get

Taking the limits in the numerator and denominator now gives the Quotient Rule.

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9 Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. It is written in several ways:

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus D2(x6) = 30x4 .

y– =

dy¿

dx
=

d
dx

 (6x5) = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =
d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿ d¿ .
ƒ–.ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4

y =

sx - 1dsx2
- 2xd

x4 =
x3

- 3x2
+ 2x

x4 = x-1
- 3x-2

+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

yy

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h
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3.3 Differentiation Rules 143

How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿

If is differentiable, its derivative, , is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 10 The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

 y s4d
= 0.

 y‡ = 6

 y– = 6x - 6

 y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

Exercises 3.3

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13. 14.

15. 16.

Find the derivatives of the functions in Exercises 17–40.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. r = 2 a 1

2u + 2uby =

1 + x - 41x
x

u =

5x + 1
21x

ƒssd =

1s - 1

1s + 1

w = s2x - 7d-1sx + 5dy = s1 - tds1 + t2d-1

ƒstd =

t2
- 1

t2
+ t - 2

g sxd =

x2
- 4

x + 0.5

z =

4 - 3x

3x2
+ x

y =

2x + 5
3x - 2

y = s1 + x2dsx3>4
- x-3dy = sx2

+ 1d ax + 5 +

1
x b

y = s2x + 3ds5x2
- 4xdy = s3 - x2dsx3

- x + 1d

y¿

r =

12
u

-

4
u3 +

1
u4r =

1
3s2 -

5
2s

y = 4 - 2x - x-3y = 6x2
- 10x - 5x-2

s = -2t -1
+

4
t2w = 3z-2

-

1
z

y =

x3

3
+

x2

2
+

x
4

y =

4x3

3
- x + 2ex

w = 3z7
- 7z3

+ 21z2s = 5t3
- 3t5

y = x2
+ x + 8y = -x2

+ 3

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Find the derivatives of all orders of the functions in Exercises 41–44.

41. 42.

43. 44.

Find the first and second derivatives of the functions in Exercises
45–52.

45. 46.

47. 48.

49. 50.

51. 52. w = ezsz - 1dsz2
+ 1dw = 3z2e2z

p =

q2
+ 3

sq - 1d3
+ sq + 1d3w = a1 + 3z

3z
b s3 - zd

u =

sx2
+ xdsx2

- x + 1d
x4r =

su - 1dsu2
+ u + 1d
u3

s =

t2
+ 5t - 1

t2y =

x3
+ 7
x

y = s4x3
+ 3xds2 - xdy = sx - 1dsx2

+ 3x - 5d

y =

x5

120
y =

x4

2
-

3
2

 x2
- x

r = eu a 1
u2 + u-p>2br =

es

s

y = 23 x9.6
+ 2e1.3y =

72x2
- xe

w =

1
z1.4 +

p

2z
s = 2t3>2

+ 3e2

y = x-3>5
+ p3>2y = x9>4

+ e-2x

w =  re-ry =  x3ex

y =

x2
+ 3ex

2ex
- x

y = 2e-x
+ e3x

y =

sx + 1dsx + 2d
sx - 1dsx - 2d

y =

1
sx2

- 1dsx2
+ x + 1d
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53. Suppose u and are functions of x that are differentiable at 
and that

Find the values of the following derivatives at 

a. b. c. d.

54. Suppose u and are differentiable functions of x and that

Find the values of the following derivatives at 

a. b. c. d.

Slopes and Tangents
55. a. Normal to a curve Find an equation for the line perpendicular

to the tangent to the curve at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.

56. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

57. Find the tangents to Newton’s serpentine (graphed here) at the 
origin and the point (1, 2).

58. Find the tangent to the Witch of Agnesi (graphed here) at the point
(2, 1).

59. Quadratic tangent to identity function The curve 
passes through the point (1, 2) and is tangent to the

line at the origin. Find a, b, and c.

60. Quadratics having a common tangent The curves 
and have a common tangent line at

the point (1, 0). Find a, b, and c.

61. Find all points (x, y) on the graph of with tan-
gent lines parallel to the line y = 8x + 5.

ƒsxd = 3x2
- 4x

y = cx - x2x2
+ ax + b

y =

y = x
ax2

+ bx + c
y =

x

y

0

1

1 2

2
(2, 1)

3

y � 8
x2 � 4

x

y

0

1

1 2

2
(1, 2)

3 4

y � 4x
x2 � 1

y = x3
- 3x - 2.

y = x3
- 4x + 1

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 1.

us1d = 2, u¿s1d = 0, ys1d = 5, y¿s1d = -1.

y

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 0.

us0d = 5, u¿s0d = -3, ys0d = -1, y¿s0d = 2.

x = 0y
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62. Find all points (x, y) on the graph of with
tangent lines parallel to the line 

63. Find all points (x, y) on the graph of with tangent
lines perpendicular to the line 

64. Find all points (x, y) on the graph of with tangent lines
passing through the point (3, 8).

65. a. Find an equation for the line that is tangent to the curve
at the point 

b. Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

66. a. Find an equation for the line that is tangent to the curve
at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples
For Exercises 67 and 68 evaluate each limit by first converting each to
a derivative at a particular x-value.

67. 68.

69. Find the value of a that makes the following function differen-
tiable for all x-values.

70. Find the values of a and b that make the following function differ-
entiable for all x-values.

71. The general polynomial of degree n has the form

where Find P¿sxd .an Z 0.

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a2 x2
+ a1 x + a0

ƒsxd = eax + b, x 7 -1

bx2
- 3, x … -1

gsxd = eax, if x 6 0

x2
- 3x, if x Ú 0

 lim
x: -1

 
x2>9

- 1
x + 1

 lim
x:1

 
x50

- 1
x - 1

y = x3
- 6x2

+ 5x

s -1, 0d .y = x3
- x

y

x

(3, 8)

–2

2

2 4

6

10
f (x) 5 x2

(x, y)

ƒsxd = x2

y = 2x + 3.
y = x>(x - 2)

8x - 2y = 1.
gsxd =

1
3 x3

-
3
2 x2

+ 1

T

T

T

T
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72. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of
the form

where C is a positive constant and M is the amount of medicine ab-
sorbed in the blood. If the reaction is a change in blood pressure, R
is measured in millimeters of mercury. If the reaction is a change
in temperature, R is measured in degrees, and so on.

Find . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see
how to find the amount of medicine to which the body is most
sensitive.

73. Suppose that the function in the Derivative Product Rule has a
constant value c. What does the Derivative Product Rule then say?
What does this say about the Derivative Constant Multiple Rule?

74. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
(x) is differentiable and different from zero,

Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product
Rule together imply the Derivative Quotient Rule.

75. Generalizing the Product Rule The Derivative Product Rule
gives the formula

for the derivative of the product u of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the prod-
uct u w of three differentiable functions of x?

b. What is the formula for the derivative of the product 
of four differentiable functions of x?

u1 u2 u3 u4

y

y

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

d
dx

 a1y b = -

1
y2 

dy
dx

.

y

y

dR>dM

R = M2 aC
2

-

M
3
b ,
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c. What is the formula for the derivative of a product
of a finite number n of differentiable functions

of x?

76. Power Rule for negative integers Use the Derivative Quotient
Rule to prove the Power Rule for negative integers, that is,

where m is a positive integer.

77. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a
formula of the form

in which a, b, n, and R are constants. Find . (See accompa-
nying figure.)

78. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the cost
of one item (a constant); m is the number of items sold each week
(a constant); and h is the weekly holding cost per item (a constant
that takes into account things such as space, utilities, insurance,
and security). Find and d2A>dq2 .dA>dq

Asqd =

km
q + cm +

hq

2
,

dP>dV

P =

nRT
V - nb

-

an2

V 2 ,

d
dx

 (x-m) = -mx-m - 1

u1 u2 u3
Á un

3.4 The Derivative as a Rate of Change

In Section 2.1 we introduced average and instantaneous rates of change. In this section we
study further applications in which derivatives model the rates at which things change. It is
natural to think of a quantity changing with respect to time, but other variables can be
treated in the same way. For example, an economist may want to study how the cost of pro-
ducing steel varies with the number of tons produced, or an engineer may want to know
how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient as the average rate of change
in ƒ over the interval from x to we can interpret its limit as as the rate at
which ƒ is changing at the point x.

h : 0x + h ,
sƒsx + hd - ƒsxdd>h
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146 Chapter 3: Differentiation

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time.
The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.

EXAMPLE 1 The area A of a circle is related to its diameter by the equation

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

When the area is changing with respect to the diameter at the rate of

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (an s-axis), usually horizontal or
vertical, so that we know its position s on that line as a function of time t:

The displacement of the object over the time interval from t to (Figure 3.14) is

and the average velocity of the object over that time interval is

To find the body’s velocity at the exact instant t, we take the limit of the average ve-
locity over the interval from t to as shrinks to zero. This limit is the derivative of
ƒ with respect to t.

¢tt + ¢t

yay =

displacement
travel time

=
¢s
¢t

=

ƒst + ¢td - ƒstd
¢t

.

¢s = ƒst + ¢td - ƒstd ,

t + ¢t

s = ƒstd .

sp>2d10 = 5p m2>m L 15.71 m2>m.
D = 10 m,

dA
dD

=
p
4

# 2D =
pD
2

.

A =
p
4

 D2 .

DEFINITION Velocity (instantaneous velocity) is the derivative of position
with respect to time. If a body’s position at time t is then the body’s
velocity at time t is

ystd =
ds
dt

= lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
.

s = ƒstd ,

DEFINITION The instantaneous rate of change of ƒ with respect to x at is
the derivative

provided the limit exists.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
,

x0

s
Δs

Position at time t … and at time t � Δ t

s � f (t) s � Δs � f (t � Δt)

FIGURE 3.14 The positions of a body
moving along a coordinate line at time t
and shortly later at time Here the
coordinate line is horizontal.

t + ¢t .
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Besides telling how fast an object is moving along the horizontal line in Figure 3.14, its
velocity tells the direction of motion. When the object is moving forward (s increasing), the
velocity is positive; when the object is moving backward (s decreasing), the velocity is neg-
ative. If the coordinate line is vertical, the object moves upward for positive velocity and
downward for negative velocity. The blue curves in Figure 3.15 represent position along the
line over time; they do not portray the path of motion, which lies along the s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

-30
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t

s

0
s increasing:
positive slope so
moving upward

s � f (t)

ds
dt

� 0

t

s

0
s decreasing:
negative slope so
moving downward

s � f (t)

ds
dt

� 0

(a)

(b)

FIGURE 3.15 For motion 
along a straight line (the vertical axis),

is (a) positive when s
increases and (b) negative when s
decreases.

y = ds>dt

s = ƒstd

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)

EXAMPLE 2 Figure 3.16 shows the graph of the velocity of a particle moving
along a horizontal line (as opposed to showing a position function such as in Figure
3.15). In the graph of the velocity function, it’s not the slope of the curve that tells us if the par-
ticle is moving forward or backward along the line (which is not shown in the figure), but rather
the sign of the velocity. Looking at Figure 3.16, we see that the particle moves forward for the
first 3 sec (when the velocity is positive), moves backward for the next 2 sec (the velocity is
negative), stands motionless for a full second, and then moves forward again. The particle is
speeding up when its positive velocity increases during the first second, moves at a steady
speed during the next second, and then slows down as the velocity decreases to zero during the
third second. It stops for an instant at (when the velocity is zero) and reverses direc-
tion as the velocity starts to become negative. The particle is now moving backward and gain-
ing in speed until at which time it achieves its greatest speed during its backward
motion. Continuing its backward motion at time the particle starts to slow down again
until it finally stops at time (when the velocity is once again zero). The particle now re-
mains motionless for one full second, and then moves forward again at speeding up
during the final second of the forward motion indicated in the velocity graph.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

t = 6 sec,
t = 5

t = 4,
t = 4 sec,

t = 3 sec

s = ƒstd
y = ƒ¿std

DEFINITION Speed is the absolute value of velocity.

Speed = ƒ ystd ƒ = ` ds
dt
`

DEFINITIONS Acceleration is the derivative of velocity with respect to time.
If a body’s position at time t is then the body’s acceleration at time t is

Jerk is the derivative of acceleration with respect to time:

jstd =
da
dt

=
d3s
dt3 .

astd =
dy
dt

=
d2s
dt2 .

s = ƒstd ,

Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (see Section 2.1) lead to the equation

s =
1
2

 gt2 ,
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where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation
holds in a vacuum, where there is no air resistance, and closely models the fall of dense,
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the
effects of air resistance are significant.

The value of g in the equation depends on the units used to measure
t and s. With t in seconds (the usual unit), the value of g determined by measurement at sea level
is approximately (feet per second squared) in English units, and 
(meters per second squared) in metric units. (These gravitational constants depend on 
the distance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for
example.)

The jerk associated with the constant acceleration of gravity is zero:

An object does not exhibit jerkiness during free fall.

EXAMPLE 3 Figure 3.17 shows the free fall of a heavy ball bearing released from rest
at time 

(a) How many meters does the ball fall in the first 2 sec?

(b) What is its velocity, speed, and acceleration when ?

Solution

(a) The metric free-fall equation is During the first 2 sec, the ball falls

(b) At any time t, velocity is the derivative of position:

ystd = s¿std =
d
dt

 s4.9t2d = 9.8t .

ss2d = 4.9s2d2
= 19.6 m.

s = 4.9t2 .

t = 2

t = 0 sec.

j =
d
dt

 sgd = 0.

sg = 32 ft>sec2d

g = 9.8 m>sec232 ft>sec2

s = s1>2dgt2
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0

5

10

15

20

25

30

35

40

45t � 3

s (meters)t (seconds)

t � 0

t � 1

t � 2

FIGURE 3.17 A ball bearing
falling from rest (Example 3).

0 1 2 3 4 5 6

 

7

MOVES FORWARD

(y � 0)

MOVES BACKWARD

(y � 0)

FORWARD
AGAIN

(y � 0)

Speeds
up

Speeds
up

Speeds
up

Slows
down

Slows
down

Steady

(y � const)

Velocity y � f '(t)

Stands
still
(y � 0)

t (sec)

Greatest
speed

y

FIGURE 3.16 The velocity graph of a particle moving along a horizontal line,
discussed in Example 2.
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At the velocity is

in the downward (increasing s) direction. The speed at is

The acceleration at any time t is

At the acceleration is  

EXAMPLE 4 A dynamite blast blows a heavy rock straight up with a launch velocity of
160 ft sec (about 109 mph) (Figure 3.18a). It reaches a height of after
t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so
the velocity is positive on the way up and negative on the way down. The instant the
rock is at its highest point is the one instant during the flight when the velocity is 0. To
find the maximum height, all we need to do is to find when and evaluate s at
this time.

At any time t during the rock’s motion, its velocity is

The velocity is zero when

The rock’s height at is

See Figure 3.18b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of t for which

To solve this equation, we write

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

 ys8d = 160 - 32s8d = 160 - 256 = -96 ft>sec.

 ys2d = 160 - 32s2d = 160 - 64 = 96 ft>sec.

 t = 2 sec, t = 8 sec.

 st - 2dst - 8d = 0

 16st2
- 10t + 16d = 0

 16t2
- 160t + 256 = 0

sstd = 160t - 16t2
= 256.

smax = ss5d = 160s5d - 16s5d2
= 800 - 400 = 400 ft .

t = 5 sec

160 - 32t = 0 or t = 5 sec.

y =
ds
dt

=
d
dt

 s160t - 16t2d = 160 - 32t ft>sec.

y = 0

s = 160t - 16t2 ft>

9.8 m>sec2 .t = 2,

astd = y¿std = s–std = 9.8 m>sec2 .

speed = ƒ ys2d ƒ = 19.6 m>sec.

t = 2

ys2d = 19.6 m>sec

t = 2,
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s

H
ei

gh
t (

ft
)

(a)

smax

s � 0

256 t � ?

y � 0

t
0

400

5 10

(b)

160

–160

s, y

s � 160t � 16t2

y � � 160 � 32tds
dt

FIGURE 3.18 (a) The rock in Example 4.
(b) The graphs of s and y as functions of
time; s is largest when 
The graph of s is not the path of the rock:
It is a plot of height versus time. The slope
of the plot is the rock’s velocity, graphed
here as a straight line.

y = ds>dt = 0.
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At both instants, the rock’s speed is 96 ft sec. Since the rock is moving up-
ward (s is increasing) at it is moving downward (s is decreasing) at 
because 

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time t for which The equation
factors to give so it has solutions and

At the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is .

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce tons per week, and the cost difference, divided by h, is the
average cost of producing each additional ton:

The limit of this ratio as is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.19):

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one additional unit:

which is approximated by the value of at x. This approximation is acceptable if the
slope of the graph of c does not change quickly near x. Then the difference quotient will be
close to its limit , which is the rise in the tangent line if (Figure 3.20). The
approximation works best for large values of x.

Economists often represent a total cost function by a cubic polynomial

where represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to
capture the cost behavior on a realistic quantity interval.

EXAMPLE 5 Suppose that it costs

csxd = x3
- 6x2

+ 15x

d

csxd = ax3
+ bx2

+ gx + d

¢x = 1dc>dx

dc>dx

¢c
¢x

=

csx + 1d - csxd
1

,

dc
dx

= lim
h:0

 
csx + hd - csxd

h
= marginal cost of production.

h : 0

csx + hd - csxd
h

=

average cost of each of the additional
h tons of steel produced.

x + h

dc>dx

t = 0,t = 10.
t = 016t s10 - td = 0,160t - 16t2

= 0
s = 0.

a =
dy
dt

=
d
dt

 s160 - 32td = -32 ft>sec2 .

ys8d 6 0.
t = 8t = 2 sec;

ys2d 7 0,>
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x
0

Production (tons/week)
x

Cost y (dollars)

y � c (x)
Slope �

marginal cost

x � h

FIGURE 3.19 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
h tons is csx + hd - csxd .

x

y

0 x

⎧
⎪
⎨
⎪
⎩

dc
dx

x � 1

�x � 1

�c

y � c(x)

FIGURE 3.20 The marginal cost is
approximately the extra cost of
producing more unit.¢x = 1

¢c
dc>dx
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dollars to produce x radiators when 8 to 30 radiators are produced and that

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about

The additional cost will be about $195. The marginal revenue is

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

if you increase sales to 11 radiators a day.

EXAMPLE 6 To get some feel for the language of marginal rates, consider marginal tax
rates. If your marginal income tax rate is 28% and your income increases by $1000, you
can expect to pay an extra $280 in taxes. This does not mean that you pay 28% of your en-
tire income in taxes. It just means that at your current income level I, the rate of increase of
taxes T with respect to income is You will pay $0.28 in taxes out of every
extra dollar you earn. Of course, if you earn a lot more, you may land in a higher tax
bracket and your marginal rate will increase.

Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say
that the function is relatively sensitive to changes in x. The derivative is a measure of
this sensitivity.

EXAMPLE 7 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

The graph of y versus p in Figure 3.21a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.21b, which shows that is close to 2 when p is near 0 and
close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a
population where the frequency of wrinkled skin peas is large will have a more dramatic
effect on later generations than will a similar increase when the population has a large pro-
portion of smooth skin peas.

dy>dp

y = 2ps1 - pd + p2
= 2p - p2 .

s1 - pd

ƒ¿sxd

dT>dI = 0.28.

r¿s10d = 3s100d - 6s10d + 12 = $252

r¿sxd =
d
dx

 (x3
- 3x2

+ 12x) = 3x2
- 6x + 12.

 c¿s10d = 3s100d - 12s10d + 15 = 195.

 c¿sxd =
d
dx

 Ax3
- 6x2

+ 15x B = 3x2
- 12x + 15

c¿s10d :

rsxd = x3
- 3x2

+ 12x
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p

y

0 1

1

(a)

 y � 2p � p2

dy /dp

p
0 1

2

(b)

� 2 � 2p
dy
dp

FIGURE 3.21 (a) The graph of
describing the proportion 

of smooth-skinned peas in the next
generation. (b) The graph of 
(Example 7).

dy>dp

y = 2p - p2 ,
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Exercises 3.4

Motion Along a Coordinate Line
Exercises 1–6 give the positions of a body moving on a coor-
dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the
given time interval.

b. Find the body’s speed and acceleration at the endpoints of the
interval.

c. When, if ever, during the interval does the body change direction?

1.

2.

3.

4.

5.

6.

7. Particle motion At time t, the position of a body moving along
the s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from to 

8. Particle motion At time the velocity of a body moving
along the horizontal s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications
9. Free fall on Mars and Jupiter The equations for free fall at the

surfaces of Mars and Jupiter (s in meters, t in seconds) are
on Mars and on Jupiter. How long does it

take a rock falling from rest to reach a velocity of 27.8 m sec
(about 100 km h) on each planet?

10. Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m sec (about
86 km h) reaches a height of in t sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?

11. Finding g on a small airless planet Explorers on a small airless
planet used a spring gun to launch a ball bearing vertically upward
from the surface at a launch velocity of 15 m sec. Because the 
acceleration of gravity at the planet’s surface was the 
explorers expected the ball bearing to reach a height of

t sec later. The ball bearing reached its max-
imum height 20 sec after being launched. What was the value of gs ?
s = 15t - s1>2dgs t2 m

gs m>sec2 ,
>

s = 24t - 0.8t2 m> >
> >s = 11.44t2s = 1.86t2

y = t2
- 4t + 3.

t Ú 0,

t = 2.t = 0

s = t3
- 6t2

+ 9t m.

s =

25
t + 5

, -4 … t … 0

s =

25
t2 -

5
t , 1 … t … 5

s = st4>4d - t3
+ t2, 0 … t … 3

s = - t3
+ 3t2

- 3t, 0 … t … 3

s = 6t - t2, 0 … t … 6

s = t2
- 3t + 2, 0 … t … 2

s = ƒstd
12. Speeding bullet A 45-caliber bullet shot straight up from the

surface of the moon would reach a height of ft
after t sec. On Earth, in the absence of air, its height would be

ft after t sec. How long will the bullet be aloft in
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the ball’s
height above the ground t sec into the fall would have been

a. What would have been the ball’s velocity, speed, and accelera-
tion at time t ?

b. About how long would it have taken the ball to hit the ground?

c. What would have been the ball’s velocity at the moment of impact?

14. Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down in-
creasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was ver-
tical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity t sec into motion was a constant multiple of t. That is, the
velocity was given by a formula of the form The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle the ball’s velocity t sec into
the roll was

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs
15. The accompanying figure shows the velocity 

(m sec) of a body moving along a coordinate line.

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

0

–3

2 4

3

6 8 10

y (m/sec)

y � f (t)

t (sec)

> y = ds>dt = ƒstd

(a)

?

(b)

θ

Free-fall
position

y = 9.8ssin udt m>sec .

u ,

y = kt .

s = 179 - 16t2 .

s = 832t - 16t2

s = 832t - 2.6t2
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c. Graph the body’s speed for 

d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the ac-
companying figure. Part (b) shows the position of P as a function
of time t.

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then be-
gins to fall. A small explosive charge pops out a parachute
shortly after the rocket starts down. The parachute slows the
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

c. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

0 2 4 6 8 10 12

100

50

0

–50

–100

150

200

Time after launch (sec)

V
el

oc
ity

 (
ft

/s
ec

)

0

–2

–4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s � f (t)

t (sec)

(6, �4)

0 … t … 10.
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18. The accompanying figure shows the velocity of a parti-
cle moving on a horizontal coordinate line.

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompany-
ing figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation (the free-
fall equation for s in centimeters and t in seconds) to answer the
following questions.

a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?

s = 490t2

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y � f(t)

y = ƒstd
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20. A traveling truck The accompanying graph shows the position
s of a truck traveling on a highway. The truck starts at and
returns 15 h later at 

a. Use the technique described in Section 3.2, Example 3, to
graph the truck’s velocity Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration .

b. Suppose that Graph and and
compare your graphs with those in part (a).

21. The graphs in the accompanying figure show the position s, ve-
locity and acceleration of a body moving
along a coordinate line as functions of time t. Which graph is
which? Give reasons for your answers.

22. The graphs in the accompanying figure show the position s, the
velocity and the acceleration of a body
moving along the coordinate line as functions of time t. Which
graph is which? Give reasons for your answers.

t

y

0

A

B

C

a = d2s>dt2y = ds>dt ,

t

y

0

A B

C

a = d2s>dt2y = ds>dt ,

0

100

200

300

400

500

5 10 15
Elapsed time, t (hr)

Po
si

tio
n,

 s
 (

km
)

d2s>dt2ds>dts = 15t2
- t3 .

dy>dt

y = ds>dt for 0 … t … 15.

t = 15.
t = 0
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Economics
23. Marginal cost Suppose that the dollar cost of producing x

washing machines is 

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are pro-
duced.

c. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by cal-
culating the latter cost directly.

24. Marginal revenue Suppose that the revenue from selling x
washing machines is

dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of as How would you interpret
this number?

Additional Applications
25. Bacterium population When a bactericide was added to a nu-

trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time t (hours)
was Find the growth rates at

a.

b.

c.

26. Draining a tank The number of gallons of water in a tank t
minutes after the tank has started to drain is 

How fast is the water running out at the end of 
10 min? What is the average rate at which the water flows out dur-
ing the first 10 min?

27. Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank t
hours after the valve is opened is given by the formula

a. Find the rate (m h) at which the tank is draining at time t.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of at these times?

c. Graph y and together and discuss the behavior of y in
relation to the signs and values of .

28. Inflating a balloon The volume of a spherical
balloon changes with the radius.

a. At what rate does the volume change with respect to
the radius when 

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

r = 2 ft?
sft3>ftd

V = s4>3dpr3

dy>dt
dy>dt

dy>dt

>dy>dt

y = 6 a1 -

t
12
b2

 m.

200s30 - td2 .
Qstd =

t = 10 hours .

t = 5 hours .

t = 0 hours .

b = 106
+ 104t - 103t2 .

x : q .r¿sxd

r¿sxd

rsxd = 20,000 a1 -

1
x b

csxd = 2000 + 100x - 0.1x2 .

T
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29. Airplane takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by where D
is measured in meters from the starting point and t is measured in
seconds from the time the brakes are released. The aircraft will be-
come airborne when its speed reaches 200 km h. How long will it
take to become airborne, and what distance will it travel in that time?

30. Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single
vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a Hawaiian record). What was the lava’s exit
velocity in feet per second? In miles per hour? (Hint: If is the
exit velocity of a particle of lava, its height t sec later will be

Begin by finding the time at which 
Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 31–34 give the position function of an object moving
along the s-axis as a function of time t. Graph ƒ together with the 

s = ƒstd

ds>dt = 0.s = y0 t - 16t2 ft .

y0

>

D = s10>9dt2 ,
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velocity function and the acceleration function
Comment on the object’s behavior in relation

to the signs and values of and a. Include in your commentary such
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

31. (a heavy object fired straight
up from Earth’s surface at 200 ft sec)

32.

33.

34. s = 4 - 7t + 6t2
- t3, 0 … t … 4

s = t3
- 6t2

+ 7t, 0 … t … 4

s = t2
- 3t + 2, 0 … t … 5

>s = 200t - 16t2, 0 … t … 12.5

y

astd = d2s>dt2
= ƒ–std .
ystd = ds>dt = ƒ¿std

3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms,
tides, weather). The derivatives of sines and cosines play a key role in describing periodic
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the
limits in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine
function:

If then

= sin x # 0 + cos x # 1 = cos x . = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

= lim
h:0

 
sin x scos h - 1d + cos x sin h

h
 = lim

h:0
 
ssin x cos h + cos x sin hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sin sx + hd - sin x

h

ƒsxd = sin x ,

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

Example 5a and
Theorem 7, Section 2.4

Derivative definition

(+++)+++*

limit 0
(+)+*

limit 1

T
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EXAMPLE 1 We find derivatives of the sine function involving differences, products,
and quotients.

(a) Difference Rule

(b) Product Rule

(c) Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

we can compute the limit of the difference quotient:

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos x scos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h

cos sx + hd = cos x cos h - sin x sin h ,

 =
x cos x - sin x

x2

 
dy
dx

=

x # d
dx

 (sin x) - sin x # 1

x2y =
sin x

x :

 = ex (cos x + sin x)

 = ex cos x + ex sin x

 
dy
dx

= ex 
d
dx

 (sin x) +
d
dx

 (ex) sin xy = exsin x :

 = 2x - cos x

 
dy
dx

= 2x -
d
dx

 (sin x)y = x2
- sin x :
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The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x.

Example 5a and
Theorem 7, Section 2.4

Cosine angle sum
identity

1

x

y

0–� �
–1

1

x

y'

0–� �
–1

y � cos x

y' � –sin x

FIGURE 3.22 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x
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Figure 3.22 shows a way to visualize this result in the same way we did for graphing deriv-
atives in Section 3.2, Figure 3.6.

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the
end of a spring is an example of simple harmonic motion. The motion is periodic and 
repeats indefinitely, so we represent it using trigonometric functions. The next example
describes a case in which there are no opposing forces such as friction or buoyancy to slow
the motion.

EXAMPLE 3 A weight hanging from a spring (Figure 3.23) is stretched down 5 units
beyond its rest position and released at time to bob up and down. Its position at any
later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration: a =
dy
dt

=
d
dt

 s -5 sin td = -5 cos t .

y =
ds
dt

=
d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0

 =
1

1 - sin x

sin2 x + cos2 x = 1 =
1 - sin x

s1 - sin xd2

 =

s1 - sin xds -sin xd - cos x s0 - cos xd
s1 - sin xd2

 
dy
dx

=

(1 - sin x) 
d
dx

 (cos x) - cos x 
d
dx

 (1 - sin x)

s1 - sin xd2

y =
cos x

1 - sin x
:

 = cos2 x - sin2 x

 = sin x s -sin xd + cos x scos xd

 
dy
dx

= sin x 
d
dx

 (cos x) + cos x 
d
dx

 (sin x)

y = sin x cos x :

 = 5ex
- sin x

 
dy
dx

=
d
dx

 s5exd +
d
dx

 (cos x)

y = 5ex
+ cos x :
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s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.23 A weight hanging from
a vertical spring and then displaced
oscillates above and below its rest position
(Example 3).
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Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is the period of
the cosine function.

2. The velocity attains its greatest magnitude, 5, when as the
graphs show in Figure 3.24. Hence, the speed of the weight, is great-
est when that is, when (the rest position). The speed of the weight is
zero when This occurs when at the endpoints of the in-
terval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring balance each other. When the weight
is anywhere else, the two forces are unequal and acceleration is nonzero. The acceler-
ation is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 The jerk associated with the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

tan x =
sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =
da
dt

=
d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p,
s = 5s = -5

158 Chapter 3: Differentiation

t
0

s, y

y � –5 sin t s � 5 cos t

� �
2

3� 2�
2

5�
2

5

–5

FIGURE 3.24 The graphs of the position
and velocity of the weight in Example 3.

To show a typical calculation, we find the derivative of the tangent function. The other
derivations are left to Exercise 60.

The derivatives of the other trigonometric functions:

 
d
dx

 scsc xd = -csc x cot x 
d
dx

 ssec xd = sec x tan x

 
d
dx

 scot xd = -csc2 x 
d
dx

 stan xd = sec2 x
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EXAMPLE 5 Find d(tan x) dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

Quotient Rule

.

EXAMPLE 6 Find 

Solution Finding the second derivative involves a combination of trigonometric deriva-
tives.

Derivative rule for secant function

Derivative Product Rule

Derivative rules

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 We can use direct substitution in computing limits provided there is no
division by zero, which is algebraically undefined.

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23

 = sec3 x + sec x tan2 x

 = sec x ssec2 xd + tan x ssec x tan xd

 = sec x 
d
dx

 (tan x) + tan x 
d
dx

 (sec x)

 y– =
d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =
cos2 x + sin2 x

cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 stan xd =
d
dx

 a sin x
cos x b =

cos x 
d
dx

 ssin xd - sin x 
d
dx

 scos xd

cos2 x

>
3.5 Derivatives of Trigonometric Functions 159

Exercises 3.5

Derivatives
In Exercises 1–18, find .

1. 2.

3. 4. y = 2x sec x + 3y = x2 cos x

y =

3
x + 5 sin xy = -10x + 3 cos x

dy>dx
5. 6.

7. 8.

9.

10. y = ssin x + cos xd sec x

y = ssec x + tan xdssec x - tan xd
gsxd = csc x cot xƒsxd = sin x tan x

y = x2 cot x -

1
x2y = csc x - 41x + 7
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11. 12.

13. 14.

15.

16.

17. 18.

In Exercises 19–22, find .

19. 20.

21. 22.

In Exercises 23–26, find 

23. 24.

25. 26.

In Exercises 27–32, find .

27. 28.

29. 30.

31. 32.

33. Find if

a. b.

34. Find if

a. b.

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35.

36.

37.

38.

Do the graphs of the functions in Exercises 39–42 have any horizontal
tangents in the interval If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

39.

40.

41.

42.

43. Find all points on the curve where
the tangent line is parallel to the line Sketch the curve
and tangent(s) together, labeling each with its equation.

y = 2x .
y = tan x, -p>2 6 x 6 p>2,

y = x + 2 cos x

y = x - cot x

y = 2x + sin x

y = x + sin x

0 … x … 2p?

 x = -p>3, 3p>2
 y = 1 + cos x, -3p>2 … x … 2p

 x = -p>3, p>4
 y = sec x, -p>2 6 x 6 p>2
 x = -p>3, 0, p>3
 y = tan x, -p>2 6 x 6 p>2
 x = -p, 0, 3p>2
 y = sin x, -3p>2 … x … 2p

y = 9 cos x .y = -2 sin x .

y s4d
= d4 y>dx4

y = sec x .y = csc x .

y–

p =

3q + tan q
q sec qp =

q sin q

q2
- 1

p =

tan q

1 + tan q
p =

sin q + cos q
cos q

p = s1 + csc qd cos qp = 5 +

1
cot q

dp>dq

r = s1 + sec ud sin ur = sec u csc u

r = u sin u + cos ur = 4 - u2 sin u

dr>du .

s =

sin t
1 - cos t

s =

1 + csc t
1 - csc t

s = t2
- sec t + 5ets = tan t - e-t

ds>dt

gsxd = s2 - xd tan2 xƒsxd = x3 sin x cos x

y = x2 cos x - 2x sin x - 2 cos x

y = x2 sin x + 2x cos x - 2 sin x

y =

cos x
x +

x
cos xy =

4
cos x +

1
tan x

y =

cos x
1 + sin x

y =

cot x
1 + cot x

160 Chapter 3: Differentiation

44. Find all points on the curve where the
tangent line is parallel to the line Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

Trigonometric Limits
Find the limits in Exercises 47–54.

47.

48.

49. 50.

51.

52.

53. 54.

Theory and Examples
The equations in Exercises 55 and 56 give the position of a
body moving on a coordinate line (s in meters, t in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time 

55. 56.

57. Is there a value of c that will make

continuous at Give reasons for your answer.

58. Is there a value of b that will make

continuous at Differentiable at Give reasons for
your answers.

x = 0?x = 0?

g sxd = e x + b, x 6 0

cos x, x Ú 0

x = 0?

ƒsxd = L
sin2 3x

x2 , x Z 0

c, x = 0

s = sin t + cos ts = 2 - 2 sin t

t = p>4 sec .

s = ƒstd

lim
u:0

 cos a pu
sin u

blim
t:0

 tan a1 -

sin t
t b

lim
x:0

 sin a p + tan x
tan x - 2 sec x

b

lim
x:0

 sec cex
+ p tan a p

4 sec x
b - 1 d

 lim
u:p>4 

tan u - 1
u -

p
4

 lim
u:p>6 

sin u -
1
2

u -
p
6

lim
x: -p>621 + cos sp csc xd

lim
x:2

 sin a1x -

1
2
b

x

y

0 1 2

4

3

Q

⎛
⎝

⎛
⎝

�
4

P     , 4

�
4

y � 1 � �2 csc x � cot x

x

y

0

1

1 2

2

Q

y � 4 � cot x � 2csc x

⎛
⎝

⎛
⎝

�
2

P     , 2

�
2

y = -x .
y = cot x, 0 6 x 6 p ,

T
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59. Find 

60. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion It is then set in motion resulting in a displacement of

where x is measured in centimeters and t is measured in seconds.
See the accompanying figure.

a. Find the spring’s displacement when and

b. Find the spring’s velocity when and 

62. Assume that a particle’s position on the x-axis is given by

where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when and 

b. Find the particle’s velocity when and 

63. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

64. Graph for On the same screen,
graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

65. Centered difference quotients The centered difference quotient

is used to approximate in numerical work because (1) its
limit as equals when exists, and (2) it usually
gives a better approximation of for a given value of h than
the difference quotient

ƒsx + hd - ƒsxd
h

.

ƒ¿sxd
ƒ¿sxdƒ¿sxdh : 0

ƒ¿sxd

ƒsx + hd - ƒsx - hd
2h

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

cos sx + hd - cos x

h

-p … x … 2p .y = -sin x

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

sin sx + hd - sin x

h

-p … x … 2p .y = cos x

t = p.t = 0, t = p>2,

t = p.t = 0, t = p>2,

x = 3 cos t + 4 sin t,

t = 3p>4.t = 0, t = p>3,

t = 3p>4.
t = 0, t = p>3,

x

0

–10

10

Equilibrium
position
at x 5 0

x = 10 cos t,

sx = 0d.

d999>dx999 scos xd .

3.5 Derivatives of Trigonometric Functions 161

See the accompanying figure.

a. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval for and 0.3. Compare
the results with those obtained in Exercise 63 for the same
values of h.

b. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval and 0.3. Compare
the results with those obtained in Exercise 64 for the same
values of h.

66. A caution about centered difference quotients (Continuation
of Exercise 65. ) The quotient

may have a limit as when ƒ has no derivative at x. As a case
in point, take and calculate

As you will see, the limit exists even though has no de-
rivative at Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

67. Slopes on the graph of the tangent function Graph 
and its derivative together on Does the graph of the
tangent function appear to have a smallest slope? A largest slope?
Is the slope ever negative? Give reasons for your answers.

s -p>2, p>2d .
y = tan x

x = 0.
ƒsxd = ƒ x ƒ

lim
h:0

 
ƒ 0 + h ƒ - ƒ 0 - h ƒ

2h
.

ƒsxd = ƒ x ƒ

h : 0

ƒsx + hd - ƒsx - hd
2h

[-p, 2p] for h = 1, 0.5 ,

y =

cos sx + hd - cos sx - hd
2h

y = -sin xƒ¿sxd = -sin x ,ƒsxd = cos x

h = 1, 0.5 ,[-p, 2p]

y =

sin sx + hd - sin sx - hd
2h

y = cos xƒ¿sxd = cos x ,ƒsxd = sin x

x

y

0 x

A

hh

C B

x � h x � h

y � f (x)

Slope � f '(x)

Slope �

Slope �

h
f (x � h) � f (x)

f (x � h) � f (x � h)
2h

T

T

T

T
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68. Slopes on the graph of the cotangent function Graph 
and its derivative together for Does the graph of the
cotangent function appear to have a smallest slope? A largest
slope? Is the slope ever positive? Give reasons for your answers.

69. Exploring (sin kx) x Graph 
and together over the interval 
Where does each graph appear to cross the y-axis? Do the graphs
really intersect the axis? What would you expect the graphs of

and to do as Why?
What about the graph of for other values of k ?
Give reasons for your answers.

70. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

and estimate Compare your estimate with
Is there any reason to believe the limit should be

p>180?
p>180.

limh:0 ƒshd .

ƒshd =

sin h
h

y = ssin kxd>x x : 0?y = ssin s -3xdd>xy = ssin 5xd>x

-2 … x … 2.y = ssin 4xd>x y = ssin 2xd>x ,y = ssin xd>x ,/

0 6 x 6 p .
y = cot x

162 Chapter 3: Differentiation

b. With your grapher still in degree mode, estimate

c. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you 
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become ap-
parent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?

lim
h:0

 
cos h - 1

h
.

T

T

T

3.6 The Chain Rule

How do we differentiate This function is the composite of two
functions and that we know how to differentiate.
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function is the composite of the functions and 

We have

Since we see in this case that

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If changes half as fast as u and changes three
times as fast as x, then we expect y to change times as fast as x. This effect is much like
that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1 The function

y = s3x2
+ 1d2

3>2 u = g sxdy = ƒsud

dy
dx

=

dy
du

# du
dx

.

3
2

=
1
2

# 3,

dy
dx

=
3
2

, dy
du

=
1
2

, and du
dx

= 3.

u = 3x .y =
1
2

 uy =
3
2

 x =
1
2

 s3xd

u = g sxd = x2
- 4y = ƒ(u) = sin u

ƒ � gF(x) = sin (x2
- 4)?

32

1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes x
turns, gear B makes u turns and gear
C makes y turns. By comparing
circumferences or counting teeth, we 
see that (C turns one-half turn 
for each B turn) and (B turns 
three times for A’s one), so 
Thus, 
sdy>dudsdu>dxd .

s1>2ds3d =dy>dx = 3>2 =
y = 3x>2.

u = 3x
y = u>2
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is the composite of and Calculating derivatives, we
see that

Calculating the derivative from the expanded formula gives
the same result:

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x) times
the derivative of g at x. This is known as the Chain Rule (Figure 3.26).

 = 36x3
+ 12x .

 
dy
dx

=
d
dx

 (9x4
+ 6x2

+ 1)

(3x2
+ 1)2

= 9x4
+ 6x2

+ 1

 = 36x3
+ 12x .

 = 2s3x2
+ 1d # 6x

 
dy
du

# du
dx

= 2u # 6x

u = g(x) = 3x2
+ 1.y = ƒ(u) = u2

3.6 The Chain Rule 163

x

g f

Composite f ˚ g

Rate of change at
x is f '(g(x)) • g'(x).

Rate of change
at x is g'(x).

Rate of change
at g(x) is f '(g(x)).

u � g(x) y � f (u) � f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of at x is the
derivative of ƒ at g(x) times the derivative of g at x.

ƒ � g

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point 
and is differentiable at x, then the composite function 
is differentiable at x, and

In Leibniz’s notation, if and then

where is evaluated at u = g sxd .dy>du

dy
dx

=

dy
du

# du
dx

,

u = g sxd ,y = ƒsud

sƒ � gd¿sxd = ƒ¿sg sxdd # g¿sxd .

sƒ � gdsxd = ƒsg sxddg (x)
u = g sxd

Intuitive “Proof” of the Chain Rule:

Let be the change in u when x changes by so that

Then the corresponding change in y is

If we can write the fraction as the product

(1)
¢y

¢x
=

¢y

¢u
# ¢u

¢x

¢y>¢x¢u Z 0,

¢y = ƒsu + ¢ud - ƒsud .

¢u = g sx + ¢xd - g sxd.

¢x,¢u
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and take the limit as 

The problem with this argument is that it could be true that even when so
the cancellation of in Equation (1) would be invalid. A proof requires a different ap-
proach that avoids this flaw, and we give one such proof in Section 3.11.

EXAMPLE 2 An object moves along the x-axis so that its position at any time is
given by Find the velocity of the object as a function of t.

Solution We know that the velocity is . In this instance, x is a composite function:
and We have

By the Chain Rule,

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about
the Chain Rule using functional notation. If , then

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

 sin (x2
+ ex) = cos (x2

+ ex) # (2x + ex).

sin sx2
+ exd

dy
dx

= ƒ¿sg sxdd # g¿sxd .

y = ƒ(g(x))

 = -2t sin st2
+ 1d .

 = -sin st2
+ 1d # 2t

 = -sin sud # 2t

 
dx
dt

=
dx
du

# du
dt

u = t2
+ 1 

du
dt

= 2t .

x = cossud 
dx
du

= -sin sud

u = t2
+ 1.x = cos sud

dx>dt

xstd = cos st2
+ 1d .

t Ú 0

¢u
¢x Z 0,¢u = 0

 =

dy
du

# du
dx

.

 = lim
¢u:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# ¢u

¢x

 
dy
dx

= lim
¢x:0

 
¢y

¢x

¢x : 0:

164 Chapter 3: Differentiation

(Note that as
since g is continuous.)

¢x : 0¢u : 0

(+)+*

inside
(+)+*

inside
left alone

(+)+*

derivative of
the inside

evaluated at u
dx
du
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3.6 The Chain Rule 165

Derivative of tan u with
u = 5 - sin 2t

Derivative of 
with u = 2t

5 - sin u

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)

EXAMPLE 4 Differentiate 

Solution Here the inside function is and the outside function is the
exponential function Applying the Chain Rule, we get

Generalizing Example 4, we see that the Chain Rule gives the formula

dy
dx

=
d
dx

 (ecos x) = ecos x 
d
dx

 (cos x) = ecos x (-sin x) = -ecos x sin x.

ƒ(x) = ex.
u = g (x) = cos x

y = ecos x.

.
d
dx

 eu
= eu 

du
dx

Thus, for example,

and

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

EXAMPLE 5 Find the derivative of 

Solution Notice here that the tangent is a function of whereas the sine is 
a function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing into the Chain Rule formula

leads to the formula

If n is any real number and ƒ is a power function, the Power Rule tells us
that If u is a differentiable function of x, then we can use the Chain Rule to
extend this to the Power Chain Rule:

d
du

 Aun B = nun - 1d
dx

 sund = nun - 1 
du
dx

.

ƒ¿sud = nun - 1 .
ƒsud = un ,

d
dx

 ƒsud = ƒ¿sud 
du
dx

.

dy
dx

=

dy
du

# du
dx

y = ƒsud

 = -2scos 2td sec2 s5 - sin 2td .

 = sec2 s5 - sin 2td # s -cos 2td # 2

 = sec2 s5 - sin 2td # a0 - cos 2t #
d
dt

 (2t)b
 = sec2 s5 - sin 2td # d

dt
 (5 - sin 2t)

 g¿std =
d
dt

 (tan (5 - sin 2t))

5 - sin 2t ,

g std = tan s5 - sin 2td .

d
dx

 Aex2 B = ex2
# d
dx

 (x2) = 2xex2

.

d
dx

 (ekx) = ekx # d
dx

 (kx) = kekx,  for any constant k
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EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power of
an expression.

(a)

(b)

In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c)
Power Chain Rule with ,

(d)

Power Chain Rule with 

EXAMPLE 7 In Section 3.2, we saw that the absolute value function is not
differentiable at x � 0. However, the function is differentiable at all other real numbers as

we now show. Since , we can derive the following formula:

EXAMPLE 8 Show that the slope of every line tangent to the curve is
positive.

Solution We find the derivative:

Power Chain Rule with 

 =
6

s1 - 2xd4.

 = -3s1 - 2xd-4 # s -2d

u = s1 - 2xd, n = -3 = -3s1 - 2xd-4 # d
dx

 s1 - 2xd

 
dy
dx

=
d
dx

 s1 - 2xd-3

y = 1>s1 - 2xd3

 =
x

ƒ x ƒ

,  x Z 0.

 =
1

2 ƒ x ƒ

# 2x

 =
1

22x2
# d
dx

 (x2)

d
dx

 ( ƒ x ƒ ) =
d
dx
2x2

ƒ x ƒ = 2x2

y = ƒ x ƒ

 =
3

223x + 1
 e23x + 1

u = 3x + 1, n = 1>2 = e23x + 1 # 1
2

 (3x + 1)-1>2 # 3

d
dx

 Ae23x + 1 B = e23x + 1 # d
dx

 A23x + 1 B
 = 5 sin4 x cos x

u = sin x, n = 5d
dx

 (sin5 x) = 5 sin4 x # d
dx

 sin x

 = -
3

s3x - 2d2

 = -1s3x - 2d-2s3d

 = -1s3x - 2d-2 
d
dx

 s3x - 2d

 
d
dx

 a 1
3x - 2

b =
d
dx

s3x - 2d-1

 = 7s5x3
- x4d6s15x2

- 4x3d

 = 7s5x3
- x4d6s5 # 3x2

- 4x3d

 
d
dx

 s5x3
- x4d7

= 7s5x3
- x4d6 

d
dx

 (5x3
- x4)

166 Chapter 3: Differentiation

Derivative of the 
Absolute Value Function

d
dx

 ( ƒ x ƒ ) =

x
ƒ x ƒ

, x Z 0

Power Chain Rule with
u = 5x3

- x4, n = 7

Power Chain Rule with
u = 3x - 2, n = -1

because sinn x means ssin xdn, n Z -1.

Power Chain Rule with

u = x2, n = 1>2, x Z 0

2x2
= ƒ x ƒ
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3.6 The Chain Rule 167

x

y

1

180
y � sin x

y � sin(x°) � sin �x
180

FIGURE 3.27 oscillates only times as often as oscillates. Its
maximum slope is at (Example 9).x = 0p>180

sin xp>180Sin sx°d

Exercises 3.6

Derivative Calculations
In Exercises 1–8, given and find 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–22, write the function in the form and
Then find as a function of x.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 5 cos-4 xy = sin3 x

y = cot ap -

1
x by = sec stan xd

y = 23x2
- 4x + 6y = ax2

8
+ x -

1
x b

4

y = ax
2

- 1b-10

y = a1 -

x
7
b-7

y = s4 - 3xd9y = s2x + 1d5

dy>dxu = gsxd .
y = ƒsud

y = -sec u, u = x2
+ 7xy = tan u, u = 10x - 5

y = sin u, u = x - cos xy = cos u, u = sin x

y = cos u, u = -x>3y = sin u, u = 3x + 1

y = 2u3, u = 8x - 1y = 6u - 9, u = s1>2dx4

ƒ¿sgsxddg¿sxd .
dy>dx =u = gsxd ,y = ƒsud

19. 20.

21. 22.

Find the derivatives of the functions in Exercises 23–50.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40. k sxd = x2 sec a1x bhsxd = x tan A21x B + 7

y = (9x2
- 6x + 2)e x3

y = (x2
- 2x + 2)e 5x>2

y = (1 + 2x)e-2xy = xe-x
+ e 3x

y = s2x - 5d-1sx2
- 5xd6y = s4x + 3d4sx + 1d-3

y = s5 - 2xd-3
+

1
8

 a2x + 1b4

y =

1
21

 s3x - 2d7
+ a4 -

1
2x2 b

-1

y =

1
x  sin-5 x -

x
3

 cos3 xy = x2 sin4 x + x cos-2 x

r = 6ssec u - tan ud3>2r = scsc u + cot ud-1

s = sin a3pt
2
b + cos a3pt

2
bs =

4
3p

 sin 3t +

4
5p

 cos 5t

q = 23 2r - r2p = 23 - t

y = e A42x + x2By = e 5 - 7x

y = e 2x>3y = e-5x

At any point (x, y) on the curve, and the slope of the tangent line is

the quotient of two positive numbers.

EXAMPLE 9 The formulas for the derivatives of both sin x and cos x were obtained un-
der the assumption that x is measured in radians, not degrees. The Chain Rule gives us new
insight into the difference between the two. Since radians, radi-
ans where x° is the size of the angle measured in degrees.

By the Chain Rule,

See Figure 3.27. Similarly, the derivative of 
The factor would compound with repeated differentiation. We see here the 

advantage for the use of radian measure in computations.
p>180

cos sx°d is - sp>180d sin sx°d .

d
dx

 sin sx°d =
d
dx

 sin a px
180
b =

p
180

 cos a px
180
b =

p
180

 cos sx°d .

x° = px>180180° = p

dy
dx

=
6

s1 - 2xd4 ,

x Z 1>2
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41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–70, find .

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Second Derivatives
Find in Exercises 71–78.

71. 72.

73. 74.

75. 76.

77. 78.

Finding Derivative Values
In Exercises 79–84, find the value of at the given value of x.

79.

80.

81.

82.

83.

84.

85. Assume that and 
What is at 

86. If and then what is 
at t = 0?

dr>dtƒ¿s0d = 4,r = sin sƒstdd, ƒs0d = p>3,

x = 2?y¿

y = ƒsgsxdd.ƒ¿s3d = -1, g¿s2d = 5, gs2d = 3,

ƒsud = au - 1
u + 1

b2

, u = g sxd =

1
x2 - 1, x = -1

ƒsud =

2u

u2
+ 1

 , u = g sxd = 10x2
+ x + 1, x = 0

ƒsud = u +

1
cos2 u

 , u = g sxd = px, x = 1>4
ƒsud = cot 

pu
10

 , u = g sxd = 51x, x = 1

ƒsud = 1 -

1
u , u = g sxd =

1
1 - x

 , x = -1

ƒsud = u5
+ 1, u = g sxd = 1x, x = 1

sƒ � gd¿

y = sin (x2ex)y = ex2

+ 5x

y = x2 sx3
- 1d5y = x s2x + 1d4

y = 9 tan ax
3
by =

1
9

 cot s3x - 1d

y = A1 - 1x B-1y = a1 +

1
x b

3

y–

y = 43t + 32 + 21 - ty = 3t s2t2
- 5d4

y = cos4 ssec2 3tdy = tan2 ssin3 td
y = 4 sin A21 + 1t By = 21 + cos st2d

y =

1
6

 A1 + cos2 s7td B3y = a1 + tan4 a t
12
b b3

y = cos a5 sin a t
3
b by = sin scos s2t - 5dd

y = a3t - 4
5t + 2

b-5

y = a t2

t3
- 4t

b3

y = Ae sin (t>2) B3y = ecos2 (pt - 1)

y = st -3>4 sin td4>3y = st tan td10

y = s1 + cot st>2dd-2y = s1 + cos 2td-4

y = sec2 pty = sin2 spt - 2d

dy>dt

y = u3e-2u cos 5uy = cos Ae-u2 B
q = cot asin t

t bq = sin a t

2t + 1
b

r = sec2u tan a1
u
br = sin su2d cos s2ud

g std = a1 + sin 3t
3 - 2t

b-1

ƒsud = a sin u

1 + cos u
b2

g sxd =

tan 3x

sx + 7d4ƒsxd = 27 + x sec x

168 Chapter 3: Differentiation

87. Suppose that functions ƒ and g and their derivatives with respect
to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

2 8 2
3 3 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g. h.

88. Suppose that the functions ƒ and g and their derivatives with re-
spect to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

0 1 1 5
1 3

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g.

89. Find when if and 

90. Find when if and 

Theory and Examples
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 91 and 92.

91. Find if by using the Chain Rule with y as a compos-
ite of

a.

b.

92. Find if by using the Chain Rule with y as a com-
posite of

a.

b.

93. Find the tangent to at 

94. Find the tangent to at 

95. a. Find the tangent to the curve 

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval 

Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves and
at the origin. Is there anything special about

how the tangents are related? Give reasons for your answer.
y = -sin sx>2d

y = sin 2x

-2 6 x 6 2?

y = 2 tan spx>4d at x = 1.

x = 2.y = 2x2
- x + 7

x = 0.y = ssx - 1d>sx + 1dd2

y = 1u and u = x3 .

y = u3 and u = 1x

y = x3>2dy>dx

y = 1 + s1>ud and u = 1>sx - 1d .

y = su>5d + 7 and u = 5x - 35

y = xdy>dx

dx>dt = 1>3.y = x2
+ 7x - 5x = 1dy>dt

du>dt = 5.s = cos uu = 3p>2ds>dt

ƒsx + g sxdd, x = 0

sx11
+ ƒsxdd-2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
 , x = 1

ƒsxdg3sxd, x = 05ƒsxd - g sxd, x = 1

-8>3-1>3-4
1>3

x = 1.x = 0

2ƒ2sxd + g2sxd, x = 21>g2sxd, x = 3

2ƒsxd, x = 2ƒsg sxdd, x = 2

ƒsxd>g sxd, x = 2ƒsxd # g sxd, x = 3

ƒsxd + g sxd, x = 32ƒsxd, x = 2

2p-4
-31>3

x = 3.x = 2
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b. Can anything be said about the tangents to the curves
and at the origin

Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves and can ever have? Give
reasons for your answer.

d. The function completes one period on the interval
the function completes two periods, the

function completes half a period, and so on. Is
there any relation between the number of periods 
completes on and the slope of the curve 
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time t sec is

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you
find out, you will know why some machinery breaks when you
run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

and is graphed in the accompanying figure.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

99. Particle motion The position of a particle moving along a co-
ordinate line is with s in meters and t in seconds.
Find the particle’s velocity and acceleration at 

100. Constant acceleration Suppose that the velocity of a falling
body is (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s accel-
eration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to when it is 
s km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to s2 .

1s

y = k1s m>sec

t = 6 sec.
s = 21 + 4t ,

Ja
n

Feb M
ar

Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec Ja
n

Feb M
ar

0

–20

20

40

60

x

y

........ .. ......
... .....

...
.

....

....
....
.......

.......
. ..... ................

..........................
........................ ....

....
.

...
.

T
em

pe
ra

tu
re

 (
˚F

)

y = 37 sin c 2p
365

 sx - 101d d + 25

s = A cos s2pbtd ,

y = sin mx[0, 2p]
y = sin mx

y = sin sx>2d
y = sin 2x[0, 2p] ,

y = sin x

y = -sin sx>mdy = sin mx

sm a constant Z 0d?
y = -sin sx>mdy = sin mx

3.6 The Chain Rule 169

102. Particle acceleration A particle moves along the x-axis with
velocity Show that the particle’s acceleration is

103. Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we
measure L in centimeters and T in seconds. If the pendulum is made
of metal, its length will vary with temperature, either increasing or
decreasing at a rate that is roughly proportional to L. In symbols,
with u being temperature and k the proportionality constant,

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is .

104. Chain Rule Suppose that and Then the
composites

are both differentiable at even though g itself is not differ-
entiable at Does this contradict the Chain Rule? Explain.

105. The derivative of sin 2x Graph the function for
Then, on the same screen, graph

for and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as 
Explain this behavior.

106. The derivative of Graph for
Then, on the same screen, graph

for Experiment with other values of h.
What do you see happening as Explain this behavior.

Using the Chain Rule, show that the Power Rule 
holds for the functions in Exercises 107 and 108.

107. 108.

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polynomial”

gives a good approximation of the sawtooth function 
on the interval How well does the derivative of ƒ ap-
proximate the derivative of g at the points where is de-
fined? To find out, carry out the following steps.

dg>dt
[-p, p] .

s = g std

- 0.02546 cos 10t - 0.01299 cos 14t

 s = ƒstd = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

x3>4
= 2x1xx1>4

= 21x

xn
sd>dxdxn

= nxn - 1

h : 0?
h = 1.0, 0.7, and 0.3 .

y =

cos ssx + hd2d - cos sx2d
h

-2 … x … 3.
y = -2x sin sx2dcos sx2d

h : 0?
h = 1.0, 0.5 ,

y =

sin 2sx + hd - sin 2x

h

-2 … x … 3.5 .
y = 2 cos 2x

x = 0.
x = 0

sƒ � gdsxd = ƒ x ƒ
2

= x2 and sg � ƒdsxd = ƒ x2
ƒ = x2

g sxd = ƒ x ƒ .ƒsxd = x2

kT>2

dL
du

= kL .

T = 2pA
L
g  ,

ƒsxdƒ¿sxd .
dx>dt = ƒsxd .

T
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a. Graph (where defined) over 

b. Find .

c. Graph . Where does the approximation of by
seem to be best? Least good? Approximations by

trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

110. (Continuation of Exercise 109.) In Exercise 109, the trigonometric
polynomial that approximated the sawtooth function g(t) on

had a derivative that approximated the derivative of the
sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

[-p, p]
ƒ(t)

t

s

0–� �

2
�

s � g(t)

s � f (t)

dƒ>dt
dg>dtdƒ>dt

dƒ>dt

[-p, p] .dg>dt
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x

y

0 5

5

A

x3 � y3 � 9xy � 0

y � f1(x)
(x0, y1)

y � f2(x)

y � f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve
is not the graph of

any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.

x3
+ y3

- 9xy = 0

graphed in the accompanying figure approximates the step func-
tion shown there. Yet the derivative of h is nothing like
the derivative of k.

a. Graph (where defined) over 

b. Find 

c. Graph to see how badly the graph fits the graph of
. Comment on what you see.dk>dt

dh>dt

dh>dt.

[-p, p] .dk>dt

1

t

s

0 �
2

�–� �
2

–

–1

s � k(t)

s � h(t)

s = kstd

 + 0.18189 sin 14t + 0.14147 sin 18t

 s = hstd = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. Another situation occurs when we en-
counter equations like

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation

in the form to differentiate it in the usual way, we may still be able
to find by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function
of x to calculate in the usual way. Then we differentiate the equations implicitly, and
find the derivative to compare the two methods. Following the examples, we summarize
the steps involved in the new method. In the examples and exercises, it is always assumed
that the given equation determines y implicitly as a differentiable function of x so that

exists.

EXAMPLE 1 Find if 

Solution The equation defines two differentiable functions of x that we can actu-
ally find, namely and (Figure 3.29). We know how to calculate the
derivative of each of these for 

dy1

dx
=

1
21x
 and dy2

dx
= -

1
21x

 .

x 7 0:
y2 = -1xy1 = 1x

y2
= x

y2
= x .dy>dx

dy>dx

dy>dx

dy>dx
y = ƒsxdFsx, yd = 0

x3
+ y3

- 9xy = 0, y2
- x = 0, or   x2

+ y2
- 25 = 0.

y = ƒsxd
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But suppose that we knew only that the equation defined y as one or more differ-
entiable functions of x for without knowing exactly what these functions were.
Could we still find ?

The answer is yes. To find , we simply differentiate both sides of the equation
with respect to x, treating as a differentiable function of x:

This one formula gives the derivatives we calculated for both explicit solutions 
and 

EXAMPLE 2 Find the slope of the circle at the point 

Solution The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, and (Figure
3.30). The point lies on the graph of so we can find the slope by calculating the
derivative directly, using the Power Chain Rule:

We can solve this problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

The slope at is 

Notice that unlike the slope formula for which applies only to points 
below the x-axis, the formula applies everywhere the circle has a slope.
Notice also that the derivative involves both variables x and y, not just the independent
variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

dy>dx = -x>y dy2>dx ,

-
x
y `

s3, -4d
= -

3
-4

=
3
4

 .s3, -4d

 
dy
dx

= -
x
y .

 2x + 2y 
dy
dx

= 0

 
d
dx

 (x2) +
d
dx

 (y2) =
d
dx

 (25)

dy2

dx
`
x = 3

= -
-2x

2225 - x2
`
x = 3

= -
-6

2225 - 9
=

3
4

 .

y2 ,s3, -4d
y2 = -225 - x2y1 = 225 - x2

s3, -4d .x2
+ y2

= 25

dy1

dx
=

1
2y1

=
1

21x
 and dy2

dx
=

1
2y2

=
1

2 A -1x B = -
1

21x
 .

y2 = -1x :
y1 = 1x

 
dy
dx

=
1
2y

 .

 2y 
dy
dx

= 1

 y2
= x

y = ƒsxdy2
= x

dy>dx
dy>dx

x 7 0
y2

= x
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x

y

0

y2 � x

Slope � �
2y1

1
2�x

1

Slope � � �
2y2

1
2�x

1

y1 � �x

y2 � ��x

P(x, �x )

Q(x, ��x )

FIGURE 3.29 The equation 
or as it is usually written, defines
two differentiable functions of x on the
interval Example 1 shows how to
find the derivatives of these functions
without solving the equation for y.y2

= x

x 7 0.

y2
= x

y2
- x = 0,

-

1
2

 (25 - x2)-1>2(-2x)

d
dx

- (25 - x2)1>2
=

The Chain Rule gives 

d
dx

 [ƒsxd]2
= 2ƒsxdƒ¿sxd = 2y 

dy

dx
.

d
dx

 Ay2 B =

0 5–5
x

y

Slope � – �y
x

4
3

(3, –4)

y1 � �25 � x2

y2 � –�25 � x2

FIGURE 3.30 The circle combines the
graphs of two functions. The graph of is
the lower semicircle and passes through
s3, -4d .

y2
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EXAMPLE 3 Find if (Figure 3.31).

Solution We differentiate the equation implicitly.

Treat xy as a product.

Collect terms with .

Solve for 

Notice that the formula for applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find if

Solution To start, we differentiate both sides of the equation with respect to x in order to
find 

Treat y as a function of x.

Solve for 

We now apply the Quotient Rule to find 

Finally, we substitute to express in terms of x and y.

y– =
2x
y -

x2

y2 ax2

y b =
2x
y -

x4

y3 , when y Z 0

y–y¿ = x2>y
y– =

d
dx

 ax2

y b =

2xy - x2y¿

y2 =
2x
y -

x2

y2
# y¿

y– .

y¿. y¿ =
x2

y , when y Z 0

 6x2
- 6yy¿ = 0

 
d
dx

 (2x3
- 3y2) =

d
dx

 s8d

y¿ = dy>dx .

2x3
- 3y2

= 8.d2y>dx2

dy>dx

dy>dx. 
dy
dx

=

2x + y cos xy
2y - x cos xy

 s2y - x cos xyd 
dy
dx

= 2x + y cos xy

dy>dx 2y 
dy
dx

- scos xyd ax 
dy
dx
b = 2x + scos xydy

 2y 
dy
dx

= 2x + scos xyd ay + x 
dy
dx
b

 2y 
dy
dx

= 2x + scos xyd 
d
dx

 Axy B
 
d
dx

 Ay2 B =
d
dx

 Ax2 B +
d
dx

 Asin xy B
 y2

= x2
+ sin xy

y2
= x2

+ sin xydy>dx
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y2 � x2 � sin xy

y

x

4

2

0 2 4–2–4

–2

–4

FIGURE 3.31 The graph of
in Example 3.y2

= x2
+ sin xy

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a differ-

entiable function of x.

2. Collect the terms with on one side of the equation and solve for .dy>dxdy>dx

Differentiate both sides with
respect to x Á

treating y as a function of
x and using the Chain Rule.
Á
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Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.32). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.32, the normal
is the line perpendicular to the tangent of the profile curve at the point of entry.

EXAMPLE 5 Show that the point (2, 4) lies on the curve Then
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for :

Solve for .

We then evaluate the derivative at 

The tangent at (2, 4) is the line through (2, 4) with slope :

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope 

The quadratic formula enables us to solve a second-degree equation like
for y in terms of x. There is a formula for the three roots of a cubic

equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation in Example 5 for y in terms of x, then three
functions determined by the equation are

y = ƒsxd =
3C-

x3

2
+ B

x6

4
- 27x3

+
3C-

x3

2
- B

x6

4
- 27x3

x3
+ y3

= 9xy

y2
- 2xy + 3x2

= 0

 y = -
5
4

 x +
13
2

.

 y = 4 -
5
4

 sx - 2d

-5>4:

 y =
4
5 x +

12
5 .

 y = 4 +
4
5 sx - 2d

4>5

dy
dx
`
s2, 4d

=

3y - x2

y2
- 3x

`
s2, 4d

=

3s4d - 22

42
- 3s2d

=
8

10
=

4
5 .

sx, yd = s2, 4d :

dy>dx 
dy
dx

=

3y - x2

y2
- 3x

 .

 3sy2
- 3xd 

dy
dx

= 9y - 3x2

 s3y2
- 9xd 

dy
dx

+ 3x2
- 9y = 0

 3x2
+ 3y2 

dy
dx

- 9 ax 
dy
dx

+ y 
dx
dx
b = 0

 
d
dx

 (x3) +
d
dx

 (y3) -
d
dx

 (9xy) =
d
dx

 (0)

 x3
+ y3

- 9xy = 0

dy>dx

23
+ 43

- 9s2ds4d = 8 + 64 - 72 = 0.

x3
+ y3

- 9xy = 0.
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A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.32 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.

x

y

0 2

4

 Tan
gen

t

N
orm

alx3 � y3 � 9xy � 0

FIGURE 3.33 Example 5 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Differentiate both sides
with respect to x.

Treat xy as a product and y
as a function of x.
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174 Chapter 3: Differentiation

and

Using implicit differentiation in Example 5 was much simpler than calculating di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

dy>dx

y =
1
2

 c-ƒsxd ; 2-3 aC3 -
x3

2
+ B

x6

4
- 27x3

- C3 -
x3

2
- B

x6

4
- 27x3b d .

Exercise 3.7

Differentiating Implicitly
Use implicit differentiation to find in Exercises 1–16.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find in Exercises 17–20.

17. 18.

19. 20.

Second Derivatives
In Exercises 21–26, use implicit differentiation to find and then

21. 22.

23. 24.

25. 26.

27. If find the value of at the point (2, 2).

28. If find the value of at the point 

In Exercises 29 and 30, find the slope of the curve at the given points.

29. and 

30. and 

Slopes, Tangents, and Normals
In Exercises 31–40, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

31.

32.

33.

34.

35. 6x2
+ 3xy + 2y2

+ 17y - 6 = 0, s -1, 0d
y2

- 2x - 4y - 1 = 0, s -2, 1d
x2y2

= 9, s -1, 3d
x2

+ y2
= 25, s3, -4d

x2
+ xy - y2

= 1, s2, 3d

s1, -1dsx2
+ y2d2

= sx - yd2 at s1, 0d
s -2, -1dy2

+ x2
= y4

- 2x at s -2, 1d

s0, -1d .d 2y>dx2xy + y2
= 1,

d 2y>dx2x3
+ y3

= 16,

xy + y2
= 121y = x - y

y2
- 2x = 1 - 2yy2

= ex2

+ 2x

x2>3
+ y2>3

= 1x2
+ y2

= 1

d 2y>dx 2 .
dy>dx

cos r + cot u = erusin srud =

1
2

r - 22u =

3
2

 u2>3
+

4
3

 u3>4u1>2
+ r1>2

= 1

dr>du
ex2y

= 2x + 2ye2x
= sin (x + 3y)

x cos s2x + 3yd = y sin xy sin a1y b = 1 - xy

x4
+ sin y = x3y2x + tan (xy) = 0

xy = cot sxydx = tan y

x3
=

2x - y

x + 3y
y2

=

x - 1
x + 1

s3xy + 7d2
= 6yx2sx - yd2

= x2
- y2

x3
- xy + y3

= 12xy + y2
= x + y

x3
+ y3

= 18xyx2y + xy2
= 6

dy>dx
36.

37.

38.

39.

40.

41. Parallel tangents Find the two points where the curve
crosses the x-axis, and show that the tangents

to the curve at these points are parallel. What is the common
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve
that are parallel to the line 

43. The eight curve Find the slopes of the curve at
the two points shown here.

44. The cissoid of Diocles (from about 200 B.C.) Find equations for
the tangent and normal to the cissoid of Diocles 
at (1, 1).

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of
the devil’s curve at the four indicated points.y4

- 4y2
= x4

- 9x2

x

y

1

1

(1, 1)

0

y2(2 2 x) 5 x3

y2s2 - xd = x3

x

y

0

1

–1

y4 5 y2 2 x2

⎛
⎝

⎛
⎝

�3
4

�3
2

,

⎛
⎝

⎛
⎝

�3
4

1
2

,

y4
= y2

- x2

2x + y = 0.xy + 2x - y = 0

x2
+ xy + y2

= 7

x2 cos2 y - sin y = 0, s0, pd
y = 2 sin spx - yd, s1, 0d
x sin 2y = y cos 2x, sp>4, p>2d
2xy + p sin y = 2p, s1, p>2d
x2

- 23xy + 2y2
= 5, A23, 2 B
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes 
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28, where the
folium has a vertical tangent.

Theory and Examples
47. Intersecting normal The line that is normal to the curve 

at (1, 1) intersects the curve at what other
point?

48. Power rule for rational exponents Let p and q be integers with
If differentiate the equivalent equation 

implicitly and show that, for 

49. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola shown in the
accompanying diagram, then a must be greater than . One of
the normals is the x-axis. For what value of a are the other two
normals perpendicular?

50. Is there anything special about the tangents to the curves 
and at the points Give reasons for your
answer.

x

y

0

(1, 1)

y2 � x3

2x2 � 3y2 � 5

(1, –1)

s1, ;1d?2x2
+ 3y2

= 5
y2

= x3

x

y

0 (a, 0)

x � y2

1>2x = y2

d
dx

xp>q
=

p
q x(p>q)-1.

y Z 0,
yq

= xpy = xp>q,q 7 0.

2xy - 3y 2
= 0x2 +

x3
+ y3

- 9xy = 0

x

y

3–3

2

–2

(3, 2)

(3, –2)

(–3, 2)

(–3, –2)

y4 2 4y2 5 x4 2 9x2
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51. Verify that the following pairs of curves meet orthogonally.

a.

b.

52. The graph of is called a semicubical parabola and is
shown in the accompanying figure. Determine the constant b so
that the line meets this graph orthogonally.

In Exercises 53 and 54, find both (treating y as a differentiable
function of x) and (treating x as a differentiable function of y).
How do and seem to be related? Explain the relationship
geometrically in terms of the graphs.

53.

54.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 55–62.

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

55.

56.

57.

58.

59.

60.

61.

62. x21 + 2y + y = x2, P s1, 0d

2y2
+ sxyd1>3

= x2
+ 2, Ps1, 1d

xy3
+ tan (x + yd = 1, P ap

4
, 0b

x + tan ayx b = 2, P a1, 
p

4
b

y3
+ cos xy = x2, Ps1, 0d

y2
+ y =

2 + x
1 - x

 , Ps0, 1d

x5
+ y3x + yx2

+ y4
= 4, Ps1, 1d

x3
- xy + y3

= 7, Ps2, 1d

dy>dx

x3
+ y2

= sin2 y

xy3
+ x2y = 6

dx>dydy>dx
dx>dy

dy>dx

x

y

0

y2 5 x3

y 5 2   x 1 b1
3

y = -
1
3 x + b

y2
= x3

x = 1 - y2, x =

1
3

 y2

x2
+ y2

= 4, x2
= 3y2

T
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3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that
function. We defined there the natural logarithm function as the inverse of
the natural exponential function This is one of the most important function-
inverse pairs in mathematics and science. We learned how to differentiate the exponential
function in Section 3.3. Here we learn a rule for differentiating the inverse of a differen-
tiable function and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function as in
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we cal-
culate their derivatives, we see that

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line always inverts the line’s slope. If the original line has slope , the reflected
line has slope 1 m.> m Z 0y = x

 
d
dx

 ƒ -1sxd =
d
dx

 s2x - 2d = 2.

 
d
dx

 ƒsxd =
d
dx

 a1
2

 x + 1b =
1
2

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

ƒ(x) = ex.
ƒ -1(x) = ln x
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x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 3.34 Graphing a line and its
inverse together shows the graphs’
symmetry with respect to the line 
The slopes are reciprocals of each other.

y = x .

x

y

0 a
x

y

0

b = f (a) (a,  b)

y = f (x)

(b, a)

y = f –1(x)

b

a = f –1(b)

The slopes are reciprocal: ( f –1)'(b) =          or ( f –1)'(b) =1
f'(a)

1
f '( f –1(b))

FIGURE 3.35 The graphs of inverse functions have reciprocal
slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of

at the point (a, ƒ(a)) is and then the slope of at the
point (ƒ(a), a) is the reciprocal (Figure 3.35). If we set then

If has a horizontal tangent line at (a, ƒ(a)) then the inverse function has a
vertical tangent line at (ƒ(a), a), and this infinite slope implies that is not differentiable
at ƒ(a). Theorem 3 gives the conditions under which is differentiable in its domain
(which is the same as the range of ƒ).

ƒ -1
ƒ -1

ƒ -1y = ƒsxd

sƒ -1d¿sbd =
1

ƒ¿sad
=

1
ƒ¿sƒ -1sbdd

.

b = ƒsad ,1>ƒ¿sad
y = ƒ -1sxdƒ¿sad Z 0,ƒ¿sady = ƒsxd

ƒ -1
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Theorem 3 makes two assertions. The first of these has to do with the conditions
under which is differentiable; the second assertion is a formula for the derivative of

when it exists. While we omit the proof of the first assertion, the second one is proved
in the following way:

Inverse function relationship

Differentiating both sides

Chain Rule

Solving for the derivative

EXAMPLE 1 The function and its inverse have deriva-

tives and 
Let’s verify that Theorem 3 gives the same formula for the derivative of :

Theorem 3 gives a derivative that agrees with the known derivative of the square root
function.

Let’s examine Theorem 3 at a specific point. We pick (the number a) and
(the value b). Theorem 3 says that the derivative of ƒ at 2, and the 

derivative of at ƒ(2), are reciprocals. It states that

See Figure 3.36.

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to
find specific values of without knowing a formula for ƒ -1 .dƒ -1>dx

sƒ -1d¿s4d =
1

ƒ¿sƒ -1s4dd
=

1
ƒ¿s2d

=
1
2x
`
x = 2

=
1
4

 .

sƒ -1d¿s4d ,ƒ -1
ƒ¿s2d = 4,ƒs2d = 4

x = 2

 =
1

2s1xd
.

 =
1

2sƒ -1sxdd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd
sƒ -1d¿sxd = 1> A21x B .ƒ¿sxd = 2x

ƒ-1sxd = 1xƒsxd = x2, x Ú 0

 
d
dx

 ƒ -1sxd =
1

ƒ¿sƒ -1sxdd
.

 ƒ¿sƒ -1sxdd # d
dx

 ƒ -1sxd = 1

 
d
dx

 ƒsƒ -1sxdd = 1

 ƒsƒ -1sxdd = x

ƒ -1
ƒ -1
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THEOREM 3—The Derivative Rule for Inverses If ƒ has an interval I as domain
and exists and is never zero on I, then is differentiable at every point in
its domain (the range of ƒ). The value of at a point b in the domain of 
is the reciprocal of the value of at the point 

(1)

or

dƒ -1

dx
 `

x = b
=

1
dƒ
dx
`

 
 

x = ƒ -1sbd

sƒ -1d¿sbd =
1

ƒ¿sƒ -1sbdd

a = ƒ -1sbd :ƒ¿

ƒ -1sƒ -1d¿

ƒ -1ƒ¿sxd

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y � x2, x � 0

y � �x

FIGURE 3.36 The derivative of
at the point (4, 2) is the

reciprocal of the derivative of 
at (2, 4) (Example 1).

ƒsxd = x2
ƒ -1sxd = 1x

with x replaced

by ƒ-1sxd
ƒ¿sxd = 2x
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EXAMPLE 2 Let Find the value of at without
finding a formula for 

Solution We apply Theorem 3 to obtain the value of the derivative of at 

. Eq. (1)

See Figure 3.37.

Derivative of the Natural Logarithm Function

Since we know the exponential function is differentiable everywhere, we can
apply Theorem 3 to find the derivative of its inverse 

Theorem 3

Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative
of using implicit differentiation, as follows:

Inverse function relationship

Differentiate implicitly

Chain Rule

No matter which derivation we use, the derivative of with respect to x is

The Chain Rule extends this formula for positive functions 

d
dx

 ln u =
d

du
 ln u # du

dx

usxd:

d
dx

 (ln x) =
1
x , x 7 0.

y = ln x

ey
= x 

dy
dx

=
1
ey =

1
x .

 ey 
dy
dx

= 1

d
dx

 (ey) =
d
dx

 (x)

 ey
= x

 y = ln x

y = ln x

 =
1
x .

 =
1

e ln x

ƒ¿(u) = eu =
1

eƒ -1(x)

(ƒ -1)¿(x) =
1

ƒ¿(ƒ -1(x))

ƒ -1(x) = ln x:
ƒ(x) = ex

 
dƒ -1

dx
 `

x = ƒs2d
=

1
dƒ
dx

 `
x = 2

=
1

12

 
dƒ
dx

 `
x = 2

= 3x2 `
x = 2

= 12

x = 6:ƒ -1

ƒ -1sxd .
x = 6 = ƒs2ddƒ -1>dxƒsxd = x3

- 2.
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x

y

0

–2

–2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y � x3 � 2
Slope 3x2 � 3(2)2 � 12

1
12

FIGURE 3.37 The derivative of
at tells us the

derivative of at (Example 2).x = 6ƒ -1
x = 2ƒsxd = x3

- 2

(2)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0.
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EXAMPLE 3 We use Equation (2) to find derivatives.

(a)

(b) Equation (2) with gives

Notice the remarkable occurrence in Example 3a. The function has the
same derivative as the function This is true of for any constant b, pro-
vided that :

(3)

If and then and Equation (3) still applies. In particular, if and
we get

for 

Since when and when , we have the following important
result.

x 6 0ƒ x ƒ = -xx 7 0ƒ x ƒ = x

x 6 0.
d
dx

 ln (-x) =
1
x

b = -1
x 6 0bx 7 0b 6 0,x 6 0

d
dx

 ln bx =
1
bx

# d
dx

 sbxd =
1
bx

 sbd =
1
x  .

bx 7 0
y = ln bxy = ln x .

y = ln 2x

d
dx

 ln sx2
+ 3d =

1
x2

+ 3
# d
dx

 sx2
+ 3d =

1
x2

+ 3
# 2x =

2x
x2

+ 3
.

u = x2
+ 3

d
dx

 ln 2x =
1
2x

 
d
dx

 s2xd =
1
2x

 s2d =
1
x , x 7 0

3.8 Derivatives of Inverse Functions and Logarithms 179

, (4)x Z 0
d
dx

 ln ƒ x ƒ =
1
x

EXAMPLE 4 A line with slope m passes through the origin and is tangent to the graph of
What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point Then we
know that the point (a, ln a) lies on the graph and that the tangent line at that point has slope

(Figure 3.38). Since the tangent line passes through the origin, its slope is

Setting these two formulas for m equal to each other, we have

The Derivatives of and logau

We start with the equation which was established in Section 1.6:

 = ax ln a .

d
dx

 eu
= eu 

du
dx

 
d
dx

 ax
=

d
dx

 ex ln a
= ex ln a # d

dx
 sx ln ad

ax
= e ln (a x )

= ex ln a ,

au

 m =
1
e .

 a = e
e ln a

= e1

ln a = 1

ln a
a =

1
a

m =
ln a - 0

a - 0
=

ln a
a .

m = 1>a
x = a 7 0.

y = ln x.

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y � ln x

Slope � a
1

FIGURE 3.38 The tangent line intersects
the curve at some point (a, ln a), where the
slope of the curve is (Example 4).1>a

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 179



If then

This equation shows why is the exponential function preferred in calculus. If 
then and the derivative of simplifies to

With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function.

d
dx

 ex
= ex ln e = ex .

axln a = 1
a = e ,ex

d
dx

 ax
= ax ln a .

a 7 0,

180 Chapter 3: Differentiation

EXAMPLE 5 We illustrate using Equation (5). 

(a) Eq. (5) with

(b) Eq. (5) with 

(c)

In Section 3.3 we looked at the derivative for the exponential functions 
at various values of the base a. The number is the limit, , and

gives the slope of the graph of when it crosses the y-axis at the point (0, 1). We now see
that the value of this slope is

(6)

In particular, when we obtain

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are
correct, they do assume the existence of these limits. In Chapter 7 we will give another de-
velopment of the theory of logarithmic and exponential functions which fully justifies
that both limits do in fact exist and have the values derived above.

To find the derivative of for an arbitrary base we start with the
change-of-base formula for logarithms (reviewed in Section 1.6) and express in
terms of natural logarithms,

loga x =
ln x
ln a

.

loga u
(a 7 0, a Z 1),loga u

lim
h:0

 
eh

- 1
h

= ln e = 1.

a = e

lim
h:0

 
ah

- 1
h

= ln a.

ax
limh:0 (a

h
- 1)>hƒ¿(0)ax

f (x) =ƒ¿(0)

Á , u = sin x
d
dx

 3sin x
= 3sin xsln 3d 

d
dx

 ssin xd = 3sin x sln 3d cos x

a = 3, u = -x
d
dx

 3-x
= 3-x sln 3d 

d
dx

 s -xd = -3-x ln 3

 a = 3, u = x
d
dx

 3x
= 3x ln 3

If and u is a differentiable function of x, then is a differentiable function
of x and

(5)
d
dx

 au
= au ln a  

du
dx

.

aua 7 0
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Taking derivatives, we have

ln a is a constant.

If u is a differentiable function of x and the Chain Rule gives the following formula.u 7 0,

 =
1

x ln a
.

 =
1

ln a
# 1
x

 =
1

ln a
# d
dx

 ln x

d
dx

 loga x =
d
dx

 aln x
ln a
b

3.8 Derivatives of Inverse Functions and Logarithms 181

For and 

(7)
d
dx

 loga u =
1

u ln a
 
du
dx

.

a Z 1,a 7 0

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients,
and powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in
the next example.

EXAMPLE 6 Find dy dx if

Solution We take the natural logarithm of both sides and simplify the result with the al-
gebraic properties of logarithms from Theorem 1 in Section 1.6:

Rule 2

Rule 1

Rule 4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

Next we solve for dy dx:

dy
dx

= y a 2x
x2

+ 1
+

1
2x + 6

-
1

x - 1
b .

>
1
y  

dy
dx

=
1

x2
+ 1

 # 2x +
1
2

 #  
1

x + 3
-

1
x - 1

.

 = ln sx2
+ 1d +

1
2

 ln sx + 3d - ln sx - 1d .

 = ln sx2
+ 1d + ln sx + 3d1>2

- ln sx - 1d

 = ln ssx2
+ 1dsx + 3d1>2d - ln sx - 1d

 ln y = ln 
sx2

+ 1dsx + 3d1>2
x - 1

y =

sx2
+ 1dsx + 3d1>2

x - 1
 ,    x 7 1.

>
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Finally, we substitute for y:

Proof of the Power Rule (General Version)

The definition of the general exponential function enables us to make sense of raising any
positive number to a real power n, rational or irrational. That is, we can define the power
function for any exponent n.y = xn

dy
dx

=

sx2
+ 1dsx + 3d1>2

x - 1
 a 2x

x2
+ 1

+
1

2x + 6
-

1
x - 1

b .

182 Chapter 3: Differentiation

DEFINITION For any and for any real number n,

xn
= en ln x.

x 7 0

General Power Rule for Derivatives
For and any real number n,

If then the formula holds whenever the derivative, and all exist.xn - 1xn,x … 0,

d
dx

 xn
= nxn - 1.

x 7 0

Because the logarithm and exponential functions are inverses of each other, the defi-
nition gives

That is, the Power Rule for the natural logarithm holds for all real exponents n, not just for
rational exponents.

The definition of the power function also enables us to establish the derivative Power
Rule for any real power n, as stated in Section 3.3.

ln xn
= n ln x, for all real numbers n.

Proof Differentiating with respect to x gives

Definition of 

Chain Rule for 

Definition and derivative of ln x

In short, whenever 

For , if , and all exist, then

ln ƒ y ƒ = ln ƒ x ƒ
n

= n ln ƒ x ƒ.

xn - 1y = xn, y¿x 6 0

d
dx

 xn
= nxn - 1 .

x 7 0,

xn # x-1
= xn - 1 = nxn - 1 .

 = xn # n
x

eu = en ln x # d
dx

 sn ln xd

 xn,  x 7 0 
d
dx

 xn
=

d
dx

 en ln x

xn
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Using implicit differentiation (which assumes the existence of the derivative ) and Equa-
tion (4), we have

.

Solving for the derivative,

.

It can be shown directly from the definition of the derivative that the derivative equals 0
when and . This completes the proof of the general version of the Power Rule
for all values of x.

EXAMPLE 7 Differentiate 

Solution We note that so differentiation gives

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

Slope equals ln e from Eq. (6)

We also stated that e could be calculated as or by substituting
as We now prove this result.limx:0 (1 + x)1>x.y = 1>x,

limy: q  (1 + 1>y)y,

lim
h:0

 
eh

- 1
h

= ln e = 1.

y = ax

x 7 0 = xx (ln x + 1).

 = ex ln x aln x + x # 1
x b

d
dx eu, u = x ln x = ex ln x 

d
dx

 (x ln x)

ƒ¿(x) =
d
dx

 (ex ln x)

ƒ(x) = xx
= ex ln x,

x 7 0.ƒ(x) = xx,

n Ú 1x = 0

y¿ = n 
y
x = n 

xn

x = nxn - 1

y¿

y =
n
x

y¿
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Proof If then so But, by the definition of derivative,

 = lim
x:0

 ln s1 + xd1>x
= ln c lim

x:0
s1 + xd1>x d .

ln 1 = 0 = lim
x:0

 
ln s1 + xd - ln 1

x = lim
x:0

  
1
x   ln s1 + xd

ƒ¿s1d = lim
h:0

 
ƒs1 + hd - ƒs1d

h
= lim

x:0
 
ƒs1 + xd - ƒs1d

x

ƒ¿s1d = 1.ƒ¿sxd = 1>x ,ƒsxd = ln x ,

THEOREM 4—The Number e as a Limit The number e can be calculated as the
limit

e = lim
x:0

 s1 + xd1>x .

ln is continuous,
Theorem 10 in
Chapter 2
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Because we have

.

Therefore, exponentiating both sides we get

.

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is to 15 decimal places.e L 2.718281828459045

lim
x:0

 s1 + xd1>x
= e

ln c lim
x:0

s1 + xd1>x d = 1

ƒ¿s1d = 1,

184 Chapter 3: Differentiation

Exercises 3.8

Derivatives of Inverse Functions
In Exercises 1–4:

a. Find 

b. Graph ƒ and together.

c. Evaluate dƒ dx at and at to show that at
these points 

1. 2.

3. 4.

5. a. Show that and are inverses of one an-
other.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs of ƒ and g at
(1, 1) and (four tangents in all).

d. What lines are tangent to the curves at the origin?

6. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs at h and k at
(2, 2) and 

d. What lines are tangent to the curves at the origin?

7. Let Find the value of at
the point 

8. Let Find the value of at the
point 

9. Suppose that the differentiable function has an inverse
and that the graph of ƒ passes through the point (2, 4) and has a
slope of 1 3 there. Find the value of at 

10. Suppose that the differentiable function has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of at the origin.

Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or as
appropriate.

11. 12. y = ln kx, k constanty = ln 3x

u ,

g-1

y = gsxd
x = 4.dƒ -1>dx>

y = ƒsxd
x = 0 = ƒs5d .

dƒ -1>dxƒsxd = x2
- 4x - 5, x 7 2.

x = -1 = ƒs3d .
dƒ -1>dxƒsxd = x3

- 3x2
- 1, x Ú 2.

s -2, -2d .

y = x .
s -2, -2d .

ksxd = s4xd1>3hsxd = x3>4
s -1, -1d

y = x .
s -1, -1d .

g sxd = 1 
3 xƒsxd = x3

ƒsxd = 2x2, x Ú 0, a = 5ƒsxd = 5 - 4x, a = 1>2
ƒsxd = s1>5dx + 7, a = -1ƒsxd = 2x + 3, a = -1

dƒ -1>dx = 1>sdƒ>dxd .
x = ƒsaddƒ -1>dxx = a>

ƒ -1

ƒ -1sxd .

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40.

Logarithmic Differentiation
In Exercises 41–54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52. y = C
sx + 1d10

s2x + 1d5y =

x2x2
+ 1

sx + 1d2>3

y =

u sin u

2sec u
y =

u + 5
u cos u

y =

1
t st + 1dst + 2d

y = t st + 1dst + 2d

y = stan ud22u + 1y = 2u + 3 sin u

y = A
1

t st + 1d
y = A

t
t + 1

y = 2sx2
+ 1dsx - 1d2y = 2xsx + 1d

y = ln C
sx + 1d5

sx + 2d20y = ln asx2
+ 1d5

21 - x
b

y = ln a2sin u cos u

1 + 2 ln u
by = ln ssec sln udd

y = 2ln 1ty =

1 + ln t
1 - ln t

y =

1
2

 ln 
1 + x
1 - x

y = ln 
1

x2x + 1

y = ln ssec u + tan ud

y = ussin sln ud + cos sln udd

y = ln sln sln xddy = ln sln xd

y =

x ln x
1 + ln x

y =

ln x
1 + ln x

y =

1 + ln t
ty =

ln t
t

y = (x2 ln x)4y =

x4

4
 ln x -

x4

16

y = t2ln ty = t sln td2

y = sln xd3y = ln x3

y = ln s2u + 2dy = ln su + 1d

y = ln 
10
xy = ln 

3
x

y = ln st3>2dy = ln st2d
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53. 54.

Finding Derivatives
In Exercises 55–62, find the derivative of y with respect to x, t, or as
appropriate.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, find dy dx.

63. 64.

65. 66.

In Exercises 67–88, find the derivative of y with respect to the given
independent variable.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

Logarithmic Differentiation with Exponentials
In Exercises 89–96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. 90.

91. 92.

93. 94.

95. 96.

Theory and Applications

97. If we write g(x) for Equation (1) can be written as

If we then write x for a, we get

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that ƒ and g are differentiable functions that are in-
verses of one another, so that Differentiate bothsg � ƒdsxd = x .

g¿sƒsxdd # ƒ¿sxd = 1.

g¿sƒsadd =

1
ƒ¿sad

, or g¿sƒsadd # ƒ¿sad = 1.

ƒ -1sxd ,

y = sln xdln xy = x ln x

y = xsin xy = ssin xdx

y = t2ty = s1tdt

y = xsx + 1dy = sx + 1dx

y = t log 3 Aessin tdsln 3d By = log 2 s8t ln 2d
y = 3 log8 slog2 tdy = 3log2 t

y = log2 a x2e2

22x + 1
by = log5 ex

y = log7 asin u cos u

eu 2u
by = u sin slog7 ud

y = log5 B a
7x

3x + 2
b ln 5

y = log3 a ax + 1
x - 1

b ln 3b
y = log3 r # log9 ry = log2 r # log4 r

y = log25 ex
- log51xy = log4 x + log4 x2

y = log3 s1 + u ln 3dy = log2 5u

y = t 1 - ey = xp
y = 2ss2dy = 52s

y = 3-xy = 2x

tan y = ex
+ ln xxy

= yx

ln xy = ex + yln y = ey sin x

>
y = esin t sln t2

+ 1dy = escos t +  ln td

y = ln a 2u
1 + 2u by = ln a eu

1 + eu
b

y = ln s2e-t sin tdy = ln s3te-td

y = ln s3ue-udy = ln (cos2 u)

u ,

y = B
3 xsx + 1dsx - 2d

sx2
+ 1ds2x + 3d

y = B
3 xsx - 2d

x2
+ 1

sides of this equation with respect to x, using the Chain Rule to
express as a product of derivatives of g and ƒ.
What do you find? (This is not a proof of Theorem 3 because
we assume here the theorem’s conclusion that is
differentiable.)

98. Show that for any 

99. If where A and B are constants,
show that

100. Using mathematical induction, show that

COMPUTER EXPLORATIONS
In Exercises 101–108, you will explore some functions and their in-
verses together with their derivatives and tangent line approximations
at specified points. Perform the following steps using your CAS:

a. Plot the function together with its derivative over
the given interval. Explain why you know that ƒ is one-to-one
over the interval.

b. Solve the equation for x as a function of y, and
name the resulting inverse function g.

c. Find the equation for the tangent line to ƒ at the specified
point 

d. Find the equation for the tangent line to g at the point
located symmetrically across the 45° line 

(which is the graph of the identity function). Use Theorem 3
to find the slope of this tangent line.

e. Plot the functions ƒ and g, the identity, the two tangent lines,
and the line segment joining the points and

Discuss the symmetries you see across the main
diagonal.

101.

102.

103.

104.

105.

106.

107.

108.

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions and defined implicitly by the given equa-
tions over the interval.

109.

110. cos y = x1>5, 0 … x … 1, x0 = 1>2
y1>3

- 1 = sx + 2d3, -5 … x … 5, x0 = -3>2
x = ƒ -1sydy = ƒsxd

y = sin x, -

p

2
… x …

p

2
, x0 = 1

y = ex, -3 … x … 5, x0 = 1

y = 2 - x - x3, -2 … x … 2, x0 =

3
2

y = x3
- 3x2

- 1, 2 … x … 5, x0 =

27
10

y =

x3

x2
+ 1

, -1 … x … 1, x0 = 1>2
y =

4x

x 2
+ 1

, -1 … x … 1, x0 = 1>2
y =

3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
y = 23x - 2, 2

3
… x … 4, x0 = 3

sƒsx0d, x0d .
sx0 , ƒsx0dd

y = xsƒsx0d, x0d

sx0 , ƒsx0dd .

y = ƒsxd

y = ƒsxd

dn

dxn ln x = (-1)n - 1 
(n - 1)!

xn .

x2y– + xy¿ + y = 0.

y = A sin (ln x) + B cos (ln x),

x 7 0.lim n: q a1 +

x
n b

n

= ex

g = ƒ -1

sg � ƒd¿sxd
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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused
there on the arcsine and arccosine functions. Here we complete the study of how all six in-
verse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of and 

The graphs of all six basic inverse trigonometric functions are shown in Figure 3.39. We
obtain these graphs by reflecting the graphs of the restricted trigonometric functions (as
discussed in Section 1.6) through the line Let’s take a closer look at the arctangent,
arccotangent, arcsecant, and arccosecant functions.

y = x.

csc xtan x, cot x, sec x,

186 Chapter 3: Differentiation

x

y

�
2

�
2

–

1–1

(a)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

y � sin–1x

x

y

�

�

2

1–1

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

y � cos–1x

x

y

(c)

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

1–1–2 2

�
2

�
2

–

y � tan–1x

x

y

(d)

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

1–1–2 2

y � sec–1x

�

�
2

�
2

x

y

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

(e)

1–1–2 2

�
2

�
2

–

y � csc–1x

x

y

Domain:
Range: 0 � y � �

(f )

�

�
2

1–1–2 2

y � cot–1x

–∞ � x � ∞

FIGURE 3.39 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which tan y = x .

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle
whose cotangent is x. The angles belong to the restricted domains of the tangent and cotan-
gent functions.
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We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 3.39c). Algebraically this
means that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 3.39f). Notice from Figure 3.39c that the graph of the arctangent function has two
horizontal asymptotes; one at and the other at .

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 3.39d and 3.39e.

Caution There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 3.40). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(1)

by applying Equation (5) in Section 1.6.

EXAMPLE 1 The accompanying figures show two values of tan�1 x.

sec-1 x = cos-1 a1x b =
p
2

 -  sin-1 a1x b

sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = -p>2y = p>2
y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

3.9 Inverse Trigonometric Functions 187

The angles come from the first and fourth quadrants because the range of is

The Derivative of 

We know that the function is differentiable in the interval 
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore as-
sures us that the inverse function is differentiable throughout the interval

We cannot expect it to be differentiable at or because the
tangents to the graph are vertical at these points (see Figure 3.41).

x = -1x = 1-1 6 x 6 1.
y = sin-1 x

-p>2 6 y 6 p>2x = sin y

y = sin-1 u

s -p>2, p>2d .
tan-1 x

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 3.40 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3

⎛
⎝

⎛
⎝tan           � –�3�

3
–

�
3

–

� tan–1 � � –⎛
⎝

⎛
⎝
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We find the derivative of by applying Theorem 3 with and

Theorem 3

If u is a differentiable function of x with we apply the Chain Rule to getƒ u ƒ 6 1,

sin ssin-1 xd = x =
1

21 - x2
.

cos u = 21 - sin2 u =
1

21 - sin2 ssin-1 xd

 ƒ¿sud = cos u =
1

cos ssin-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd = sin-1 x:
ƒsxd = sin xy = sin-1 x

188 Chapter 3: Differentiation

y

1–1
x

y � sin–1x
Domain:
Range:

– �
2

�
2 –1 � x � 1

–�/2 � y � �/2

FIGURE 3.41 The graph of 
has vertical tangents at and x = 1.x = -1

y = sin-1 x

d
dx

 ssin-1 ud =
1

21 - u2
 
du
dx

 , ƒ u ƒ 6 1.

EXAMPLE 2 Using the Chain Rule, we calculate the derivative

.

The Derivative of 

We find the derivative of by applying Theorem 3 with and
Theorem 3 can be applied because the derivative of tan x is positive for

Theorem 3

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

tan stan-1 xd = x =
1

1 + x2.

sec2 u = 1 + tan2 u =
1

1 + tan2 stan-1 xd

ƒ¿sud = sec2 u =
1

sec2 stan-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

-p>2 6 x 6 p>2:
ƒ -1sxd = tan-1 x .

ƒsxd = tan xy = tan-1 x

y = tan-1 u

d
dx

 ssin-1 x2d =
1

21 - sx2d2
 #  

d
dx

 sx2d =
2x

21 - x4

d
dx

  stan-1 ud =
1

1 + u2 
du
dx

.

The Derivative of 

Since the derivative of sec x is positive for and Theorem 3
says that the inverse function is differentiable. Instead of applying the formulay = sec-1 x

p>2 6 x 6 p ,0 6 x 6 p/2

y = sec-1 u
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in Theorem 3 directly, we find the derivative of using implicit dif-
ferentiation and the Chain Rule as follows:

Inverse function relationship

Differentiate both sides.

Chain Rule

.

To express the result in terms of x, we use the relationships

to get

Can we do anything about the sign? A glance at Figure 3.42 shows that the slope of the
graph is always positive. Thus,

With the absolute value symbol, we can write a single expression that eliminates the 
ambiguity:

If u is a differentiable function of x with we have the formulaƒ u ƒ 7 1,

d
dx

 sec-1 x =
1

ƒ x ƒ2x2
- 1

 .

“;”

d
dx

 sec-1 x = d +  
1

x2x2
- 1

if x 7 1

-  
1

x2x2
- 1

if x 6 -1.

y = sec-1 x
;

dy
dx

= ;  
1

x2x2
- 1

 .

sec y = x and tan y = ;2sec2 y - 1 = ;2x2
- 1

 
dy
dx

=
1

sec y tan y

 sec y tan y 
dy
dx

= 1

 
d
dx

 ssec yd =
d
dx

 x

 sec y = x

 y = sec-1 x

y = sec-1 x, ƒ x ƒ 7 1,
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x

y

0

�

1–1

y � sec–1x

�
2

FIGURE 3.42 The slope of the curve
is positive for both 

and x 7 1.
x 6 -1y = sec-1 x

d
dx

 ssec-1 ud =
1

ƒ u ƒ2u2
- 1

 
du
dx

 , ƒ u ƒ 7 1.

EXAMPLE 3 Using the Chain Rule and derivative of the arcsecant function, we find

 =
4

x225x8
- 1

.

5x4
7 1 7 0 =

1

5x4225x8
- 1

 s20x3d

 
d
dx

 sec-1 s5x4d =
1

ƒ5x4
ƒ2s5x4d2

- 1
 
d
dx

 s5x4d

Since lies in
and

sec y tan y Z 0.
s0, p>2d ´ sp>2, pd

ƒ x ƒ 7 1, y
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190 Chapter 3: Differentiation

Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way,
thanks to the following identities.

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.

2.

3.

4.

5.

6.
dscsc-1 ud

dx
= -

1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dssec-1 ud
dx

=
1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dscot-1 ud
dx

= -
1

1 + u2 
du
dx

dstan-1 ud
dx

=
1

1 + u2 
du
dx

dscos-1 ud
dx

= -
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

dssin-1 ud
dx

=
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

Inverse Function–Inverse Cofunction Identities

 csc-1 x = p>2 - sec-1 x

 cot-1 x = p>2 - tan-1 x

 cos-1 x = p>2 - sin-1 x

We saw the first of these identities in Equation (5) of Section 1.6. The others are de-
rived in a similar way. It follows easily that the derivatives of the inverse cofunctions are
the negatives of the derivatives of the corresponding inverse functions. For example, the
derivative of is calculated as follows:

Identity

Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

 = -
1

21 - x2
.

 = -
d
dx

 (sin-1 x)

 
d
dx

 (cos-1 x) =
d
dx

 ap
2

- sin-1 xb

cos-1 x
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3.9 Inverse Trigonometric Functions 191

Exercises 3.9

Common Values
Use reference triangles like those in Example 1 to find the angles in
Exercises 1–8.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

7. a. b. c.

8. a. b. c.

Evaluations
Find the values in Exercises 9–12.

9. 10.

11. 12.

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s
graph.)

13. 14.

15. 16.

17. 18.

19. 20.

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34. y = tan-1 sln xdy = ln stan-1 xd

y = cot-1 2t - 1y = cot-1 2t

y = sin-1 
3
t2y = sec-1 

1
t , 0 6 t 6 1

y = csc-1 
x
2

y = csc-1 sx2
+ 1d, x 7 0

y = sec-1 5sy = sec-1 s2s + 1d

y = sin-1 s1 - tdy = sin-122 t

y = cos-1 s1>xdy = cos-1 sx2d

lim
x: -q

 csc-1 xlim
x: q

 csc-1 x

lim
x: -q

 sec-1 xlim
x: q

 sec-1 x

lim
x: -q

 tan-1 xlim
x: q

 tan-1 x

lim
x: -1+

 cos-1 xlim
x:1-

 sin-1 x

cot asin-1 a- 23
2
b btan asin-1 a- 1

2
b b

sec acos-1 
1
2
bsin acos-1 a22

2
b b

cot-1 a -1

23
bcot-1 A23 Bcot-1 s -1d

sec-1s -2dsec-1 a 2

23
bsec-1 A -22 B

csc-1 2csc-1 a -2

23
bcsc-1 22

cos-1 a23
2
bcos-1 a -1

22
bcos-1 a1

2
b

sin-1 a23
2
bsin-1 a -1

22
bsin-1 a1

2
b

sin-1 a-23
2
bsin-1 a 1

22
bsin-1 a-1

2
b

tan-1 a -1

23
btan-123tan-1s -1d

tan-1 a 1

23
btan-1 A -23 Btan-1 1

35. 36.

37. 38.

39.

40. 41.

42.

Theory and Examples

43. You are sitting in a classroom next to the wall looking at the
blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that your
viewing angle is

if you are x ft from the front wall.

44. Find the angle 

45. Here is an informal proof that 
Explain what is going on.

tan-1 1 + tan-1 2 + tan-1 3 = p .

65°

21

50
�

�

a .

B
la

ck
bo

ar
d

12'

3'
Wall

You
�

x

a = cot-1 
x

15
- cot-1 

x
3

y = ln sx2
+ 4d - x tan-1 ax

2
b

y = x sin-1 x + 21 - x2y = cot-1 
1
x - tan-1 x

y = tan-12x2
- 1 + csc-1 x, x 7 1

y = 2s2
- 1 - sec-1 sy = s21 - s2

+ cos-1 s

y = cos-1 se-tdy = csc-1 setd
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46. Two derivations of the identity

a. (Geometric) Here is a pictorial proof that 
See if you can tell what is going on.

b. (Algebraic) Derive the identity by
combining the following two equations from the text:

Eq. (4), Section 1.6

Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which
are not? Give reasons for your answers.

47. a. b.

48. a. b.

49. a. b.

50. a. b.

51. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of 

52. Derive the formula

for the derivative of by differentiating both sides of
the equivalent equation 

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

54. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of tan-1 u .

cot-1 u

cot-1 u =

p

2
- tan-1 u

d
dx

 sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1.

tan y = x .
y = tan-1 x

dy

dx
=

1
1 + x2

sec-1 u .
csc-1 u

csc-1 u =

p

2
- sec-1 u

cos-1 s -5dcot-1 s -1>2d
sin-122sec-1 0

csc-1 2csc-1 (1>2)

cos-1 2tan-1 2

sec-1 x = cos-1 s1>xd

cos-1 s -xd = p - cos-1 x

sec-1 s -xd = p - sec-1 x

x

y

0

�

1 x–1–x

y � sec–1x

�
2

p - sec-1 x .
sec-1 s -xd =

sec-1 s �xd = P � sec�1 x

192 Chapter 3: Differentiation

55. What is special about the functions

Explain.

56. What is special about the functions

Explain.

57. Find the values of

a. b. c.

58. Find the values of

a. b. c.

In Exercises 59–61, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. b.

60. a. b.

61. a. b.

Use your graphing utility for Exercises 62–66.

62. Graph Explain what you
see.

63. Newton’s serpentine Graph Newton’s serpentine, 
Then graph in the same graph-

ing window. What do you see? Explain.

64. Graph the rational function Then graph 
in the same graphing window. What do you see?

Explain.

65. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and 

66. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and ƒ–.ƒ¿

ƒsxd = tan-1 x

ƒ–.ƒ¿

ƒsxd = sin-1 x

cos s2 sec-1 xd
y =y = s2 - x2d>x2 .

y = 2 sin s2 tan-1 xd4x>sx2
+ 1d .

y =

y = sec ssec-1 xd = sec scos-1s1>xdd .

y = cos scos-1 xdy = cos-1 scos xd
y = sin ssin-1 xdy = sin-1 ssin xd
y = tan stan-1 xdy = tan-1 stan xd

cot-1 s -2dcsc-1 1.7sec-1s -3d

cot-1 2csc-1 s -1.5dsec-1 1.5

ƒsxd = sin-1 
1

2x2
+ 1

 and g sxd = tan-1  
1
x ?

ƒsxd = sin-1  
x - 1
x + 1

, x Ú 0, and g sxd = 2 tan-1 1x?

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes
when it is known how the rate of some other related variable (or perhaps several variables)
changes. The problem of finding a rate of change from other known rates of change is
called a related rates problem.

T

T

T

T
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3.10 Related Rates 193

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 
relating the rates of change of V and r,

So if we know the radius r of the balloon and the rate at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for to find
how fast the radius is increasing at that instant. Note that it is easier to directly measure the
rate of increase of the volume (the rate at which air is being pumped into the balloon) than
it is to measure the increase in the radius. The related rates equation allows us to calculate

from .
Very often the key to relating the variables in a related rates problem is drawing a picture

that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Water runs into a conical tank at the rate of The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

Solution Figure 3.43 shows a partially filled conical tank. The variables in the problem are

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for when

The water forms a cone with volume

This equation involves x as well as V and y. Because no information is given about x and
at the time in question, we need to eliminate x. The similar triangles in Figure 3.43

give us a way to express x in terms of y:

Therefore, find

to give the derivative

dV
dt

=
p
12

# 3y2 
dy
dt

=
p
4

 y2 
dy
dt

.

V =
1
3

 p ay
2
b2

y =
p
12

 y3

x
y =

5
10
 or x =

y
2

.

dx>dt

V =
1
3

 px2y .

y = 6 ft and dV
dt

= 9 ft3>min.

dy>dt

 y = depth sftd of the water in the tank at time t .

 x = radius sftd of the surface of the water at time t

 V = volume sft3d of the water in the tank at time t smind

9 ft3>min.

dV>dtdr>dt

dr>dt
dV>dt

dV
dt

=
dV
dr

 
dr
dt

= 4pr2 
dr
dt

.

V =
4
3

 pr3 .

10 ft

y

5 ft

x
dy
dt

� ?

when y � 6 ft

dV
dt

� 9 ft3/min

FIGURE 3.43 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1).
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Finally, use and to solve for .

At the moment in question, the water level is rising at about 0.32 ft min.>
 
dy
dt

=
1
p L 0.32

 9 =
p
4

 s6d2 
dy
dt

dy>dtdV>dt = 9y = 6

194 Chapter 3: Differentiation

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

� ?
y

Range
finder

Balloon

500 ft

�

� 0.14  rad/min
dt
d�

when � � �/4 
dt
dywhen � � �/4 

FIGURE 3.44 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).

EXAMPLE 2 A hot air balloon rising straight up from a level field is tracked by a range
finder 500 ft from the liftoff point. At the moment the range finder’s elevation angle is

the angle is increasing at the rate of 0.14 rad min. How fast is the balloon rising at
that moment?

Solution We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.44). The variables in
the picture are

angle in radians the range finder makes with the ground.

height in feet of the balloon.

We let t represent time in minutes and assume that and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point

(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

3. Write down what we are to find. We want when 

4. Write an equation that relates the variables y and

5. Differentiate with respect to t using the Chain Rule. The result tells how (which
we want) is related to (which we know).

6. Evaluate with and to find .

At the moment in question, the balloon is rising at the rate of 140 ft min.>
sec 
p

4
= 22

dy
dt

= 500 A22 B2s0.14d = 140

dy>dtdu>dt = 0.14u = p>4
dy
dt

= 500 ssec2 ud 
du
dt

du>dt
dy>dt

y
500

= tan u or y = 500 tan u

u .

u = p>4.dy>dt

du
dt

= 0.14 rad>min when u =
p
4

u

y = the

u = the

>p>4,
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3.10 Related Rates 195

EXAMPLE 3 A police cruiser, approaching a right-angled intersection from the north, is
chasing a speeding car that has turned the corner and is now moving straight east. When the
cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.45).
We let t represent time and set

We assume that x, y, and s are differentiable functions of t.
We want to find when

Note that is negative because y is decreasing.
We differentiate the distance equation

(we could also use ), and obtain

Finally, we use and solve for .

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4 A particle P moves clockwise at a constant rate along a circle of radius 10 ft
centered at the origin. The particle’s initial position is (0, 10) on the y-axis and its final
destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tangent line
at P intersects the x-axis at a point Q (which moves over time). If it takes the particle 30 sec
to travel from start to finish, how fast is the point Q moving along the x-axis when it is 20 ft
from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the
origin (see Figure 3.46). We let t represent time and let denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in
30 sec, it is traveling along the circle at a constant rate of radians in or

In other words, with t being measured in minutes. The negative
sign appears because is decreasing over time.u

du>dt = -p,p rad>min.
1>2 min,p>2

u

 
dx
dt

=

202s0.8d2
+ s0.6d2

+ s0.6ds60d
0.8

= 70

 20 =
1

2s0.8d2
+ s0.6d2

 a0.8 
dx
dt

+ (0.6)(-60)b
dx>dtx = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20,

 =
1

2x2
+ y2

 ax 
dx
dt

+ y 
dy
dt
b .

 
ds
dt

=
1
s  ax 

dx
dt

+ y 
dy
dt
b

 2s 
ds
dt

= 2x 
dx
dt

+ 2y 
dy
dt

s = 2x2
+ y2

s2
= x2

+ y2

dy>dt

x = 0.8 mi, y = 0.6 mi, dy
dt

= -60 mph, ds
dt

= 20 mph.

dx>dt

 s = distance between car and cruiser at time t .

 y = position of cruiser at time t

 x = position of car at time t

x

y

0 x

y

Situation when
x � 0.8, y � 0.6

� –60
� 20

� ?dx
dt

dy
dt

ds
dt

FIGURE 3.45 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.46 The particle P
travels clockwise along the circle
(Example 4).
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196 Chapter 3: Differentiation

Setting to be the distance at time t from the point Q to the origin, we want to find
when

and

To relate the variables x and we see from Figure 3.46 that or
Differentiation of this last equation gives

Note that is negative because x is decreasing (Q is moving towards the origin).

When and Also, It
follows that

At the moment in question, the point Q is moving towards the origin at the speed of

EXAMPLE 5 A jet airliner is flying at a constant altitude of 12,000 ft above sea level as it
approaches a Pacific island. The aircraft comes within the direct line of sight of a radar station
located on the island, and the radar indicates the initial angle between sea level and its line of
sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft approaching the island
when first detected by the radar instrument if it is turning upward (counterclockwise) at the
rate of in order to keep the aircraft within its direct line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using
the positive x-axis as the horizontal distance at sea level from R to A, and the positive 
y-axis as the vertical altitude above sea level. We let t represent time and observe that

is a constant. The general situation and line-of-sight angle are depicted in
Figure 3.47. We want to find when rad and 

From Figure 3.47, we see that

or

Using miles instead of feet for our distance units, the last equation translates to

Differentiation with respect to t gives

When so Converting to radians
per hour, we find

Substitution into the equation for then gives

The negative sign appears because the distance x is decreasing, so the aircraft is approaching
the island at a speed of approximately  when first detected by the radar.380 mi>hr

dx
dt

= a-
1200
528
b s4d a2

3
b a p

180
b s3600d L -380.

dx>dt

1 hr = 3600 sec, 1 deg = p>180 rad
du
dt

=
2
3
a p

180
b s3600d rad>hr.

du>dt = 2>3 deg>seccsc2 u = 4.u = p>6, sin2 u = 1>4,

dx
dt

= -
1200
528

 csc2 u 
du
dt

.

x =

12,000
5280

 cot u.

x = 12,000 cot u.
12,000

x = tan u

du>dt = 2>3 deg>sec.u = p>6dx>dt
uy = 12,000

2>3 deg>sec

2023p L 108.8 ft>min.

dx
dt

= s -10pds2d A23 B = -2023p.

tan u = 2sec2 u - 1 = 23.sec u = 2.x = 20, cos u = 1>2
dx>dt

dx
dt

= 10 sec u tan u 
du
dt

= -10p sec u tan u.

x = 10 sec u.
x cos u = 10,u,

du
dt

= -p rad>min.x = 20 ft

dx>dt
xstd

R

12,000

A

u
x

FIGURE 3.47 Jet airliner A
traveling at constant altitude
toward radar station R
(Example 5).
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EXAMPLE 6 Figure 3.48(a) shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of a worker.
Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker is walking
rapidly away from the vertical line PW at the rate of How fast is the weight being
raised when the worker’s hand is 21 ft away from PW ?

Solution We let OM be the horizontal line of length x ft from a point O directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.48). Let h be the height
of the weight W above O, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know when given that Note that the
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time t we have the following relationships (see Figure 3.48b):

Total length of rope is 45 ft.

Angle at O is a right angle.

If we solve for in the first equation, and substitute into the second equation,
we have

(1)

Differentiating both sides with respect to t gives

and solving this last equation for we find

(2)

Since we know it remains only to find at the instant when From
Equation (1),

so that

or

Equation (2) now gives

as the rate at which the weight is being raised when  x = 21 ft.

dh
dt

=
21
29

# 6 =
126
29

L 4.3 ft>sec

25 + h = 29.s25 + hd2
= 841,

202
+ 212

= s25 + hd2

x = 21.25 + hdx>dt,

dh
dt

=
x

25 + h
 
dx
dt

.

dh>dt

2x 
dx
dt

= 2s25 + hd 
dh
dt

,

202
+ x2

= s25 + hd2.

z = 25 + h

 202
+ x2

= z2.

 20 - h + z = 45

dx>dt = 6.x = 21dh>dt

6 ft>sec.
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x

z

h

M

P

O

W
20 ft

(b)

x

M

P

O

W

5 ft

6 ft/sec

(a)

FIGURE 3.48 A worker at M
walks to the right pulling the
weight W upwards as the rope
moves through the pulley P
(Example 6).

Exercises 3.10

1. Area Suppose that the radius r and area of a circle are
differentiable functions of t. Write an equation that relates 
to .

2. Surface area Suppose that the radius r and surface area
of a sphere are differentiable functions of t. Write an

equation that relates to .

3. Assume that and Find 

4. Assume that and Find 

5. If and then what is when x = -1?dy>dtdx>dt = 3,y = x2

dx>dt.dy>dt = -2.2x + 3y = 12

dy>dt.dx>dt = 2.y = 5x

dr>dtdS>dt
S = 4pr2

dr>dt
dA>dt

A = pr2 6. If and then what is when 

7. If and then what is when 
and 

8. If and then what is when 

9. If and find when
and 

10. If and find 
when and s = 1.r = 3

dy>dtds>dt = -3,r + s2
+ y3

= 12, dr>dt = 4,

y = 12.x = 5
dL>dtdy>dt = 3,L = 2x2

+ y2, dx>dt = -1,

x = 2?dx>dtdy>dt = 1>2,x2y3
= 4>27

y = -4?
x = 3dy>dtdx>dt = -2,x2

+ y2
= 25

y = 2?dx>dtdy>dt = 5,x = y3
- y
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11. If the original 24 m edge length x of a cube decreases at the rate
of when m at what rate does the cube’s

a. surface area change?

b. volume change?

12. A cube’s surface area increases at the rate of At what rate
is the cube’s volume changing when the edge length is 

13. Volume The radius r and height h of a right circular cylinder are
related to the cylinder’s volume V by the formula 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

14. Volume The radius r and height h of a right circular cone are re-
lated to the cone’s volume V by the equation 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

15. Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation Suppose that V is in-
creasing at the rate of 1 volt sec while I is decreasing at the rate
of 1 3 amp sec. Let t denote time in seconds.

a. What is the value of ?

b. What is the value of ?

c. What equation relates to and ?

d. Find the rate at which R is changing when volts and
amp. Is R increasing, or decreasing?

16. Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current I (amperes)
by the equation 

a. How are , , and related if none of P, R, and I
are constant?

b. How is related to if P is constant?

17. Distance Let x and y be differentiable functions of t and let
be the distance between the points (x, 0) and (0, y)

in the xy-plane.

a. How is related to if y is constant?

b. How is related to and if neither x nor y is
constant?

c. How is related to if s is constant?

18. Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is 

2x2
+ y2

+ z2 .

s =

dy>dtdx>dt

dy>dtdx>dtds>dt

dx>dtds>dt

s = 2x2
+ y2

dI>dtdR>dt

dI>dtdR>dtdP>dt

P = RI2 .

I = 2
V = 12

dI>dtdV>dtdR>dt

dI>dt

dV>dt

V

R

I

� �

>> > V = IR .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = s1>3dpr2h .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = pr2h .

x = 3 in?
72 in2>sec.

x = 35 m>min,
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a. Assuming that x, y, and z are differentiable functions of t, how
is related to , , and ?

b. How is related to and if x is constant?

c. How are , , and related if s is constant?

19. Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure is

a. How is related to if a and b are constant?

b. How is related to and if only b is constant?

c. How is related to and if none of a,
b, and are constant?

20. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm min. At what rate
is the plate’s area increasing when the radius is 50 cm?

21. Changing dimensions in a rectangle The length l of a rectangle
is decreasing at the rate of 2 cm sec while the width w is increasing
at the rate of 2 cm sec. When and find the
rates of change of (a) the area, (b) the perimeter, and (c) the
lengths of the diagonals of the rectangle. Which of these quantities
are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

Find the rates at which the box’s (a) volume, (b) surface area, and

(c) diagonal length are changing at the 
instant when and 

23. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of 5 ft sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle between the ladder and the ground
changing then?

24. Commercial air traffic Two commercial airplanes are flying at
an altitude of 40,000 ft along straight-line courses that intersect at
right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots. At
what rate is the distance between the planes changing when A is 5

x
0

y

13-ft ladder

y(t)

x(t)

�

u

>

z = 2.x = 4, y = 3,
s = 2x2

+ y2
+ z2

dx
dt

= 1 m>sec, 
dy

dt
= -2 m>sec, dz

dt
= 1 m>sec .

w = 5 cm,l = 12 cm> >

>
u

db>dtdu>dt, da>dt ,dA>dt

da>dtdu>dtdA>dt

du>dtdA>dt

A =

1
2

 ab sin u .

u

dz>dtdy>dtdx>dt

dz>dtdy>dtds>dt

dz>dtdy>dtdx>dtds>dt
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nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft sec. How
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one thousandth of an
inch every 3 min. How rapidly is the cylinder volume increasing
when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate
of onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of
from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the rate
of from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius R is when the water is y meters deep.

a. At what rate is the water level changing when the water is 8 m
deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

30. A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle changing at this instant (see the
figure)?

u

>

100p ft3>min.

r

y

13

Center of sphere

Water level

V = sp>3dy2s3R - yd

6 m3>min

50 m3>min

10 m3>min

>
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33. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft sec passes under it. How fast is the distance s(t)
between the bicycle and balloon increasing 3 sec later?

34. Making coffee Coffee is draining from a conical filter into 
a cylindrical coffeepot at the rate of 

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6"

6"

6"

How fast
is this
level rising?

How fast
is this
level falling?

10 in3>min.

y

x
0

y(t)

s(t)

x(t)

>
>

�

Ring at edge
of dock

6'
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35. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L min. At rest it is
likely to be a bit under 6 L min. If you are a trained marathon run-
ner running a marathon, your cardiac output can be as high as
30 L min.

Your cardiac output can be calculated with the formula

where Q is the number of milliliters of you exhale in a
minute and D is the difference between the concentration
(ml L) in the blood pumped to the lungs and the concentra-
tion in the blood returning from the lungs. With 
and 

fairly close to the 6 L min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when and we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

36. Moving along a parabola A particle moves along the parabola
in the first quadrant in such a way that its x-coordinate

(measured in meters) increases at a steady 10 m sec. How fast is
the angle of inclination of the line joining the particle to the ori-
gin changing when 

37. Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time t with 

How fast is the particle’s
distance from the origin changing as it passes through the point
(5, 12)?

38. Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at
180 mi h (264 ft sec), as shown in the accompanying figure.
How fast will your camera angle be changing when the car is
right in front of you? A half second later?

39. A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft

Car

Camera

132'

�

u

>>

-1 m>sec and dy>dt = -5 m>sec .
dx>dt =

x = 3 m?
u

>y = x2

D = 41,Q = 233

>
y =

233 ml>min

41 ml>L L 5.68 L>min,

D = 97 - 56 = 41 ml>L,
Q = 233 ml>min

CO2> CO2

CO2

y =

Q

D
,

>
> >
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away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground sec later? 
(Assume the ball falls a distance )

40. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle the
sun makes with the ground is increasing at the rate of 0.27° min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

41. A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

42. Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi h. The pilot sees an oncom-
ing car and with radar determines that at the instant the line-of-
sight distance from plane to car is 5 mi, the line-of-sight distance
is decreasing at the rate of 160 mi h. Find the car’s speed along
the highway.

43. Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles and (see the figure) changing at
that time?

u2u1

>

>

>

10 in3>min,

80'

�

>u

x

Light

30

Shadow

0

50-ft
pole

Ball at time t � 0

1/2 sec later

x(t)

NOT TO SCALE

s = 16t2 ft in t sec .
1>2
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c. The player slides into second base at the rate of 15 ft sec. At
what rates are angles and changing as the player touches
base?

90'

Second base

Player

Home

30' First
base

Third
base

�1

�2

u2u1

> 44. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when

and OB = 3 nautical miles?OA = 5

3.11 Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to esti-
mate error in measurement, which then provides for a precise proof of the Chain Rule
(Section 3.6).

Linearization

As you can see in Figure 3.49,  the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line

y = x2

dy>dx

4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.49 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.
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202 Chapter 3: Differentiation

give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. The phenomenon is true not just for parabolas; every differentiable curve behaves
locally like its tangent line.

In general, the tangent to at a point where ƒ is differentiable
(Figure 3.50), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.51 The graph of and its
linearizations at and Figure 3.52 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.52 Magnified view of the
window in Figure 3.51.

x

y

0 a

Slope � f '(a)

y � f (x)

y � L(x)(a,  f (a))

FIGURE 3.50 The tangent to the curve

Lsxd = ƒsad + ƒ¿sadsx - ad .
y = ƒsxd at x = a is the line

Solution Since

we have and giving the linearization

See Figure 3.52.

The following table shows how accurate the approximation 
from Example 1 is for some values of x near 0. As we move away from zero, we lose 

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 sx - 0d = 1 +
x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 s1 + xd-1>2 ,

DEFINITIONS If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

EXAMPLE 1 Find the linearization of (Figure 3.51).ƒsxd = 21 + x at x = 0
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3.11 Linearization and Differentials 203

accuracy. For example, for the linearization gives 2 as the approximation for 
which is not even accurate to one decimal place.

23,x = 2,

Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +
0.005

2
= 1.00250

610-321.05 L 1 +
0.05

2
 = 1.025

610-221.2 L 1 +
0.2
2

   = 1.10

ƒ True value � approximation ƒ

Do not be misled by the preceding calculations into thinking that whatever we do
with a linearization is better done with a calculator. In practice, we would never use a
linearization to find a particular square root. The utility of a linearization is its ability to
replace a complicated formula by a simpler one over an entire interval of values. If we
have to work with for x close to 0 and can tolerate the small amount of error in-
volved, we can work with instead. Of course, we then need to know how much
error there is. We further examine the estimation of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.51
suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Find the linearization of at (Figure 3.53).

Solution Since and 
we find the linearization at to be

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

a = p>2-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cos sp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +
3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L
5
4

+
3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 (x - 3) =
5
4

+
x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 s1 + xd-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d
21 + x

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.53 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x
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An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that when their ratio exists, it is equal to the derivative.

dy>dx

 
1

21 - x2
= s1 - x2d-1>2

L 1 + a- 1
2
b s -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 s5x4d = 1 +
5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd

204 Chapter 3: Differentiation

replace x by -x2 .

k = -1>2;

DEFINITION Let be a differentiable function. The differential dx is
an independent variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then these values determine the numerical value of dy.

EXAMPLE 4

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.54. Let and set
The corresponding change in is

The corresponding change in the tangent line L is

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .

(++++++)++++++*

L(a � dx)
()*

L(a)
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That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if 
then

Every differentiation formula like

has a corresponding differential form like

EXAMPLE 5 We can use the Chain Rule and other differentiation rules to find differ-
entials of functions.

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to esti-
mate how much this value will change if we move to a nearby point If dx � is
small, then we can see from Figure 3.54 that is approximately equal to the differential
dy. Since

¢x = dxƒsa + dxd = ƒsad + ¢y ,

¢y
¢xa + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=
du
dx

+
dy
dx
 or dssin ud

dx
= cos u  

du
dx

dƒ = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

dƒ = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

3.11 Linearization and Differentials 205

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

(a � dx, f (a � dx))

FIGURE 3.54 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L
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the differential approximation gives

when Thus the approximation can be used to estimate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 The radius r of a circle increases from to 10.1 m (Figure 3.55).
Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged cir-
cle and compare your estimate to the true area found by direct calculation.

Solution Since the estimated increase is

Thus, since we have

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate 
We measure the approximation error by subtracting dƒ from 

As the difference quotient

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢ƒ:
¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

Asr + ¢rd L Asrd + dA,

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

206 Chapter 3: Differentiation

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.55 When dr is
small compared with a, the
differential gives the estimate

(Example 6).
Asa + drd = pa2

+ dA
dA

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part .P
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approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know the exact size of the error, it is the product of two small
quantities that both approach zero as For many common functions, whenever 
is small, the error is still smaller.

¢x¢x : 0.
P
#
¢x

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad
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()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Proof of the Chain Rule

Equation (1) enables us to prove the Chain Rule correctly. Our goal is to show that if ƒ(u)
is a differentiable function of u and is a differentiable function of x, then the
composite is a differentiable function of x. Since a function is differentiable
if and only if it has a derivative at each point in its domain, we must show that whenever g
is differentiable at and ƒ is differentiable at then the composite is differentiable at

and the derivative of the composite satisfies the equation

Let be an increment in x and let and be the corresponding increments in 
u and y. Applying Equation (1) we have

where Similarly,

where as Notice also that Combining the equations
for and gives

so

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0

y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2
()*

error

()*

dA
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Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 You want to calculate the depth of a well from the equation by
timing how long it takes a heavy stone you drop to splash into the water below. How sensi-
tive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

For a fixed error in the time measurement, the error in using ds to estimate the depth is
larger when the time it takes until the stone splashes into the water is longer.

EXAMPLE 8 In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) 
discovered the formula we use today to predict how much the radius of a partially clogged
artery decreases the normal volume of flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How does a 10%
decrease in r affect V? (See Figure 3.56.)

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% decrease in r will 
result in a 40% decrease in the flow.

dV
V

=
4kr3 dr

kr4 = 4 
dr
r .

dV =
dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

ds = 32t dt

s = 16t2

dƒ

ƒsad
* 100

¢ƒ

ƒsad
* 100

dƒ

ƒsad
¢ƒ

ƒsad

dƒ = ƒ¿sad dx¢ƒ = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1
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EXAMPLE 9 Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity .

Solution When is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,
is the kinetic energy (KE) of the body, and if we rewrite Equation (3) in the

form

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

y.

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m0

21 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

1

21 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2y

y¢m

1

21 - x2
L 1 +

1
2

 x2

>m0

m =

m0

21 - y2>c2
,

F =
d
dt

 smyd = m 
dy
dt

= ma ,
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Blockage

Opaque
dye

Inflatable
balloon on
    catheter

Angiography Angioplasty 

FIGURE 3.56 To unblock a clogged artery,
an opaque dye is injected into it to make the
inside visible under X-rays. Then a balloon-
tipped catheter is inflated inside the artery to
widen it at the blockage site.
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we see that

or

So the change in kinetic energy in going from velocity 0 to velocity is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
y¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,
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Exercises 3.11

Finding Linearizations
In Exercises 1–5, find the linearization L(x) of ƒ(x) at 

1.

2.

3.

4.

5.

6. Common linear approximations at Find the lineariza-
tions of the following functions at 

(a) sin x (b) cos x (c) tan x (d) (e)

Linearization for Approximation
In Exercises 7–14, find a linearization at a suitably chosen integer near

at which the given function and its derivative are easy to evaluate.

7.

8.

9.

10.

11.

12.

13.

14.

15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b. 23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3

B
a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

1

21 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

ƒ(x) = sin-1 x, x0 = p>12

ƒ(x) = e-x, x0 = -0.1

ƒsxd =

x
x + 1

, x0 = 1.3

ƒsxd = 23 x, x0 = 8.5

ƒsxd = 1 + x, x0 = 8.1

ƒsxd = 2x2
+ 3x - 3, x0 = -0.9

ƒsxd = x-1, x0 = 0.9

ƒsxd = x2
+ 2x, x0 = 0.1

x0

ln (1 + x)ex

x = 0.
x = 0

ƒ(x) = tan x, a = p

ƒsxd = 23 x, a = -8

ƒsxd = x +

1
x  , a = 1

ƒsxd = 2x2
+ 9, a = -4

ƒsxd = x3
- 2x + 3, a = 2

x = a .
18. Find the linearization of How

is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–38, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Approximation Error
In Exercises 39–44, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error 

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0

ƒ ¢ƒ - dƒ ƒ .

dƒ = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = etan-1 2x2
+ 1y = sec-1 (e-x)

y = cot-1 a 1
x2 b + cos-1 2xy = tan-1 (ex2

)

y = ln a x + 1

2x - 1
by = ln (1 + x2)

y = xe-xy = e2x

y = 2 cot a 1
1x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd
xy2

- 4x3>2
- y = 02y3>2

+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.
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39.

40.

41.

42.

43.

44.

Differential Estimates of Change
In Exercises 45–50, write a differential formula that estimates the
given change in volume or surface area.

45. The change in the volume of a sphere when the 
radius changes from to 

46. The change in the volume of a cube when the edge
lengths change from to 

47. The change in the surface area of a cube when the edge
lengths change from to 

48. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

49. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

50. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the 
radius does not change

Applications
51. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

52. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s 
diameter increase? The tree’s cross-section area?

53. Estimating volume Estimate the volume of material in a cylindri-
cal shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

54. Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

55. Tolerance The radius r of a circle is measured with an error of
at most 2%. What is the maximum corresponding percentage 
error in computing the circle’s

a. circumference? b. area?

56. Tolerance The edge x of a cube is measured with an error of at
most 0.5%. What is the maximum corresponding percentage error
in computing the cube’s

a. surface area? b. volume?

6 in.
0.5 in.

30 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr 3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1
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57. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of h, expressed as a percentage of h.

58. Tolerance

a. About how accurately must the interior diameter of a 10-m-
high cylindrical storage tank be measured to calculate the
tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

59. The diameter of a sphere is measured as and the vol-
ume is calculated from this measurement. Estimate the percent-
age error in the volume calculation.

60. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

61. The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,

(“delta”) is the weight density of the blood, is the average ve-
locity of the exiting blood, and g is the acceleration of gravity.

When and remain constant, W becomes a function
of g, and the equation takes the simplified form

As a member of NASA’s medical team, you want to know how sen-
sitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg on
the moon, where with the effect the same change
dg would have on Earth, where Use the simplified
equation above to find the ratio of to 

62. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in g.
By keeping track of we can estimate the variation in g from the
equation that relates T, g, and L.

a. With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where to a new location. This increases the
period by Find dg and estimate the value of
g at the new location.

63. The linearization is the best linear approximation Suppose
that is differentiable at and that 

is a linear function in which m and c are constants.msx - ad + c
g sxd =x = ay = ƒsxd

dT = 0.001 sec .
g = 980 cm>sec2

T = 2psL>gd1>2¢T ,

dWEarth .dWmoon

g = 32 ft>sec2 .
g = 5.2 ft>sec2 ,

W = a +

b
g  sa, b constantd .

yP, V, d ,

yd

W = PV +

Vdy2

2g
,

100 ; 1 cm

V = ph3 .
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If the error were small enough near 
we might think of using g as a linear approximation of ƒ instead
of the linearization Show that if we
impose on g the conditions

1. The approximation error is zero at 

2.

then Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at

and negligible in comparison with 

64. Quadratic approximations

a. Let be a quadratic 
approximation to ƒ(x) at with the properties:

i)

ii)

iii)

Determine the coefficients and 

b. Find the quadratic approximation to at

c. Graph and its quadratic approximation at
Then zoom in on the two graphs at the point (0, 1).

Comment on what you see.

d. Find the quadratic approximation to at 
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to at
Graph h and its quadratic approximation together.

Comment on what you see.
x = 0.

hsxd = 21 + x

x = 1.gsxd = 1>x
x = 0.

ƒsxd = 1>s1 - xd
x = 0.

ƒsxd = 1>s1 - xd
b2 .b0 , b1 ,

Q–sad = ƒ–sad.
Q¿sad = ƒ¿sad
Qsad = ƒsad

x = a
Qsxd = b0 + b1sx - ad + b2sx - ad2

x
a

y � f (x)

(a, f (a))

The linearization, L(x):
y � f (a) � f '(a)(x � a)

Some other linear
approximation, g(x):
y � m(x � a) � c

x - a .x = a

g sxd = ƒsad + ƒ¿sadsx - ad .

lim
x:a

  
Esxd

x - a = 0

x = a .Esad = 0

Lsxd = ƒsad + ƒ¿sadsx - ad .

x = a ,Esxd = ƒsxd - g sxd
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f. What are the linearizations of ƒ, g, and h at the respective
points in parts (b), (d), and (e)?

65. The linearization of

a. Find the linearization of at Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
and 

66. The linearization of 

a. Find the linearization of at Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
and 

COMPUTER EXPLORATIONS
In Exercises 67–72, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified in-
terval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error and find its 
maximum value.

e. From your graph in part (d), estimate as large a as you
can, satisfying

for Then check graphically to see if
your holds true.

67.

68.

69.

70.

71.

72. ƒ(x) = 2x sin-1 x, [0, 1], a =

1
2

ƒ(x) = x2x, [0, 2], a = 1

ƒsxd = 1x - sin x, [0, 2p], a = 2

ƒsxd = x2>3sx - 2d, [-2, 3], a = 2

ƒsxd =

x - 1
4x2

+ 1
, c- 3

4, 1 d , a =

1
2

ƒsxd = x3
+ x2

- 2x, [-1, 2], a = 1

d-estimate
P = 0.5, 0.1, and 0.01.

ƒ x - a ƒ 6 d Q ƒ ƒsxd - Lsxd ƒ 6 P

d 7 0

ƒ ƒsxd - Lsxd ƒ  over I

2 … x … 4.0 … x … 8

x = 3.ƒsxd = log3 x

log3 x

-1 … x … 1.-3 … x … 3

x = 0.ƒsxd = 2x

2x

The error is negligible when compared
with x - a .

T

T

T

T

T

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents,
and rates of change?

3. How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. What rules do you know for calculating derivatives? Give some
examples.
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9. Explain how the three formulas

a.

b.

c.

enable us to differentiate any polynomial.

10. What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?

11. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

12. What is the derivative of the exponential function ? How does the
domain of the derivative compare with the domain of the function?

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits and 
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

limh:0 sscos h - 1d>hdlimh:0 sssin hd>hd

e x

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

d
dx

 scud = c 
du
dx

d
dx

 sxnd = nxn - 1
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21. If u is a differentiable function of x, how do you find if
n is an integer? If n is a real number? Give examples.

22. What is implicit differentiation? When do you need it? Give 
examples.

23. What is the derivative of the natural logarithm function ln x? How
does the domain of the derivative compare with the domain of the
function?

24. What is the derivative of the exponential function and
? What is the geometric significance of the limit of

as ? What is the limit when a is the number e?

25. What is the derivative of Are there any restrictions on a?

26. What is logarithmic differentiation? Give an example.

27. How can you write any real power of x as a power of e? Are there
any restrictions on x? How does this lead to the Power Rule for
differentiating arbitrary real powers?

28. What is one way of expressing the special number e as a limit?
What is an approximate numerical value of e correct to 7 decimal
places?

29. What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

30. How do related rates problems arise? Give examples.

31. Outline a strategy for solving related rates problems. Illustrate
with an example.

32. What is the linearization L(x) of a function ƒ(x) at a point 
What is required of ƒ at a for the linearization to exist? How are
linearizations used? Give examples.

33. If x moves from a to a nearby value how do you estimate
the corresponding change in the value of a differentiable function
ƒ(x)? How do you estimate the relative change? The percentage
change? Give an example.

a + dx ,

x = a?

loga x ?

h : 0(ah
- 1)>ha Z 1

ax, a 7 0

sd>dxdsund
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Derivatives of Functions
Find the derivatives of the functions in Exercises 1–64.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. s = csc5 s1 - t + 3t2ds = ssec t + tan td5

s = cot3 a2t bs = cos4 s1 - 2td

y =

1
sin2 x

-

2
sin x

y = 2 tan2 x - sec2 x

s =

1
1t - 1

s =

1t

1 + 1t

y = a-1 -

csc u

2
-

u2

4
b2

y = su2
+ sec u + 1d3

y = s2x - 5ds4 - xd-1y = sx + 1d2sx2
+ 2xd

y = x7
+ 27x -

1
p + 1

y = x3
- 3sx2

+ p2d

y = 3 - 0.7x3
+ 0.3x7y = x5

- 0.125x2
+ 0.25x

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. y = 4x2x + 1xy = B
x2

+ x

x2

y = a 21x

21x + 1
b2

y = a 1x
1 + x

b2

s =

-1
15s15t - 1d3s = a 4t

t + 1
b-2

y = x-2 sin2 sx3dy = x2 sin2 s2x2d
y = x2 cot 5xy = 5 cot x2

y = 1x csc sx + 1d3y = x-1>2 sec s2xd2

y = 21x sin 1xy =

1
2

 x2 csc 
2
x

r = sin Au + 2u + 1 Br = sin 22u

r = 2u2cos ur = 22u sin u
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35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Implicit Differentiation
In Exercises 65–78, find by implicit differentiation.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

In Exercises 79 and 80, find .

79. 80.

In Exercises 81 and 82, find .

81. 82.

83. Find by implicit differentiation:

a. b.

84. a. By differentiating implicitly, show that

b. Then show that d2y>dx2
= -1>y3 .

dy>dx = x>y .
x2

- y2
= 1

y2
= 1 -

2
xx3

+ y3
= 1

d2y>dx2

2rs - r - s + s2
= -3r cos 2s + sin2 s = p

dr>ds

q = s5p2
+ 2pd-3>2p3

+ 4pq - 3q2
= 2

dp>dq

xy
= 22ye tan-1 x

= 2

x sin-1 y = 1 + x2ln (x>y) = 1

y2
= 2e-1>xex + 2y

= 1

y2
= A

1 + x
1 - x

y2
=

x
x + 1

x2y2
= 11xy = 1

5x4>5
+ 10y6>5

= 15x3
+ 4xy - 3y4>3

= 2x

x2
+ xy + y2

- 5x = 2xy + 2x + 3y = 1

dy>dx

y = s1 + x2detan-1 x

y = csc-1 ssec ud, 0 6 u 6 p>2
y = 22x - 1  sec-1 1x

y = z sec-1 z - 2z2
- 1, z 7 1

y = s1 + t2d cot-1 2t

y = t tan-1 t -

1
2

 ln t

y = z cos-1 z - 21 - z2

y = ln cos-1 x

y = sin-1 a 1

2y b , y 7 1

y = sin-121 - u2, 0 6 u 6 1

y = 2sln xdx>2y = sx + 2dx + 2

y = 22x-22y = 5x3.6

y = 92ty = 8-t

y = log5 s3x - 7dy = log2 sx2>2d

y = ln ssec2 udy = ln ssin2 ud

y = x2e-2>xy =

1
4

 xe4x
-

1
16

 e4x

y = 22e22xy = 10e-x>5
y = s3 + cos3 3xd-1>3y =

3

s5x2
+ sin 2xd3>2

y = 20s3x - 4d1>4s3x - 4d-1>5y = s2x + 1d22x + 1

r = a1 + sin u

1 - cos u
b2

r = a sin u

cos u - 1
b2
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Numerical Values of Derivatives
85. Suppose that functions ƒ(x) and g(x) and their first derivatives

have the following values at and 

x ƒ(x) g (x) ƒ�(x) g�(x)

0 1 1
1 3 5

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

g.

86. Suppose that the function ƒ(x) and its first derivative have the 
following values at and 

x ƒ(x) ƒ�(x)

0 9
1

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

87. Find the value of at if and 

88. Find the value of at if and 

89. Find the value of at if and

90. Find the value of at if and

91. If find the value of at the point (0, 1).

92. If find at the point (8, 8).

Applying the Derivative Definition
In Exercises 93 and 94, find the derivative using the definition.

93.

94.

95. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

x = 0?

x = 0?

ƒsxd = e x2, -1 … x 6 0

-x2,   0 … x … 1.

g sxd = 2x2
+ 1

ƒstd =

1
2t + 1

d2y>dx2x1>3
+ y1>3

= 4,

d2y>dx2y3
+ y = 2 cos x ,

u2t + u = 1.
r = su2

+ 7d1>3t = 0dr>dt

r = 3 sin ss + p>6d .
w = sin Ae1r Bs = 0dw>ds

su2
+ 2ud1>3 .

t =s = t2
+ 5tu = 2ds>du

x = t2
+ p .y = 3 sin 2xt = 0dy>dt

10 sin apx
2
b  ƒ 2sxd, x = 1

ƒsxd
2 + cos x

 , x = 0

ƒs1 - 5 tan xd, x = 0ƒs1xd, x = 1

2ƒsxd, x = 01x ƒsxd, x = 1

1>5-3
-2

x = 1.x = 0

ƒsx + g sxdd, x = 0

sx + ƒsxdd3>2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
, x = 1

ƒsxdg2sxd, x = 06ƒsxd - g sxd, x = 1

-41>2 1>2-3

x = 1.x = 0
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96. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
97. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
98. For what value or values of the constant m, if any, is

a. continuous at 

b. differentiable at 

Give reasons for your answers.

Slopes, Tangents, and Normals
99. Tangents with specified slope Are there any points on the

curve where the slope is If so,
find them.

100. Tangents with specified slope Are there any points on the
curve where the slope is 2? If so, find them.

101. Horizontal tangents Find the points on the curve 
where the tangent is parallel to the 

x-axis.

102. Tangent intercepts Find the x- and y-intercepts of the line that
is tangent to the curve at the point 

103. Tangents perpendicular or parallel to lines Find the points
on the curve where the tangent is

a. perpendicular to the line 

b. parallel to the line 

104. Intersecting tangents Show that the tangents to the curve
at and intersect at right angles.

105. Normals parallel to a line Find the points on the curve
where the normal is parallel to

the line Sketch the curve and normals together, la-
beling each with its equation.

106. Tangent and normal lines Find equations for the tangent and
normal to the curve at the point Sketch
the curve, tangent, and normal together, labeling each with its
equation.

107. Tangent parabola The parabola is to be tangent
to the line Find C.

108. Slope of tangent Show that the tangent to the curve at
any point meets the curve again at a point where the
slope is four times the slope at 

109. Tangent curve For what value of c is the curve 
tangent to the line through the points 

110. Normal to a circle Show that the normal line at any point of
the circle passes through the origin.x2

+ y2
= a2

s0, 3d and s5, -2d?
y = c>sx + 1d

sa, a3d .
sa, a3d

y = x3

y = x .
y = x2

+ C

sp>2, 1d .y = 1 + cos x

y = -x>2.
y = tan x, -p>2 6 x 6 p>2,

x = -px = py = sp sin xd>x
y = 22 - 12x .

y = 1 - sx>24d .

y = 2x3
- 3x2

- 12x + 20

s -2, -8d .y = x3

2x3
- 3x2

- 12x + 20
y =

y = x - e-x

-3>2?y = sx>2d + 1>s2x - 4d

x = 0?

x = 0?

ƒsxd = e sin 2x, x … 0

mx, x 7 0

x = 1?

x = 1?

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2.

x = 0?

x = 0?

ƒsxd = e x, -1 … x 6 0

tan x,   0 … x … p>4.
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In Exercises 111–116, find equations for the lines that are tangent and
normal to the curve at the given point.

111.

112.

113.

114.

115.

116.

117. Find the slope of the curve at the points (1, 1)
and 

118. The graph shown suggests that the curve 
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

Analyzing Graphs
Each of the figures in Exercises 119 and 120 shows two graphs, the
graph of a function together with the graph of its derivative

Which graph is which? How do you know?

119. 120.

121. Use the following information to graph the function 
for 

i) The graph of ƒ is made of line segments joined end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ, where defined, agrees with the step
function shown here.

x

y

1–1 2

1

–1
3 4 5 6

–2

y � f '(x)

s -1, 2d .

-1 … x … 6.
y = ƒsxd

ƒ¿sxd .
y = ƒsxd

x

y

0

–1

1
y � sin (x � sin x)

� 2�–2� –�

y = sin sx - sin xd
s1, -1d .

x3y3
+ y2

= x + y

x3>2
+ 2y3>2

= 17, s1, 4d
x + 1xy = 6, s4, 1d
s y - xd2

= 2x + 4, s6, 2d
xy + 2x - 5y = 2, s3, 2d
ex

+ y2
= 2, s0, 1d

x2
+ 2y2

= 9, s1, 2d

x

y

0 1–1

1

–1

–2

2A

B

x

y

0 1

1

A

B

2

2

3

4
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122. Repeat Exercise 121, supposing that the graph starts at 
instead of 

Exercises 123 and 124 are about the accompanying graphs. The
graphs in part (a) show the numbers of rabbits and foxes in a small
arctic population. They are plotted as functions of time for 200 days.
The number of rabbits increases at first, as the rabbits reproduce. But
the foxes prey on rabbits and, as the number of foxes increases, the
rabbit population levels off and then drops. Part (b) shows the graph of
the derivative of the rabbit population, made by plotting slopes.

123. a. What is the value of the derivative of the rabbit population
when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population when its derivative is
largest? Smallest (negative value)?

124. In what units should the slopes of the rabbit and fox population
curves be measured?

s -1, 2d .
s -1, 0d
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Show how to extend the functions in Exercises 133 and 134 to be con-
tinuous at the origin.

133. 134.

Logarithmic Differentiation
In Exercises 135–140, use logarithmic differentiation to find the 
derivative of y with respect to the appropriate variable.

135. 136.

137.

138.

139. 140.

Related Rates
141. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the
equation 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

d. How is related to if S is constant?

142. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

143. Circle’s changing area The radius of a circle is changing at
the rate of At what rate is the circle’s area chang-
ing when 

144. Cube’s changing edges The volume of a cube is increasing at
the rate of at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

145. Resistors connected in parallel If two resistors of and 
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If is decreasing at the rate of 1 ohm sec and is increasing
at the rate of 0.5 ohm sec, at what rate is R changing when

and R2 = 50 ohms?R1 = 75 ohms
> R2>R1

�
R

�
R2R1

1
R

=

1
R1

+

1
R2

.

R2R1

1200 cm3>min

r = 10 m?
-2>p m>sec.

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = pr2r2
+ h2 .

dh>dtdr>dt

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = 2pr2
+ 2prh .

y = sln xd1>sln xdy = ssin ud2u

y =

2u2u

2u2
+ 1

y = ast + 1dst - 1d
st - 2dst + 3d

b5

, t 7 2

y =
10

A
3x + 4
2x - 4

y =

2sx2
+ 1d

2cos 2x

ƒsxd =

tan stan xd
sin ssin xd

g sxd =

tan stan xd
tan x

(20, 1700)

0 50 100 150 200

1000

2000

(a)

(20, 40)

0 50 100 150 200

50

–50

–100

Derivative of the rabbit population

0

(b)

Number
of rabbits

Initial no. rabbits � 1000
Initial no. foxes � 40

Time (days)

Number
of foxes

�100

Time (days)

Trigonometric Limits
Find the limits in Exercises 125–132.

125. 126.

127. 128.

129.

130.

131. 132. lim
u:0

 
1 - cos u

u2lim
x:0

  
x sin x

2 - 2 cos x

lim
u:0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

lim
u: sp>2d-

 
4 tan2 u + tan u + 1

tan2 u + 5

lim
u:0

 
sin ssin ud
u

lim
r:0

  
sin r

tan 2r

lim
x:0

 
3x - tan 7x

2x
lim
x:0

  
sin x

2x2
- x
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146. Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation If R is increasing at
3 ohms sec and X is decreasing at 2 ohms sec, at what rate is Z
changing when and 

147. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t
with and How fast is the
particle moving away from the origin as it passes through the
point 

148. Motion of a particle A particle moves along the curve 
in the first quadrant in such a way that its distance from the origin in-
creases at the rate of 11 units per second. Find when 

149. Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 

a. What is the relation between the variables h and r in the figure?

b. How fast is the water level dropping when 

150. Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft sec
(a touch over 4 mph), use the equation to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

151. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, 

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad sec?>

du>dt = -0.6 rad/sec.

1.2'

s = ru
>

r

h

Exit rate: 5 ft3/min

10'

4'

h = 6 ft?

5 ft3>min.

x = 3.dx>dt

y = x3>2
s3, -4d?

dy>dt = 5 m>sec .dx>dt = 10 m>sec

X = 20 ohms?R = 10 ohms
>> Z = 2R2

+ X 2 .
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152. Points moving on coordinate axes Points A and B move along
the x- and y-axes, respectively, in such a way that the distance r
(meters) along the perpendicular from the origin to the line AB
remains constant. How fast is OA changing, and is it increasing,
or decreasing, when and B is moving toward O at the
rate of 0.3r m sec?

Linearization
153. Find the linearizations of

a. b.

Graph the curves and linearizations together.

154. We can obtain a useful linear approximation of the function
by combining the approximations

to get

Show that this result is the standard linear approximation of
at 

155. Find the linearization of 

156. Find the linearization of 

Differential Estimates of Change
157. Surface area of a cone Write a formula that estimates the

change that occurs in the lateral surface area of a right circular
cone when the height changes from and the radius
does not change.

158. Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with 
an error of no more than 2%?

b. Suppose that the edge is measured with the accuracy
required in part (a). About how accurately can the cube’s

(Lateral surface area)

h

r

1
3

V 5    pr2h

S 5 pr�r2 1 h2

h0 to h0 + dh

at x = 0.
ƒsxd = 2>s1 - xd + 21 + x - 3.1

ƒsxd = 21 + x + sin x - 0.5 at x = 0.

x = 0.1>s1 + tan xd

1
1 + tan x

L 1 - x .

1
1 + x

L 1 - x and tan x L x

ƒsxd = 1>s1 + tan xd at x = 0

sec x at x = -p>4.tan x at x = -p>4

> OB = 2r

1 km
A

x

�
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volume be calculated from the edge measurement? To find
out, estimate the percentage error in the volume calculation
that might result from using the edge measurement.

159. Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is then used to calculate the radius. The
radius is then used to calculate the surface area and volume 
of the sphere. Estimate the percentage errors in the calculated
values of

a. the radius.

b. the surface area.

c. the volume.

160. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and

218 Chapter 3: Differentiation

measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value and estimate the possible error in the result.

h

6 ft

20 ft
a

a = 15

Chapter 3 Additional and Advanced Exercises

1. An equation like is called an identity be-
cause it holds for all values of An equation like is
not an identity because it holds only for selected values of 
not all. If you differentiate both sides of a trigonometric iden-
tity in with respect to the resulting new equation will also
be an identity.

Differentiate the following to show that the resulting equa-
tions hold for all 

a.

b.

2. If the identity is differen-
tiated with respect to x, is the resulting equation also an identity?
Does this principle apply to the equation 
Explain.

3. a. Find values for the constants a, b, and c that will make

satisfy the conditions

b. Find values for b and c that will make

satisfy the conditions

c. For the determined values of a, b, and c, what happens for the
third and fourth derivatives of ƒ and g in each of parts 
(a) and (b)?

4. Solutions to differential equations

a. Show that and 
(a and b constants) all satisfy the equation

y– + y = 0.

y = a cos x + b sin xy = sin x, y = cos x ,

ƒs0d = g s0d and ƒ¿s0d = g¿s0d .

ƒsxd = sin sx + ad and g sxd = b sin x + c cos x

ƒs0d = g s0d, ƒ¿s0d = g¿s0d, and ƒ–s0d = g–s0d .

ƒsxd = cos x and g sxd = a + bx + cx2

x2
- 2x - 8 = 0?

sin sx + ad = sin x cos a + cos x sin a

cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

u .

u ,u

u ,
sin u = 0.5u .

sin2 u + cos2 u = 1 b. How would you modify the functions in part (a) to satisfy the
equation

Generalize this result.

5. An osculating circle Find the values of h, k, and a that make
the circle tangent to the parabola

at the point (1, 2) and that also make the second de-
rivatives have the same value on both curves there. Cir-
cles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged
( p dollars) by the law Write an expression
for the total revenue r (x) per trip received by the bus company.
What number of people per trip will make the marginal revenue

equal to zero? What is the corresponding fare? (This fare is
the one that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

7. Industrial production

a. Economists often use the expression “rate of growth” in
relative rather than absolute terms. For example, let 
be the number of people in the labor force at time t in a given
industry. (We treat this function as though it were differentiable
even though it is an integer-valued step function.)

Let be the average production per person in the
labor force at time t. The total production is then 
If the labor force is growing at the rate of 4% per year

and the production per worker is growing
at the rate of 5% per year find the rate of
growth of the total production, y.

sdy>dt = 0.05yd ,
sdu>dt = 0.04ud

y = uy .
y = g std

u = ƒstd

dr>dx

p = [3 - sx>40d]2 .

d2y>dx2
y = x2

+ 1
sx - hd2

+ s y - kd2
= a2

y– + 4y = 0?
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b. Suppose that the labor force in part (a) is decreasing at
the rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

8. Designing a gondola The designer of a 30-ft-diameter spherical
hot air balloon wants to suspend the gondola 8 ft below the bottom
of the balloon with cables tangent to the surface of the balloon, as
shown. Two of the cables are shown running from the top edges of
the gondola to their points of tangency, and 
How wide should the gondola be?

9. Pisa by parachute On August 5, 1988, Mike McCarthy of 
London jumped from the top of the Tower of Pisa. He then
opened his parachute in what he said was a world record low-level
parachute jump of 179 ft. Make a rough sketch to show the shape
of the graph of his speed during the jump. (Source: Boston Globe,
Aug. 6, 1988.)

10. Motion of a particle The position at time of a particle
moving along a coordinate line is

a. What is the particle’s starting position 

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In t sec after
firing, the paper clip is above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of in t sec. About how long will
it take the paper clip to reach its maximum height, and how
high will it go?

12. Velocities of two particles At time t sec, the positions of two
particles on a coordinate line are 
and When do the particles have the
same velocities?

s2 = - t3
+ 9t2

- 12t m.
s1 = 3t3

- 12t2
+ 18t + 5 m

s = 64t - 2.6t2 ft

s = 64t - 16t2 ft

st = 0d?

s = 10 cos st + p>4d .

t Ú 0

x
0

15 ft

Suspension
cables

Gondola
Width

8 ft

y

x2 � y2 � 225

(12, –9)(–12, –9)

NOT TO SCALE

s12, -9d .s -12, -9d
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13. Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity and position x satisfy the equation

where and are constants. Show that whenever 

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of then the average
velocity over any time interval is equal to the
instantaneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

is

a. continuous at 

b. differentiable at 

16. Does the function

have a derivative at Explain.

17. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.

20. Even differentiable functions Is there anything special about
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an
open interval containing the point that ƒ is differentiable at 
that and that g is continuous at Show that the prod-
uct ƒg is differentiable at This process shows, for example,
that although is not differentiable at the product is
differentiable at x = 0.

x ƒ x ƒx = 0,ƒ x ƒ

x0 .
x0 .ƒsx0d = 0,

x0 ,x0 ,

g sxd = eax + b, x … -1

ax3
+ x + 2b, x 7 -1

ƒsxd = eax, x 6 2

ax2
- bx + 3, x Ú 2

x = 0?

ƒsxd = L
1 - cos x

x , x Z 0

0, x = 0

x = p .

x = p .

y = e sin x, x 6 p

mx + b, x Ú p

[t1, t2]
t, x = At2

+ Bt + C ,

m 
dy
dt

= -kx .

y Z 0,x0k, y0 ,

1
2

 msy2
- y0 

2d =

1
2

 k sx0 
2

- x2d ,

y
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22. (Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at 

a. b. c.

d.

23. Is the derivative of

continuous at How about the derivative of 
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all
real values of x and y:

i)

ii) where 

Show that the derivative exists at every value of x and that

25. The generalized product rule Use mathematical induction to
prove that if is a finite product of differentiable
functions, then is differentiable on their common domain and

26. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable
functions says that

a.

b.

c.

 +
Á

+ u 
dny

dxn .

 +

nsn - 1d Á sn - k + 1d
k!

 
dn - ku

dxn - k
 
dky

dxk

dnsuyd
dxn =

dnu
dxn  y + n 

dn - 1u

dxn - 1  
dy
dx

+
Á

d3suyd
dx3 =

d3u

dx3  y + 3 
d2u

dx2  
dy
dx

+ 3 
du
dx

 
d2y

dx2 + u 
d3y

dx3 .

d2suyd
dx2 =

d2u

dx2  y + 2 
du
dx

 
dy
dx

+ u 
d2y

dx2 .

dy

dx
=

du1

dx
 u2

Á un + u1 
du2

dx
Á un +

Á
+ u1 u2

Á un - 1 
dun

dx
.

y
y = u1 u2

Á un

ƒ¿sxd = ƒsxd .
ƒ¿sxd

limx:0 g sxd = 1.ƒsxd = 1 + xg sxd ,

ƒsx + yd = ƒsxd # ƒs yd .

k sxd = xhsxd?x = 0?

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

23 x s1 - cos xdx2>3 sin xƒ x ƒ sin x

x = 0.

220 Chapter 3: Differentiation

The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by
mathematical induction, using

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula

where T is measured in seconds, 
and L, the length of the pendulum, is measured in feet. Find 
approximately

a. the length of a clock pendulum whose period is 

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).

28. The melting ice cube Assume that an ice cube retains its cubi-
cal shape as it melts. If we call its edge length s, its volume is

and its surface area is We assume that V and s are dif-
ferentiable functions of time t. We assume also that the cube’s vol-
ume decreases at a rate that is proportional to its surface area.
(This latter assumption seems reasonable enough when we think
that the melting takes place at the surface: Changing the amount
of surface changes the amount of ice exposed to melt.) In mathe-
matical terms,

The minus sign indicates that the volume is decreasing. We assume
that the proportionality factor k is constant. (It probably depends on
many things, such as the relative humidity of the surrounding air, the
air temperature, and the incidence or absence of sunlight, to name
only a few.) Assume a particular set of conditions in which the cube
lost 1 4 of its volume during the first hour, and that the volume is 
when How long will it take the ice cube to melt?t = 0.

V0>

dV
dt

= -k s6s2d, k 7 0.

6s2 .V = s3

T = 1 sec .

32.2 ft>sec2 ,g =T 2
= 4p2L>g ,

am
k
b + a m

k + 1
b =

m!
k!sm - kd!

+

m!
sk + 1d!sm - k - 1d!

.
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Chapter 3 Technology Application Projects 221

Chapter 3 Technology Application Projects

Mathematica/Maple Modules:

Convergence of Secant Slopes to the Derivative Function
You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small.
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the
derivative function.

Derivatives, Slopes, Tangent Lines, and Making Movies
Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the
function and selected tangents on the same graph.
Part IV (Plotting Many Tangents)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Motion Along a Straight Line:
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text
can be animated.

Position : Velocity : Acceleration
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4
APPLICATIONS OF

DERIVATIVES

OVERVIEW In this chapter we use derivatives to find extreme values of functions, to
determine and analyze the shapes of graphs, and to find numerically where a function
equals zero. We also introduce the idea of recovering a function from its derivative. The
key to many of these applications is the Mean Value Theorem, which paves the way to
integral calculus in Chapter 5.

4.1 Extreme Values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of
a function from its derivative. Once we can do this, we can solve a variety of  problems in
which we find the optimal (best) way to do something in a given situation (see Section
4.6). Finding maximum and minimum values is one of the most important applications of
the derivative.

Maximum and minimum values are called extreme values of the function ƒ. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval the function takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function takes on a maximum value of 1 and a
minimum value of (Figure 4.1).

Functions with the same defining rule or formula can have different extrema
(maximum or minimum values), depending on the domain. We see this in the following
example.

-1
g sxd = sin x

ƒsxd = cos x[-p>2, p>2]

DEFINITIONS Let ƒ be a function with domain D. Then ƒ has an absolute
maximum value on D at a point c if

and an absolute minimum value on D at c if

ƒsxd Ú ƒscd for all x in D .

ƒsxd … ƒscd for all x in D

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on

These values can depend
on the domain of a function.
[-p>2, p>2] .

x

y

0

1
y � sin x

y � cos x

–1

�
2

–�
2
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