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Yield Line Analysis for Slabs 
 

In a slab failing in flexure, the reinforcement will yield first in a region of high moment. When that 

occurs, this portion of the slab acts as a plastic hinge, only able to resist its hinging moment. When 

the load is increased further, the hinging region rotates plastically, and the moments due to 

additional loads are redistributed to adjacent sections, causing them to yield. The bands in which 

yielding has occurred are referred to as yield lines and divide the slab into a series of elastic plates. 

Eventually, enough yield lines exist to form a plastic mechanism in which the slab can deform 

plastically without an increase in the applied load. 

In the yield-line method for slabs, the loads required to develop a plastic mechanism are 

compared directly to the plastic resistance (nominal strength) of the member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simply supported uniformly loaded 
one-way slab. 

Fixed-end uniformly loaded one-way slab. 
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Axes of rotations: 

Yield lines form in regions of maximum moment and divide the slab into a series of elastic plate 

segments. When the yield lines have formed, all further deformations are concentrated at the yield 

lines, and the slab deflects as a series of stiff plates joined together by long hinges. The pattern of 

deformation is controlled by axes that pass along support lines, over columns, and by the yield 

lines. Because the individual plates rotate about the axes and/or yield lines, these axes and lines 

must be straight. 

 

Location of Axes of rotations and yield-lines: 

a- Axes of rotation generally lie along lines of support (the support line may be a real hinge as 

in simple supported, or it may establish the location of a yield line, which acts as a plastic 

hinge and in continuous or fixed support). 

b- Axes of rotation pass over any columns. 

c- The slab segments can be considered to rotate as right bodies in space about these axes of 

rotation. 

d- Yield lines are generally straight. 

e- A yield line passes through the intersection of the axes of rotation of adjacent slab. 

f- A yield line passes under the point load (concentrated force). 

 

 

Notations: 

 

 Axis of rotation 

 Positive yield line 

 Negative yield line 

 Simply supported 

 Fixed or continuous support 

 Free edge 

 Beam 

 Column 

 Point load (concentrated force) 

 Line load 
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Isotropic slab: The slab is reinforced identically in all directions. The resisting moment, is the same 

along any line regardless of its location and orientation.  

Orthotropic slab: The resisting moments are different in two perpendicular directions. 

  

Methods of solution: 

Once the general pattern of yielding and rotation has been established by applying the guid lines the 

location and the orientation of axes of rotation and the failure load for the slab can be established by 

either of two methods. 

- Equilibrium method. 

- Virtual-work method. 

 

Equilibrium method: 

By this method, the correct axes of rotation and the collapse load for the correspond mechanism can 

be found considering equilibrium of the slab segments. Each segment, studied as a free body, must 

be in equilibrium under the action of the applied load, the moments along the yield lines, and the 

reactions or shear force along the support line. Zero shear force and twisting moment along the 

positive yield line, and only moment per linear length (m) is considered in writing equilibrium 

equation. 

 

Example 

A square slab is simply supported along all sides and is to be isotropically reinforced. Determine the 

ultimate resisting moment (m) per linear meter required just to sustain a uniformly distributed load 

(q) in kN/m2. 

 

Solution 

Conditions of symmetry indicate the yield line pattern as shown. 

 

 

 

 

 

 

 

Consider the moment equilibrium of any one of the identical slab segments about its support: 

෍ M = 0 

 

 q × L × ୐
ଶ

 ×  ଵ
ଶ

 ×  ଵ
ଷ

 × ୐
ଶ

=  ୫ ୐
√ଶ

 × ଵ
√ଶ

 × 2  

m =
q Lଶ

24  
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Virtual-work method:  

Since the moment and load are in equilibrium when the yield line pattern has formed, an increase in 

load will cause the structure to deflect further. The external work done by the loads to cause a small 

arbitrary virtual deflection must equal the internal work done as the slab rotates at the yield line to 

accommodate this deflection. 

 

External work done by loads: 

External work (EW or We) equals to the product of external load and the distance through which the 

point of application of the load moves. If the load is distributed over a length or an area rather than 

concentrated, the work can be calculated as the product of the total load and the displacement of the 

point of application of its resultant. 

 More complicated shapes may always be subdivided into components of triangles and 

rectangles. The total external work calculated by summing the work done by loads on the individual 

point of the failure mechanism. 

 

Internal work done by resisting moment: 

The internal work (IW or Wi) done during the assigned virtual displacement is found by summing 

the products of bending moment per unit length of yield line (m), the length of the yield line, and 

the angle change at that yield line corresponding to the virtual displacement (θ). 
IW =  ෍[m ℓ θ] 

 

 For orthotropic slab (mx ≠ my) it is necessary to choose the axes of moment parallel to the 

edges if possible 

IW =  ෍ൣ(m୶ ℓ୶ θ୶) +  ൫m୷ ℓ୷ θ୷൯൧ 
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Example 

Find the ultimate moment for the slab shown using the yield line theory. The slab is one way and 

simply supported of length (L) and normally loaded by a uniformly distributed load (w). 

 

 

 

 

 

Solution 

Wୣ = w × B × α𝐿 ×  ଵ
ଶ

+  w × B × (1 −  α)𝐿 × ଵ
ଶ
 

 

Wୣ =
w B 𝐿

2  × [α + (1 −  α)] 

Wୣ =
w B 𝐿

2  

 

W୧ = ൤m × B ×  
1

αL൨ +  ൤൬m × B × 
1

(1 −  α)L൰൨ 

 

W୧ = m B ൤
1

αL +  
1

(1 −  α)L൨ 

 
Wୣ = W୧ 

 
w B 𝐿

2 = m B ൤
1

αL +  
1

(1 −  α)L൨ 

 

w =
2 m
Lଶ ൤

1
α + 

1
(1 −  α)൨ 

 

to find the value of α, drive w with respect to α and equate the result to zero 

 
d w
d α =

2 m
Lଶ ൤

−1
αଶ + 

1
(1 −  α)ଶ൨ =  0 

 

   α = 0.5 

 

∴  w =
2 m
Lଶ ൤

1
0.5 + 

1
(1 −  0.5)൨            →         m =  

w Lଶ

8  

 

 

 

αL (1 – α)L 

1 1
𝛼𝐿 

1
(1 − 𝛼)𝐿 
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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in figure under a uniformly distributed load (w). 

 

 

 

Solution 

3

w4
2

3

1

2

1
0.20.2wEW 






   

 

m22
2

1
2mIW 






   

 

w667.0m
3

w2
m

m2
3

w4

IWEW









 

 

 

 

 

 

Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in figure under a consentrated force (P) on the free corner. 

 

Solution 

P1PEW   

 

m22
2

1
2mIW 






   

P5.0m
2

P
m

m2P

IWEW







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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete         

two-way slab shown in figure under the load (P) (all dimensions are in mm).   

 

 

Solution 

Wୣ = P × 1 = P 

 

 

 

 

 

 

 

 

 

W୧ = ൤m × 3 ×  
1
2൨ + ൤൬m × 2 ×  

1
1.5൰ + ൬m × 3 ×  

1
2൰൨ 

 

W୧ = ൤
3 m

2 ൨ +  ൤൬
4 m

3 ൰ + ൬
3 m

2 ൰൨ 

 

W୧ =
26 m

6  

W୧ =
13 m

3  

W୧ = 4.333 m 
 

 

W୧ = Wୣ  

 
13 m

3 = P 

 

m =
3 P
13  

 

m = 0.231 P 
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Example 

The circular slab of radius r supported by four columns, as shown in figure, is to be isotropically 

reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a 

concentrated factored load of P kN applied at the center of the slab. 

 

Solution 

 

Wୣ = P × 1 = P 

 

W୧ = ൬m × 
r

√2
 × 2 × 

1
r൰  × 4 = √2 m 

 

W୧ = Wୣ  

 

√2 m = P 

 

m =
P

√2
 

 

 

 

Example 

The circular slab of radius 2 m supported by three columns, as shown in figure, is to be 

isotropically reinforced. Find the ultimate resisting moment per linear meter (m) required just to 

sustain a uniformly distributed load (q) equals 16 kN/m2. 

 

Solution 

Wୣ =  
 

 

 

W୧ = 

 

 

 

 

 

 

 

 

 r √2⁄  
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Example 

By using the yield line theory, determine the ultimate resisting moment (m) for an isotropic 

reinforced concrete two-way slab shown in figure under a uniform load (q). 

 

Solution 

Wୣ =  
 

 

 

 

W୧ =  
 

 

 

 

 

Wୣ =  W୧ 

 

 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied 

as shown in figure. 

 

Solution 

Wୣ = P × 1 = P 

 

W୧ =  
 

 

 

 

 

 

 

 

Wୣ =  W୧ 

 

P =  11.333 m 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

orthotropic reinforced concrete two-way slab to sustain a uniformly distributed load and line load 

applied as shown in figure. 

 

Solution 

 

 

 

 

 

 

 

 

 

 

 

Wୣ = 9 × ൤൬2 × 2 ×
1
2 × 

1
3  × 8൰ + ൬4 × 2 ×  

1
2  × 2൰൨ + 5 ×  ൤൬2 × 

1
2  × 2൰ +  (4 × 1)൨ 

Wୣ = 150  kN. m 

  

W୧ =  ൤0.7 m × 4 × 
1
2൨  × 2 +  ൤൬m × 8 ×  

1
2൰  + ൬1.2 m × 8 × 

1
2൰൨  × 2 

 

W୧ = 20.4 m 

 

Wୣ =  W୧ 

 

150 =  20.4 m 

 

m =  7.353  kN. m/m 
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Example 

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an 

isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied 

as shown in figure. 

 

 

Solution 

Wୣ = P × 1 = P 

 

 

 

W୧ =  ൤൬m × 6 × 
1
4൰ + ൬m × 6 × 

1
4൰൨

+ ൤൬m × 2 ×  
1
6 +  m × 6 × 

1
4൰ + ൬m × 4 × 

1
6 +  m × 6 × 

1
4൰൨ 

 

 W୧ = 7 m 

 

 

 

 

 

Wୣ = W୧ 

 

P =  7 m 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

A B 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported triangle slab shown in figure under a 

uniform load (q). 

 

Solution 

Wୣ = q × ൬L ×  x ×  
1
2 ×  

1
3൰  × 3                 x =  

L
3 

Wୣ =  
q L x

2  

 

W୧ = ൬m × L ×  
1
x൰  × 3 =

3 m L
x  

 

Wୣ =  W୧ 

 
q L x

2 =  
3 m L

x  

m =  
q xଶ

6 =  
q Lଶ

54  

 

 

 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported square slab shown in figure under a 

uniform load (q). 

 

Solution 

Wୣ = q × ൬L ×  x ×  
1
2 ×  

1
3൰  × 4              x =  

L
2 

Wୣ =  
2 q L x

3  

 

W୧ = ൬m × L ×  
1
x൰  × 4 =  

4 m L
x  

 

Wୣ =  W୧ 

 
2 q L x

3 =  
4 m L

x  

m =  
q xଶ

6 =  
q Lଶ

24  
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a 

uniform load (q). 

 

Solution 

Wୣ = q × ൬L ×  x ×  
1
2 ×  

1
3൰  × 6              x =  

√3 L
2  

Wୣ =  q L x 

 

W୧ = ൬m × L ×  
1
x൰  × 6 =  

6 m L
x  

 

Wୣ =  W୧ 

 

q L x =  
6 m L

x  

m =  
q xଶ

6 =  
q Lଶ

8  

 

 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported circular slab shown in figure under a 

uniform load (q). 

 

Solution 

Wୣ = 

 

 

 

W୧ =  

 

 

 

Wୣ =  W୧ 

 

 

 

m =  
q rଶ

6   
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a 

concentrated factored load of P. 
 
 
 
 

Solution 

Wୣ = P × 1 = P 
 
y =  √3 ୐

ଶ
 

x =  y ∙ cos30 =  
√3
2  y 

 
 
 
 
 
 

W୧ = ቌm × 1.5 L ×  
1

√3 ୐
ଶ

ቍ × 3 =  3√3 m 

 
Wୣ = W୧ 
 
P = 3√3 m 

m =
P

3√3
=  0.192 P 

 
 
 

 

 

 

 

 

 

 

 

√3
𝐿 2 

√3
𝐿 2 
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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in Figure under a concentrated factored load of  P. 

 

 

 

 

 

 

 

 
Solution 

P1PWE   
 

m4
2

1
m42

2

1
m2WI 






 






   

 
 
 

P25.0m
4

P
m

m4P

WIWE







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Example 

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an 

orthotropic rectangulare reinforced concrete two-way slab, shown in Figure, to sustain a uniformly 

distributed load equals 12 kN/m2. Use the proposed positions for the positive and negative yield 

lines as shown in Figure. 

 

 

 

 

 

 

 

 

 

 

 

Solution 

 

Wୣ = 12 × ൤൬2 × 2 ×
1
2  ×  

1
3 × 8൰ + ൬4 × 2 ×  

1
2 × 2൰൨ 

Wୣ = 160  kN. m 

  

W୧ =  ൤0.8 m × 4 × 
1
2൨  × 2 +  ൤൬1.2 m × 8 × 

1
2൰  + ൬1.4 m × 8 ×  

1
2൰൨  × 2 

 

W୧ = 24 m 

 

Wୣ = W୧ 

 

160 =  24 m 

 

m =  6.667  kN. m/m 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way polygon slab shown in figure under a uniform load (q). 
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Prestressed Concrete 
 

Prestressed concrete member can be defined as one in which there have been introduced internal 

stresses of such magnitude and distribution that the stresses resulting from the given external 

loading are counteracted to a designed degree.  

 

Advantage of prestressed concrete  

1- High strength steel and concrete.  

2- Eliminated cracks in concrete.  

3- Prestressed concrete more suitable for structure of long span and those carrying heavy loads. 

4- Under dead load, the deflection is reduced, owing to the cambering effected of prestress 

(useful for bridges and long cantilevers).   

 

Disadvantage of prestressed concrete 

1- Higher cost of materials.  

2- More complicated formwork may be necessitated.  

3- End anchorages and bearing plates are usually required.  

4- Labor costs are greater.  

 

Tendon: A stretched element used in a concrete member of structure to impart prestress to the 

concrete. Generally, high tensile steel wires, bars, cables or strands are used as tendons.  

Strand: A group of wires (7 wires).  

Wires: individually drawn wires of 7 mm diameter; 

Bar: a specially formed bar of high strength steel of greater than 20 mm diameter 

Anchorage: A device generally used to enable the tendon to impart and maintain prestress the 

concrete.  
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Classifications and types  

a- Externally and internally prestressed   

- Externally by jacking against abutments, this cannot be accomplished in practice, because 

even if abutment is stiff, shrinkage and creep in concrete y completely offset the strain.  

- Internally accomplished by pretensioiny of steel.  

 

b- Linear and circular prestressing  

- Linear for beam and slabs, can be curved.  

- Circular used for round tanks, silos, and pipes.  

 

c- Pretensioning and postensioning  

- Pretensioning: tendons tensioned before the concrete is placed, used in prestressing plants 

where permanent beds are provided for such tensioning.  

- Posttensioning: tendons are tensioned after the concrete has hardened. 
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d- End-anchored and non-end-anchored tendons   

- End-anchored: used in post tensioned, the tendons are anchored at their ends by means of 

mechanical devices to transmit the prestress to the concrete.  

- Non-end-anchored: used in pretensioned where the tendons have their perstress transmitted 

to the concrete by their bond action near the ends. This type is limited to wires and strand of 

small size.   

 

e- Bounded and unbounded tendons  

Bounded: denote those bounded throughout their length to the surrounding concrete. 

 

Non-end-anchored: tendons may be either bounded or unbounded to the concrete by grouting.  

 

f- Precast, cast-in-place, composite construction 

- Precasting: involves the placing of concrete away from its final position. This permits better 

control on mass production, and it is economical. 

- Cast-in-place: concrete requires more form and false work.  

- Composite: to precast pant of a member, erect it, casting the remaining portion in place.  

 

g- Partial and full prestressing  

- Full prestressing: the member is designed, so that, under working loads (service) there are 

no tensile stresses in it.  

- Partial: tension is produced under working load. Addition, mild steel bars are provided to 

reinforce the tension zone.  

Prestressing methods: (a) post-tensioning by jacking against abutments; (b) post-tensioning with 
jacks reacting against beam; (c) pretensioning with tendon stressed between fixed external 

anchorages. 
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Stages of Loading:  

1- Initial stage: the member is under prestress, but is not subjected to any superimposed 

external loads.  

2- Intermediate stage: during transportation and erection.  

3- Final (service) stage: when the actual working load come on the structure.  

 

Concrete:  

High strength concrete is used (fc’ > 40 MPa) for the following reasons:  

1- High bearing stresses needed at end anchorage in post-tensioned.  

2- High bond offered by high strength concrete in pretension.  

3- A smaller cross sectional area can be used to carry a given load.  

4- Higher modulus of elasticity, this means a reduction in initial elastic strain under application 

of prestress force and a reduction in creep strain. This results in a reduction in loss of 

prestress.  

 

Steel: 

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield strengths of 

commonly used reinforcing bars. The grade designations correspond to the minimum specified 

tensile strength in ksi (MPa). For the widely used seven-wire strand, two grades are recognized in 

ASTM A416: Grade 250 ksi (1725 MPa) and Grade 270 ksi (1860 MPa). For alloy steel bars, two 

grades are used: Grade 150 ksi (regular) and Grade 160 ksi. Round wires may be obtained in Grades 

235, 240, and 250 ksi. 

High strength steel must be used due to the low prestressing force obtained by using ordinary steel 

is quickly lost due to shrinkage and creep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Typical stress-strain curves for prestressing steels. 
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Losses in prestressing force  

 The magnitude of prestress force will gradually decrease. The most significant causes are:-  

1- Elastic shortening of concrete.  

2- Concrete creep under sustained load.  

3- Concrete shrinkage.  

4- Relaxation of stress in steel.  

5- Friction loss between the tendons and the concrete during stressing operation.  

6- Loss due to slip of steel strands.  

 

Summary of losses:  

Pretensioned beam Post-tensioned beam 

a- Before transfer     

- Shrinkage  3% ـــــــــــــــــــــ  

b- At transfer     

- Elastic shortening  3% - Elastic shortening  1% 

  - Anchor slip 2% 

  - Friction  2% 

c- After transfer     

- Shrinkage  4% - Shrinkage  4% 

- Creep  7% - Creep  4% 

- Steel relation 3% - Steel relation 3% 

total 20%  16% 

  

 

Analysis: to determine the stresses in the steel and concrete when the shape and size of a section are 

already given or assumed.  

 

Design: to determine a suitable section for a given loading and stresses. 

 

The analysis is a simpler operation than design.  

 

The fpu is the ultimate strength of the steel and fpy is the yield strength.  
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Stages of investigation of prestressed beam:  

 

Initial stage 

Initial force (Pi) plus beam weight (wg): 

 

Stress at top 
I

cM

I

ceP

A

P
f tgtii

ti








  

Stress at bottom 
I

cM

I

ceP

A

P
f bgbii

bi








  

 

Service stage  

The beam under effective prestressing force (Pe) plus weight of the beam plus service load (live 

load plus weight of cast-in-situ concrete): 

 

Stress at top 
I

cM

I

cM

I

ceP

A

P
f tstgtee

ts











  

Stress at bottom 
I

cM

I

cM

I

ceP

A

P
f bsbgbee

bs











  

 

 

Permissible stresses in prestressed concrete flexural members 

For calculation of stresses at transfer of prestress, at service loads, and at cracking loads, elastic 

theory shall be used with assumptions (a) and (b): 

(a) Strains vary linearly with distance from neutral axis. 

(b) At cracked sections, concrete resists no tension. 

 

Classification of prestressed flexural members 

Prestressed flexural members shall be classified as Class U, T, or C in accordance with Table 

24.5.2.1, based on the extreme fiber stress in tension ft in the precompressed tension zone calculated 

at service loads assuming an uncracked section. 

 

Table 24.5.2.1 - Classification of prestressed flexural members based on ft 

Assumed behavior Class Limits of ft 

uncracked U f୲ ≤  0.62 ඥfୡ
ᇱ 

Transition between uncracked 

and cracked 
T 0.62 ඥfୡᇱ  < f୲ ≤  1.0 ඥfୡᇱ 

cracked C f୲ >  1.0 ඥfୡ
ᇱ 

 

Prestressed two-way slabs shall be designed as Class U 
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Three classes of behavior of prestressed flexural members are defined. Class U members are 

assumed to behave as uncracked members. Class C members are assumed to behave as cracked 

members. The behavior of Class T members is assumed to be in transition between uncracked and 

cracked. The serviceability requirements for each class are summarized in Table R24.5.2.1. For 

comparison, Table R24.5.2.1 also shows corresponding requirements for nonprestressed members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Class U and T members, stresses at service loads shall be permitted to be calculated using the 

uncracked section. 

 

For Class C members, stresses at service loads shall be calculated using the cracked transformed 

section. 

 

Permissible concrete stresses at transfer of prestress 

 

Calculated extreme concrete fiber stress in compression immediately after transfer of prestress, but 

before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.1. 

 

 

 

 

 

 

 

 

≤  0.62 ඥfୡ
ᇱ  0.62 ඥfୡ

ᇱ  < f୲ ≤  1.0 ඥfୡ
ᇱ 
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Calculated extreme concrete fiber stress in tension immediately after transfer of prestress, but 

before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.2, unless 

permitted by 24.5.3.2.1. 

 

 

 

 

 

 

 

 

 

 

 

Permissible concrete compressive stresses at service loads 

 

For Class U and T members, the calculated extreme concrete fiber stress in compression at service 

loads, after allowance for all prestress losses, shall not exceed the limits in Table 24.5.4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0.50  ටfୡ୧
ᇱ  

 0.25  ටfୡ୧
ᇱ  
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Example 

A prestress rectangular box beam post-tensioned by straight high tensile steel wires of total area As 

mm2, equally divided between the top and bottom flanges and placed on center of flanges. The 

forces are initially stressed to 850 N/mm2 and the total losses of prestress is 15%. The beam is 

required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its own 

weight, over a span of 15 m. If the concrete stresses are not to exceed 17.5 N/mm2 in compression 

and 1 N/mm2 in tension (during the prestressing operation and working load). Calculate the max. 

and min. As of steel, which may be used. Use γc = 25 kN/m3 

 

Solution 

A = 400 × 750 – 240 × 510 = 177600 mm2 

 

I =
400 ×  (750)ଷ − 240 ×  (510)ଷ 

12 = 1.140948 × 10ଵ଴  mmସ 

wg = 177600 × 10-6 × 25 = 4.44  kN/m 

 

Note: 

a- check compressive stress at initial stage. 

b- check compressive stress at top and tensile stress at bottom at service stage.  

 

a- Immediately after prestressing 

prestressing force before losses = 850 As 

initial compressive stress =  

f୲୧  = fୠ୧  =  
P୧
A 

 

−17.5 ≤  
− 850 × Aୱ

177600      ⇒      Aୱ ≤ 3656.5  mmଶ  

 

b- Service stage (final stage)  

1- Top fiber 

  

 

Prestressing stress after losses  =  

 

Final stress @ top  = 

 

 

2- Bottom fiber:  
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Example 

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is 

carrying a live load equals to 12 kN/m. Compute the required prestressing forces for: 

a) Tob fiber stress equals to zero under beam weight plus prestressing force only. 

b)  Bottom fiber stress equals to zero under full load. 

           Use γc = 25 kN/m3, I = 120  108 mm4, Ag = 150000 mm2. 

 

 

 

 

 

 

Solution 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full load 
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Example 

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is 

carrying a live load equals to 10 kN/m. Compute the required prestressing forces for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b)  Bottom fiber stress equals to zero under full load. 

     Use γc = 25 kN/m3, I = 10  109 mm4, Ag = 100000 mm2. 

 

Solution 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full load 
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Example 

A double-T simply supported concrete beam its cross section is shown in Figure, is prestressed 

with 2 tendons each 400 mm2. Determine the allowable service load. 

Use span = 12 m, fse = 1300 MPa, fc’ = 40 MPa, c = 25 kN/m3.        
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Example 

A prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by 

straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center 

line of the flanges and initially stressed to 850 N/mm2.  The beam is required to carry a uniformly 

distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not 

to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the 

total prestressing wires area required. Ignore prestressing force losses in your answer. (γc = 24 

kN/m3). 
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Example 

A simply supported prestressed beam, of span 10 m and its cross section is shown in Figure, is 

carrying a live load equals to 10 kN/m. Compute the required prestressing forces for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b) Bottom fiber stress equals to zero under full load. 

Use γc = 25 kN/m3, I = 150  108 mm4, Ag = 100000 mm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reinforced Concrete Design II 
 

138 
 

Example 

A simply supported prestressed concrete beam, of span 10 m and its cross section is shown in 

Figure, is carrying a service load equals to 12 kN/m. Compute the required prestressing forces 

for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b) Bottom fiber stress equals to zero under full loads. 

Use γc= 24 kN/m3, I = 12109 mm4, Ag = 120000 mm2. 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full loads 

m.kN150
8

1012

8

Lw
M

22
s

s 





  

I

cM

I

cM

I

ceP

A

P
f bsbgbee

bs











  

9

6

9

6

9

33

1012

68010150

1012

6801030

1012

68061010P

120000

10P
0















  

12

102

12

4.20

120

148.4P

120

P
0 





  

 
kN762.237P   

 



Reinforced Concrete Design II 
 

139 
 

Example 

A cantilever prestressed concrete beam, of span 6 m and its cross section is shown in Figure, is  

carrying a service load equals to 12 kN/m. Compute the required prestressing forces for: 

a) Bottom fiber stress equals to zero under beam weight plus prestressing force only. 

b) Top fiber stress equals to zero under full loads. 

Use γc= 25 kN/m3, I = 18109 mm4, Ag = 120000 mm2. 
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a)  Bottom fiber stress equals to zero under beam weight plus prestressing force only at bottom 

fiber 
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b)  Top fiber stress equals to zero under full loads 
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Example 

A simply supported rectangular prestressed concrete beam, of span 13 m and its cross section as 

shown in figure, is carrying a live load equals to 30 kN/m in addition to its weight, compute the 

following stresses and compare it with ACI allowable stress: 

a) Bottom fiber stress at support in initial stage. 

b) Top fiber stress at mid span in final stage. 

 Use 𝛾௖ = 24 kN mଷ⁄ , As = 600 mmଶ, initial stress of the prestressed steel = 1200 MPa, total losses 

is 20%,  fୡ୧ = 22 MPa, and  fୡ
ᇱ = 28 MPa 
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