

1

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

MARIE: An Introduction to a Simple Computer

1- Register Transfer Notation
 We have seen that digital systems consist of many components, including

ALUs, registers, memory, decoders, and control units.

 These units are interconnected by buses to allow information to flow

through the system.

 The instruction set presented for MARIE in the preceding sections

constitutes a set of machine level instructions used by these

 components to execute a program.

 Each instruction appears to be very simplistic; however, if you examine

what actually happens at the component level, each instruction involves

multiple operations.

 For example, the Load instruction loads the contents of the given

memory location into the AC register. But, if we observe what is

happening at the component level, we see that multiple “mini-instructions

” are being executed.

 First, the address from the instruction must be loaded into the MAR.

 Then the data in memory at this location must be loaded into the MBR.

 Then the MBR must be loaded into the AC.

 These mini-instructions are called micro operations and specify the

elementary operations that can be performed on data stored in registers.

 The symbolic notation used to describe the behavior of micro operations

is called register transfer notation (RTN) or register transfer

language (RTL).

 We use the notation M[X] to indicate the actual data stored at location X

in memory, and ← to indicate a transfer of information.

2

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 In reality, a transfer from one register to another always involves a

transfer onto the bus from the source register, and then a transfer off the

bus into the destination register.

 However, for the sake of clarity, we do not include these bus transfers,

assuming that you understand that the bus must be used for data transfer.

 We now present the register transfer notation for each of the instructions

in the ISA for MARIE.

 Load X
This instruction loads the contents of memory location X into the AC.

However, the address X must first be placed into the MAR. Then the data

at location M[MAR] (or address X) is moved into the MBR. Finally, this

data is placed in the AC.

 MAR← X

 MBR← M[MAR]

 AC← MBR

 Because the IR must use the bus to copy the value of X into the MAR,

before the data at location X can be placed into the MBR, this operation

requires two bus cycles.

 Therefore, these two operations are on separate lines to indicate they

cannot occur during the same cycle.

 Because we have a special connection between the MBR and the AC, the

transfer of the data from the MBR to the AC can occur immediately after

the data is put into the MBR, without waiting for the bus.

 Store X
This instruction stores the contents of the AC in memory location X:

3

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 MAR← X

 MBR← AC

 M [MAR] ← MBR

 Add X

The data value stored at address X is added to the AC. This can be

accomplished as follows:

MAR← X

MBR← M [MAR]

AC← AC + MBR

 Subt. X

Similar to Add, this instruction subtracts the value stored at address X

from the accumulator and places the result back in the AC:

MAR← X

MBR← M [MAR]

AC← AC – MBR

 Input

Any input from the input device is first routed into the InREG. Then the

data is transferred into the AC.

AC← InREG

 Output

This instruction causes the contents of the AC to be placed into the

OutREG, where it is eventually sent to the output device.

OutREG← AC

 Halt

4

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

No operations are performed on registers; the machine simply ceases

execution.

 Skipcond

Recall that this instruction uses the bits in positions 10 and 11 in the

address field to determine what comparison to perform on the AC.

Depending on this bit combination, the AC is checked to see whether it is

negative, equal to zero, or greater than zero. If the given condition is true,

then the next instruction is skipped. This is performed by incrementing

the PC register by 1.

 if IR[11–10] = 00 then {if bits 10 and 11 in the IR are both 0}

If AC < 0 then PC ← PC+1

else If IR[11–10] = 01 then {if bit 11 = 0 and bit 10 = 1}

If AC = 0 then PC ← PC + 1

else If IR[11–10] = 10 then {if bit 11 = 1 and bit 10 = 0}

If AC > 0 then PC ← PC + 1

 If the bits in positions ten and eleven are both ones, an error

condition results.

 However, an additional condition could also be defined using these bit

values.

 Jump X

This instruction causes an unconditional branch to the given address X.

Therefore to execute this instruction, X must be loaded into the PC.

PC← X

In reality the lower or least significant 12 bits of the instruction register

(or IR[11–0]) reflect the value of X. So this transfer is more accurately

depicted as:

PC← IR [11–0]

5

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 However, we feel that the notation PC ← X is easier to understand and

relate to the actual instructions, so we use this instead.

 Register transfer notation is a symbolic means of expressing what is

happening in the system when a given instruction is executing.

 RTN is sensitive to the data path, in that if multiple micro operations

must share the bus, they must be executed in a sequential fashion, one

following the other.

2- INSTRUCTION PROCESSING
 All computers follow a basic machine cycle: the fetch, decode, and

execute cycle.

2.1 The Fetch–Decode–Execute Cycle

 The fetch–decode–execute cycle represents the steps that a computer

follows to run a program.

 The CPU fetches an instruction (transfers it from main memory to the

instruction register), decodes it (determines the opcode and fetches any

data necessary to carry out the instruction), and executes it (performs the

operation[s] indicated by the instruction).

 Notice that a large part of this cycle is spent copying data from one

location to another.

 When a program is initially loaded, the address of the first instruction

must be placed in the PC.

 The steps in this cycle, which take place in specific clock cycles, are

listed below.

 Note that Steps 1 and 2 make up the fetch phase, Step 3 makes up the

decode phase, and Step 4 is the execute phase.

1. Copy the contents of the PC to the MAR: MAR ← PC.

2. Go to main memory and fetch the instruction found at the address in

the MAR, placing this instruction in the IR; increment PC by 1 (PC now

6

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

points to the next instruction in the program): IR ← M[MAR] and then

PC ← PC + 1. (Note: Because MARIE is word addressable, the PC is

incremented by 1, which results in the next word’s address occupying the

PC. If MARIE were byte addressable, the PC would need to be

incremented by 2 to point to the address of the next instruction, because

each instruction would require 2 bytes.)

3. Copy the rightmost 12 bits of the IR into the MAR; decode the

leftmost 4 bits to determine the opcode, MAR ← IR[11-0], and decode

IR[15–12].

4. If necessary, use the address in the MAR to go to memory to get data,

placing the data in the MBR (and possibly the AC), and then execute the

instruction MBR ← M[MAR] and execute the actual instruction.

 This cycle is illustrated in the flowchart in Figure 4.11.

7

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 Note that computers today, even with large instruction sets, long

instructions, and huge memories, can execute millions of these fetch–

decode–execute cycles in the blink of an eye.

 2.2 Interrupts and the Instruction Cycle

 All computers provide a means for the normal fetch–decode–execute

cycle to be interrupted.

 These interruptions may be necessary for many reasons, including a

program error (such as division by 0, arithmetic overflow, stack

overflow, or attempting to access a protected area of memory); a

hardware error (such as a memory parity error or power failure); an I/O

completion (which happens when a disk read is requested and the data

transfer is complete); a user interrupt (such as hitting Ctrl-C or Ctrl-Break

to stop a program); or an interrupt from a timer set by the operating

system (such as is necessary when allocating virtual memory or

performing certain bookkeeping functions).

 All of these have something in common: They interrupt the normal flow

of the fetch–decode–execute cycle and tell the computer to stop what it is

currently doing and go do something else. They are, naturally, called

interrupts.

 3- A SIMPLE PROGRAM

 Consider the simple MARIE program given below. We show a set of

mnemonic instructions stored at addresses 100 - 106 (hex):

8

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 Let’s look at what happens inside the computer when our program runs.

 This is the LOAD 104 instruction:

 Our second instruction is ADD 105.

9

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

4- A DISCUSSION ON ASSEMBLERS

 Mnemonic instructions, such as LOAD 104, are easy for humans to write

and understand.

 They are impossible for computers to understand.

 Assemblers translate instructions that are comprehensible to humans into

the machine language that is comprehensible to computers – We note the

distinction between an assembler and a compiler:

 In assembly language, there is a one-to-one correspondence between a

mnemonic instruction and its machine code.

 With compilers, this is not usually the case.

 Assemblers create an object program file from mnemonic source code in

two passes.

 During the first pass, the assembler assembles as much of the program

is it can, while it builds a symbol table that contains memory references

for all symbols in the program.

10

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 During the second pass, the instructions are completed using the values

from the symbol table.

 Consider our example program (top).

 Note that we have included two directives HEX and DEC that specify the

radix of the constants.

 During the first pass, we have a symbol table and the partial instructions

shown at the bottom.

 After the second pass, the assembly is complete.

11

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

5- A DISCUSSION ON DECODING: HARDWIRED VERSUS

MICROPROGRAMMED CONTROL

 The control unit, driven by the processor’s clock, is responsible for

decoding the binary value in the instruction register and creating all

necessary control signals; essentially, the control unit takes the CPU

through a sequence of “control” steps for each program instruction.

 More simply put, there must be control signals to assert the control lines

on the various digital components in the system, such as the ALU and

memory, to make anything happen.

 Each control step results in the control unit creating a set of signals

(called a control word) that executes the appropriate microoperation.

 We can opt for one of two methods to ensure that all control lines are set

properly.

 The first approach, hardwired control, physically connects the control

lines to the actual machine instructions.

 The second approach, microprogrammed control, employs software

consisting of microinstructions that carry out an instruction’s

microoperations.

 Hardwired control is very fast, but the circuits required to do this

are often very complex and difficult to design, and changes to the

instruction set can result in costly updates to hardwired control.

 Microprogrammed control is much more flexible and allows easier

and less costly updates to hardware, because the program simply

needs to be updated; however, it is typically slower than hardwired

control.

5.1 Hardwired Control

 Hardwired control uses the bits in the instruction register to generate

control signals by feeding these bits into fixed combinational logic gates.

12

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 There are three essential components common to all hardwired control

units:

 the instruction decoder, the cycle counter, and the control matrix.

 Depending on the complexity of the system, specialized registers and sets

of status flags may be provided as well.

 Figure below illustrates a simplified control unit.

13

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 The first essential component is the instruction decoder. Its job is to raise

the unique output signal corresponding to the opcode in the instruction

register. If we have a 4-bit opcode, the instruction decoder could have as

many as 16 output signal lines.

 The advantage of hardwired control is that it is very fast. The

disadvantage is that the instruction set and the control logic are tied

together directly by complex circuits that are difficult to design and

modify.

 If someone designs a hardwired computer and later decides to extend the

instruction set, the physical components in the computer must be

changed. This is prohibitively expensive, because not only must new

chips be fabricated, but the old ones must be located and replaced.

5.2 Microprogrammed Control

 For a computer with a large instruction set, it might be virtually

impossible to implement hardwired control.

 In microprogrammed control, instruction microcode produces the

necessary control signals.

 A generic block diagram of a microprogrammed control unit is shown in

Figure below.

14

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 All machine instructions are input into a special program, the

microprogram, that converts machine instructions of 0s and 1s into

control signals.

 The microprogram is essentially an interpreter, written in microcode, that

is stored in firmware (ROM, PROM, or EPROM), which is often referred

to as the control store.

 The great advantage of microprogrammed control is that if the instruction

set requires modification, only the microprogram needs to be updated to

match: No changes to the hardware are required.

15

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 Thus, microprogrammed control units are less costly to manufacture and

maintain.

 Because cost is critical in consumer products, microprogrammed control

dominates the personal computer market.

6 REAL-WORLD EXAMPLES OF COMPUTER ARCHITECTURES

 MARIE shares many features with modern architectures, but itis not an

accurate depiction of them.

 Two contemporary computer architectures better illustrate the features of

modern architectures.

 The Intel architecture (the x86 and the Pentium families) and then follow

with the MIPS architecture.

 Each member of the x86 family of Intel architectures is known as a CISC

(complex instruction set computer) machine, whereas the Pentium family

and the MIPS architectures are examples of RISC (reduced instruction set

computer) machines.

 CISC machines have a large number of instructions, of variable length,

with complex layouts.

 Many of these instructions are quite complicated, performing multiple

operations when a single instruction is executed (e.g., it is possible to do

loops using a single assembly language instruction).

 The basic problem with CISC machines is that a small subset of complex

CISC instructions slows the systems down considerably.

 Designers decided to return to a less complicated architecture and to

hardwire a small (but complete) instruction set that would execute

extremely quickly.

 This meant it would be the compiler’s responsibility to produce efficient

code for the ISA.

 Machines utilizing this philosophy are called RISC machines.

 In RISC the number of instructions is reduced.

16

COMPUTER ARCHITECTURE : LECTURE 6 DR. OMAR MUNTHIR AL OKASHI

 However, the main objective of RISC machines is to simplify instructions

so they can execute more quickly.

 Each instruction performs only one operation, they are all the same size,

they have only a few different layouts, and all arithmetic operations must

be performed between registers (data in memory cannot be used as

operands).

 Virtually all new instruction sets (for any architectures) since 1982 have

been RISC, or some sort of combination of CISC and RISC.

