

1

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

Data Representation in Computer Systems

• A bit is the most basic unit of information in a computer.

– It is a state of “on” or “off” in a digital circuit.

– Sometimes these states are “high” or “low” voltage instead of “on” or

“off”.

• A byte is a group of eight bits.

– A byte is the smallest possible addressable unit of computer storage.

– The term, “addressable,” means that a particular byte can be retrieved

according to its location in memory.

• A word is a contiguous group of bytes.

– Words can be any number of bits or bytes.

– Word sizes of 16, 32, or 64 bits are most common.

– In a word-addressable system, a word is the smallest addressable unit of

storage.

• A group of four bits is called a nibble (or nybble).

– Bytes, therefore, consist of two nibbles: a “high-order nibble,” and a

“low-order” nibble.

• Bytes store numbers when the position of each bit represents a power of

2.

– The binary system is also called the base-2 system.

– Our decimal system is the base-10 system. It uses powers of 10 for each

position in a number.

2

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

– Any integer quantity can be represented exactly using any base (or

radix).

POSITIONAL NUMBERING SYSTEMS
• Three numbers are represented as powers of a radix.

CONVERTING BETWEEN BASES

Decimal to binary conversion

 Every integer value can be represented exactly using any radix system.

Division remainder method.

 This method works with any base.

3

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

Convert 147 to binary.

 A binary number with N bits can represent unsigned integers from 0 to

2N-1.

 For example, 4 bits can represent the decimal values 0 through 15,

whereas 8 bits can represent the values 0 through 255.

 Let’s use the division remainder method to again convert 190 in decimal

to base 3.

Converting Fractions

 Fractions in any base system can be approximated in any other base

system using negative powers of a radix.

 Radix points separate the integer part of a number from its fractional part.

4

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

5

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

EXAMPLE

 Convert 3121 to base 3.

 First, convert to decimal:

Converting Between Power-of-Two Radices

 Binary numbers are often expressed in hexadecimal—and sometimes

octal—to improve their readability.

 Because 16 = 2, a group of 4 bits (called a hextet) is easily recognized as

a hexadecimal digit.

 Similarly, with 8 = 2, a group of 3 bits (called an octet) is expressible as

one octal digit.

 Using these relationships, we can therefore convert a number from binary

to octal or hexadecimal by doing little more than looking at it.

6

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

Signed integer representation
 There are three ways in which signed binary numbers may be expressed:

– Signed magnitude,

– One’s complement and

– Two’s complement.

 In an 8-bit word, signed magnitude representation places the absolute

value of the number in the 7 bits to the right of the sign bit.

 For example, in 8-bit signed magnitude, positive 3 is: 00000011

 Negative 3 is: 10000011.

 Computers perform arithmetic operations on signed magnitude numbers

in much the same way as humans carry out pencil and paper arithmetic.

– Humans often ignore the signs of the operands while performing a

calculation, applying the appropriate sign after the calculation is

complete.

 For sign magnitude, the largest integer an 8-bit word can represent is

27 - 1, or 127 (a 0 in the high-order bit, followed by 7 1s).

7

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

 The smallest integer is 8 1s, or -127.

 Therefore, N bits can represent -(2(N-1) - 1) to 2(N-1) - 1.

 Signed magnitude arithmetic is carried out using essentially the same

methods that humans use with pencil and paper, but it can get confusing

very quickly.

 As an example, consider the rules for addition: (1) If the signs are the

same, add the magnitudes and use that same sign for the result; (2) If the

signs differ, you must determine which operand has the larger magnitude.

 The sign of the result is the same as the sign of the operand with the

larger magnitude, and the magnitude must be obtained by subtracting (not

adding) the smaller one from the larger one.

 If you consider these rules carefully, this is the method you use for signed

arithmetic by hand.

 In signed magnitude, the sign bit is used only for the sign, so we can’t

“carry into” it.

 If there is a carry emitting from the seventh bit, our result will be

truncated as the seventh bit overflows, giving an incorrect sum.

8

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

 Signed magnitude representation is easy for people to understand, but it

requires complicated computer hardware.

 Another disadvantage of signed magnitude is that it allows two different

representations for zero: positive zero and negative zero.

 For these reasons (among others) computers systems employ complement

systems for numeric value representation.

9

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

Complement Systems

One’s Complement

 For example, in 8-bit one’s complement,

 Positive 3 is: 00000011, negative 3 is: 11111100

– In one’s complement, as with signed magnitude, negative values are

indicated by a 1 in the high order bit.

 Complement systems are useful because they eliminate the need for

special circuitry for subtraction.

 The difference of two values is found by adding the minuend to the

complement of the subtrahend.

 With one’s complement addition, the carry bit is “carried around” and

added to the sum.

 – Example: Using one’s complement binary arithmetic, find the sum of

48 and -19

 We note that 19 in one’s complement is 00010011, so -19 in one’s

complement is: 11101100.

 Although the “end carry around” adds some complexity, one’s

complement is simpler to implement than signed magnitude.

 But it still has the disadvantage of having two different representations

for zero: positive zero and negative zero.

 Two’s complement solves this problem.

 To express a value in two’s complement:

 – If the number is positive, just convert it to binary and you’re done.

10

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

 – If the number is negative, find the one’s complement of the number and

then add 1.

 Example:

– In 8-bit one’s complement, positive 3 is: 00000011

– Negative 3 in one’s complement is: 11111100

– Adding 1 gives us -3 in two’s complement form: 11111101.

 With two’s complement arithmetic, all we do is add our two binary

numbers. Just discard any carries emitting from the high order bit.

 Example: Using two’s complement binary arithmetic, find the sum of 48

and -19.

 We note that 19 in one’s complement is: 00010011, so -19 in one’s

complement is: 11101100, and -19 in two’s complement is: 11101101.

11

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

12

COMPUTER ARCHITECTURE : LECTURE 2 DR. OMAR MUNTHIR AL OKASHI

EXAMPLE 2.23

 Find the sum of 23 and −9 in binary using two’s complement arithmetic.

