

Ministry of Higher Education University of Al-Maarif Medical Instruments Engineering Techniques Department

Power Electronic

For Students of Third class

Lecture TWO
Power Transistor

By Mr. Abdulla Saleh

Diode Principle

Power Bipolar Junction Transistor (BJT) Principle

PNP

NPN

- The collector current (I_C) is **dependent** on the base current (I_B).
- A change in base current I_B results in an **amplified** change in collector current I_C .
- The **ratio** of these currents ranges from 15 to 100 and called beta β .

Characteristics of (BJTs)

- The transistor is used as a switch (Saturation + cut-off region) and as amplifier (active region) in power applications
- It has **controlled** turn-on and turn-off characteristics.
- Operates in the saturation region to **reduce on-state voltage drop**.
- Switching speed is higher than that of thyristors.
- Voltage and current ratings are lower than those of thyristors.

Input Circuit

$$V_{BB} = I_B R_B + V_{BE}$$

$$V_{BB}$$
 - V_{BE} = I_BR_B \div

$$\therefore R_B = \frac{V_{BB} - V_{BE}}{I_B} \quad (1)$$

Output Circuit

$$V_{CC} = I_C R_C + V_{CE}$$

$$V_{CC} - V_{CE} = I_C R_C$$

$$\div I_C$$

$$\therefore R_C = \frac{V_{CC} - V_{CE}}{I_C} \quad (2)$$

The equation above can be used to draw the dc load line by choosing two points as follows:

At cut off region:

At saturation region:

At cut off region: I_C (cut off) = 0 V_{CE} (cut off) = V_{CC}

$$V_{\text{CE}}(\text{sat})=0$$
 $I_{C(sat)} = \frac{V_{CC}}{R_C}$

$$\beta = \frac{I_{C(sat)}}{I_{B(sat)}}$$
 where β represents the DC current gain

The perfect switch condition is: $I_{B(per)} > 3 \times I_{B(sat)}$

 $I_1 = 2 \times I_{B \text{ (sat)}}$ resistor current if connect parallel with base

EX:1/For transistor as a switch if the transistor has the following specification ($V_{CE (sat)} = 1.5; V_{BE (sat)} = 0.65; \beta = 45; V_{in} = 1.5 \text{ V}$) calculate the value of $\mathbf{R_B}$ which make the transistor works in saturation region.

$$I_{C(sat)} = \frac{V_{CC} - V_{CE}}{R_C} = \frac{30 - 1.5}{2 k} = 14 mA$$
 $I_{B(sat)} = \frac{I_{C(sat)}}{\beta} = \frac{14 mA}{45} = 0.3 mA.$
 $I_{B(per)} = 3 \times I_{B(sat)}$

$$I_{B(per)} = 3 \times 0.3 \text{ mA} = 0.9 \text{ mA}$$

$$R_B = \frac{V_{BB} - V_{BE}}{I_B} = \frac{1.5 - 0.65}{0.9mA}$$

$$= 944 \Omega \cong 1 k\Omega$$

EX: 2 For the circuit shown below (V_{BE} = 0.65 V, β = 50, and V_{in} =1V) Calculate the value of (R_1 , R_B) which make the transistor works in saturation region.

$$I_{C(sat)} = \frac{V_{CC} - V_{CE}}{R_C} = \frac{15}{500} = 30 \, mA$$
 $I_{B(sat)} = \frac{I_{C(sat)}}{\beta} = \frac{30 \, mA}{50} = 0.6 \, mA.$
 $I_{B(per)} = 3 \times I_{B(sat)} \longrightarrow I_{B(per)} = 3 \times 0.6 \, mA = 1.8 \, mA$

To certify the operation of the transistor in saturation region we may use

$$I_1 = 2 \times I_{B \text{ (sat)}}$$
 $I_1 = 2 \times 0.6 = 1.2 \text{ mA}$

$$R_1 = \frac{V_{BB} - V_{BE}}{I_1} = \frac{5 - 0.65}{1.2 \, mA}$$

$$I_B = I_{B(_{per})} - I_1 = 1.8 - 1.2 = 0.6 \, mA$$

$$R_B = \frac{V_{BB} - V_{BE}}{I_B} = \frac{1 - 0.65}{0.6 \, mA}$$
 $R_B = 0.583 \, k\Omega$

Determine $I_{C(sat)}$ for the transistor in Figure 4–58. What is the value of I_B necessary to produce saturation? What minimum value of V_{IN} is necessary for saturation? Assume $V_{CE(sat)} = 0$ V.

Dynamic Switching Characteristics:

• Time delay (t_d) :

Is the time taken for IC to reach 10 % of its final value $I_{C \text{ (sat)}}$.

• Rise time (t_r) :

Is the time taken for (Ic) to change from 10% to 90 % of Its final value $I_{C \text{ (sat)}}$.

- Conduction time $(T_{ON}) = t_d + t_r$
- Storage time (ts):

Is the time interval between the input and the point at which Ic reaches 90% of its final value IC (sat).

• Fall time (t_F) :

Is the time taken for (Ic) to fall from 90% to 10% of its final value IC (sat).

• Cut off time $(T_{OFF}) = t_s + t_F$

Improvement of Switching Time:

- Cut-off Time T_{OFF} can be improved by connecting a capacitor in parallel with the base resistor R_B .
- The capacitor helps to attract and remove the base charge more quickly.
- This reduces the storage time (t_S) , which in turn shortens the cut-off time.
- Faster removal of base charge leads to faster switching from ON to OFF states.

BJT applications in Medical Field

- Pacemakers and Implants for regulating and amplifying electrical impulses.
- Medical Imaging (MRI, Ultrasound) to process and amplify signals for accurate diagnostics.
- Wearable Devices like glucose monitors and fitness trackers to process health data.
- ECG/EEG systems to amplify heart and brain signals for monitoring.

