

LECTURE 4

EARTHWORKS AND MASS-HAUL DIAGRAM

Mass-haul diagram:

Continuous curve showing the relationship between the accumulated algebraic sums of corrected earthwork volume and distance for the purpose of minimizing the cost of excavating hauling & damping the materials (Soil).

- Rising = Cut
- Falling = Fill
- Steep slope = High cut or fill
- Zero slope = Change from cut to fill or vice versa.
- Zero value = Balance between cut and fill

Haul (النقل) = Volume (m³) * Distance (sta.)

Haul distance: The distance of moving the masses of soil from one place to another, in the process of earthwork.

Free haul distance (F.H.D.): The distance within which there is a fixed price for excavating, hauling, and damping the materials regardless of the distance moved.

Free Haul charge =
$$\frac{I.D}{m^3}$$

Over haul distance (O.H.D.): The distance beyond (F. H. D.) for which there is an additional price for each (m³.sta.)

$$Over Haul charge = \frac{I.D}{m^3. sta.}$$

Limit of economical haul distance (L.E.H.D.): The distance beyond which it is more economical to waste and borrow rather than to pay for the cost of over hauling.

L.E.H.D. = **F.H.D.** + **max. O.H.D.** = **F.** H. D. +
$$\frac{\frac{I.D}{m^3}}{\frac{I.D}{\text{Over haul distance cost}}}$$

3

Correction:

* Sandy, Silty clay

М М Loose حدل Shrinkage: 5 – 15 % ≈ 10% V1 V0 V2V0 < V2 < V1М М * Lime stone, Sand stone Μ Loose Bulking: 25 – 35 % ≈ 30% V1 V0 V2V2 < V1 $V_2 > V_0$

Ex.:

Sta.	End Area		$Cut + (m^3)$	(-)	Corrected	$Fill - (m^3)$	Balance	Accu.
	(m ²)			Shrinkage	$Cut + (m^3)$		Vol. (m ³)	Vol.
	Cut	Fill		$10\% ({\rm m}^3)$			(Cut-Fill)	(m ³)
0+00	4.0	2.6						0
			0.5*(4+2)*200	600*0.1	600-60	0.5*(2.6+0)*200	+280	
			=600	=60	=540	=260		
2+00	2	0						+280
			0.5*(2+1)*200	300*0.1	300-30	0.5*(0+3)*200	-30	
			=300	=30	=270	=300		
4+00	1.0	3						+250
			0.5*(1+7)*200	800*0.1	800-80	0.5*(3+2)*200	+220	
			=800	=80	=720	=500		
6+00	7	2						+470
			0.5*(7+0)*300	1050*0.1	1050-105	0.5*(2+8)*300	-555	
			=1050	=105	=945	=1500		
9+00	0	8						-85

M-H. Diagram

Example 1:

F.H.D=700m =7 st

Over haul $cost = 1500 \text{ ID/m}^3.st$

Waste cost = free haul distance = 4500 ID/m^3

Borrow cost = 6000 ID/m^3

Find cost for each m3, L= 5st, 9, 13 and 15st.

Solution:

F.H.D =7 st

1) L= 5st < 7st

 $Cost = free haul cost = 4500 ID/m^3$

2) L=9st>7st

L.E.H =F.H.D + Borrow cost $(ID/m^3)/Over$ haul distance cost $(ID/m^3.st)$

=7+6000/1500=11 st > 9 st

 $Cost = 4500 + 2*1500 = 7500 \text{ ID/m}^3$

3) L = 13st > L.E.H

Cost = waste cost + borrow cost

=4500+6000=10500 ID/m³

4) L= 15 st > L.E.H

 $Cost = 4500 + 6000 = 10500 \text{ ID/m}^3$