

Ali Saadoon Ahmed

Al-Maaref University College

Microprocessors

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H.

MOV AX , $5000\mathrm{H}$

MOV DS , AX $% \left(AX\right) =\left(AX\right) \left(AX$

MOV AL , 20H

MOV CL, 30H

ADD AL, CL

MOV CL, 10H

MUL CL

MOV SI , 4000H

MOV [SI] , AX

Ex: Write an ALP to multiply the word 1234H by the double word 12345678H. Store the result in locations starting in 54000H.

MOV AX , 1234H	MOV BX , 5678H
MOV CX , 1234H	MUL BX
MOV SI , AX	MOV DI , DX
MOV AX , 1234H	MUL CX
ADC AX , DI	ADC DX , 0000H
MOV BX , 5000H	MOV DS, BX
MOV [4000H], SI	MOV [4002H],AX
MOV [4004H],DX	HLT

Note: After executing **AND**, **OR**, or **XOR** instructions CF and OF are both 0. PF, SF, and ZF are updated . AF is undefined.

Ex : Write an ALP to clear bits 0 to 5, set bits 6 to 10 and complement bits 11 to 15 in a memory location 34000H.

Ans.

MOV AX , $3000\mathrm{H}$

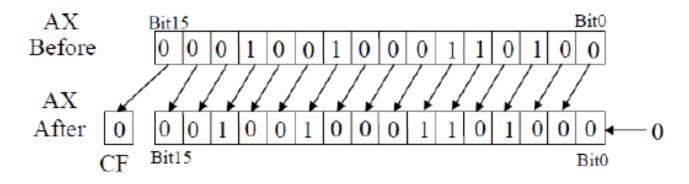
MOV DS , AX

AND [4000], FFC0H

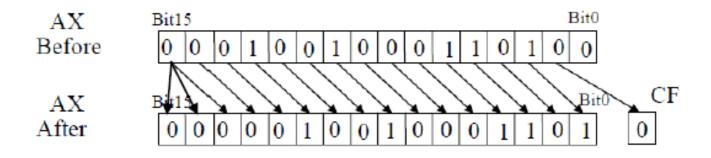
OR [4000], 07C0H

XOR [4000], F800H

HLT


Shift Instructions:

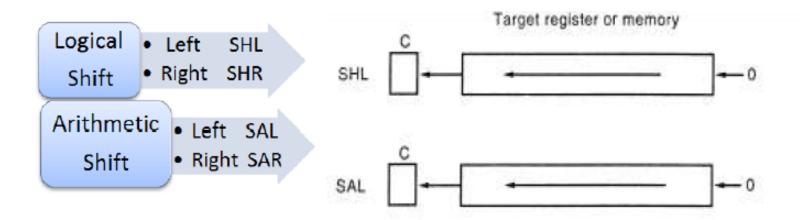
Shift instructions can perform two basic types of shift operations: **the logical shift** and **the arithmetic shift**. Also, each of these operations can be performed to the right or to the left. They have the ability to shift the contents of either an internal register or a storage location in memory.

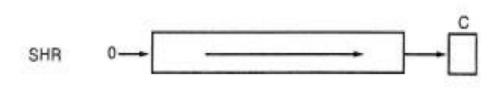


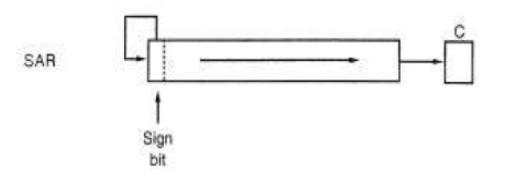
Ex: If (AX)=1234H, then, executing: SHL AX, 1

(AX) = 2468H & (CF)=0

Ex: If (CL)=2 and (AX)= 1234AH. Then, executing: SAR AX, CL leads to: (AX)=048EH & (CF)=0



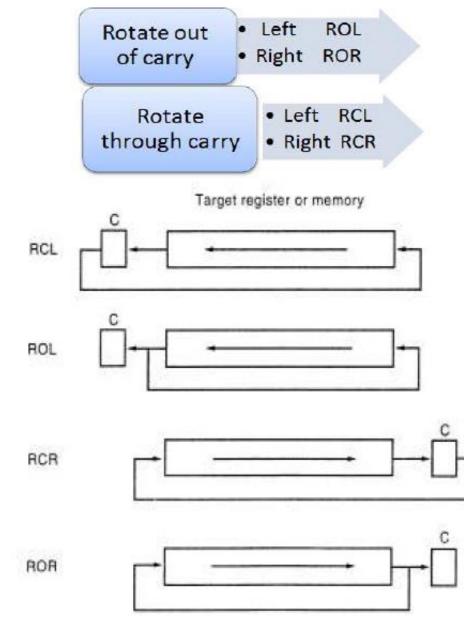



Mnemonic	Meaning	Format	Operation	Flags affected
SAL/SHL	Shift arithmetic left / Shift logical left	SHL D,1 SHL D,CL SAL D,1 SAL D,CL	Shift D (Reg. / Mem.) to left either by 1 bit or by number of bits stored in CL .	CF, PF, SF, Z AF undefined OF undefined if count ≠1
SHR	Shift logical right	SHR D,1 SHR D,CL	Shift D (Reg. / Mem.) to right either by 1 bit or by number of bits stored in CL.	CF, PF, SF, Z AF undefined OF undefined if count ≠1
SAR	Shift arithmetic right	SAR D,1 SAR D,CL	Shift D (Reg. / Mem.) either by 1 bit or by number of bits stored in CL.	CF, PF, SF, Z AF undefined OF undefined if count ≠1

Rotate (ROL, ROR, RCL, and, RCR) Instructions:

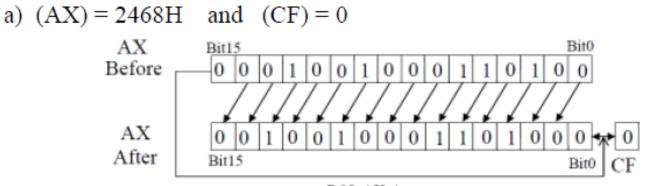
Rotate instructions, are similar to the shift instructions. The operation of these instructions is described below. They have the ability to rotate the contents of either an internal register or a storage location in memory.

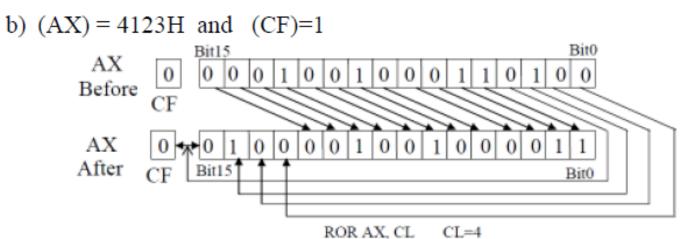
Mnemonic	Meaning	Format	Operation	Flags affected
ROL	Rotate left	ROL D,1 ROL D,CL	Rotate D (Reg./Mem.) left out of carry either by 1 bit or No. of bits stored in CL .	CF OF undefined if count ≠1
ROR	Rotate right	ROR D,1 ROR D,CL	Rotate D (Reg./Mem.) right out of carry either by 1 bit or No. of bits stored in CL .	CF OF undefined if count ≠1
RCL	Rotate left through carry	RCL D,1 RCL D,CL	Rotate D (Reg./Mem.) left through carry either by 1 bit or No. of bits in CL .	CF OF undefined if count ≠1
RCR	Rotate right through carry	RCR D,1 RCR D,CL	The same operation of RCL but to the right.	CF OF undefined if count ≠1



Rotate (ROL, ROR, RCL, and, RCR) Instructions:

Rotate instructions, are similar to the shift instructions. The operation of these instructions is described below. They have the ability to rotate the contents of either an internal register or a storage location in memory.





Ex : If (CL) =04₁₆ and AX=1234A₁₆. Determine the new contents of AX and the carry flag after executing the instructions: a) ROL AX, 1 b) ROR AX, CL

Ans.

Flags Control Instructions

The flag control instruction affect the state of the flags directly, these instructions and their operation are listed below:

Mnemonic	Meaning	Operation	Flags affected
LAHF	Load AH from flags	(AH)←(Flags)	None
SAHF	Store AH into flags	(Flags)←(AH)	SF,ZF,AF,PF,CF

LAHF instruction : Load (copy to) AH with the low byte the flag register.

 $(AH) \leftarrow (Low byte of flag register)$

SAHF instruction Store (copy) AH register to low byte of flag register.

(Low byte of flag register) \leftarrow (AH)

Ex: Write an ALP that complements the first byte of flags register.

LAHF

XOR AH , 0FFH

SAHF

HLT

Mner	monic	Meaning		Operation		Flags affected		
С	LC	Clea	Clear carry flag		(CF)←0		CF	
S	тс	Set	Set carry flag		(CF)←1		CF	
C	мс	Com	plement carry fl	flag (CF)←NOT (CF)		CF		
С	:LI	Clea	r interrupt flag	(IF)←0		IF		
S	TI	Set	interrupt flag	(IF)←1		-1	IF	
	Mnem	onic	Meaning	For	mat	Operation	ı	Flags affected
	CL	D	Clear DF	CLD		(DF)←0		DF
	ST	D	Set DF	STD		(DF)←1		DF

Compare CMP and TEST Instructions

The following are the characteristics of CMP instruction:

- Can compare two 8-bit or two 16-bit numbers.
- Operands many reside in memory, a register in the CPU or be a part of an instruction.
- CMP is a subtraction method, it uses 2's complement.
- Result of CMP is not saved in the destination operand.
- Results of comparison is reflected in the six status flags: CF, AF, OF, PF, SF and ZF.

Mnemonic	Meaning	Format	Operation	Flags affected
СМР	Compare	CMP D, S	(D)-(S) is used in setting or resetting the flags	CF, AF, OF, PF, SF, ZF

Destination	Source
Register	Register
Register	Memory
Memory	Register
Register	Immediate
Memory	Immediate
Accumulator	Immediate

Examples

CMP AX , BX CMP DL , CL CMP AL , [BX] CMP CX , 1234h CMP [SI+100H] , 1234H

CMP AX , BX

 $AX > BX \rightarrow CF = 0$ $AX < BX \rightarrow CF = 1$ $AX = BX \rightarrow ZF = 1$

The TEST Instruction

This instruction ANDs the contents of a source byte or word with the contents of specified destination word. Flags are updated but neither operand is changed. TEST instruction is often used to set flags before a conditional jump instruction.

Mnemonic	Meaning	Format	Operation	Flags Affected
TEST	test	TEST D, S	(D) . (S)	PF,ZF,SF

Computer Science Dept.

