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Part-1 Ordinary Differential Egautions

Review
First-Order ODEs

* Understanding the basics of ODEs requires solving problems by hand.

* The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called
mathematical modeling or, briefly, modeling.

* a model is very often an equation containing derivatives of an
unknown function. Such a model is called a differential equation.
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Some applications of differential equations




An ordinary differential equation (ODE) 15 an equation that contains one or several
derivatives of an unknown function, which we usually call v(x) {or sometimes v(¢) if the
independent variable is time t). The equation may also contain y itself, known functions

of x (or t), and constants. For example,

(1) y = cosx
(2) Y+ Oy =™

are ordinary differential equations (ODEs). Here, as in calculus, y' denotes dy/dx,
y' = dzyﬁirz, etc. The term ordinary distinguishes them from partial differential
equations (PDEs), which involve partial derivatives of an unknown function of tweo
or more varlables. For mstance, a PDE with unknown function i of two variables x
and vy 1s

Pu o u _




(4) Flx,y,»") =10

Concept of Solution

A function

y = hix)

1s called a solution of a given ODE (4) on some open interval a << x << b if hix) 1s
defined and differentiable throughout the interval and 1s such that the equation becomes
an identity if y and v" are replaced with h and &', respectively. The curve (the graph) of
h 1s called a solution curve.

Here, open interval a << x << b means that the endpoints a and & are not regarded as
pomts belonging to the interval. Also, a << x << b includes infinite intervals —e= << x < b,
a =< x =< ®, —w < x =< @ (the real line) as special cases.



Geometric Meaning of y'= 7(x, ))
Direction Fields, Euler’'s Method

A first-order ODE
(1) ¥ = flx, y)

has a simple geometric interpretation. From calculus you know that the derivative y'(x) of
vix) 1s the slope of v(x). Hence a solution curve of (1) that passes through a point (xg. vg)
must have, at that point, the slope ¥'(xg) equal to the value of f at that point; that is,

y'(xg) = fixg, yo).

Using this fact, we can develop graphic or numeric methods for obtaining approximate
solutions of ODEs (1). This will lead to a better conceptual understanding of an ODE (1).
Moreover, such methods are of practical importance since many ODEs have complicated
solution formulas or no solution formulas at all, whereby numeric methods are needed.



Figure 7 shows a direction field for the ODE
(2) v =y +x

obtained by a CAS (Computer Algebra System) and some approximate solution curves
fitted in.
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Fig. 7. Direction field of y' = y + x, with three approximate solution
curves passing through (0, 1), (0, 0), [0, —1), respectively
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Numeric Method by Euler

Given an ODE (1) and an initial value v(xg) = vy, Euler's method yields approximate
solution values at equidistant x-values xg, Xy = X + R, X2 = x5 + 2k, -+, namely,

¥1 = Yo + hfixp,. ¥e)  (Fig. 8)
¥2 =¥ + hfixg. vl etc

In general,
¥ = Fr-1 + "iﬂ:xrb— 1s }I'I'I-—l::l

where the step h equals, e.g.. 0.1 or 0.2 (as in Table 1.1} or a smaller value for greater

¥
ACCUTACY.
W
Table 1.1 Euler method fory' = y + x,y(0) = © for
x=0 ---,1.0 with steph = 0.2 M
L Xn ¥n Pz Error
0 0.0 0.000 0,000 0.000
| 0.2 0.000 0.021 0.021 P
2 04 0.04 0.002 0.052 i
3 0.6 0.128 0222 0.084 ' A |
4 0.8 0.274 0.426 0.152 k R
5 1.0 1488 0718 01.230 Fig. B. First Euler step, El'lﬂ'lu'l'il'g a solution curve, its tangent at (% 5 }".:.J-.
_ _ _ _ step h and increment if X, ¥o) in the formula fer ¥,




Linear ODEs. Bernoulli Equation.
Population Dynamics

A first-order ODE is said to be linear if it can be brought into the form

(1) ¥ + pixiy = nx),

by algebra, and nonlinear if it cannot be brought into this form.

* by algebra, and nonlinear if it cannot be brought into this form.

* p and r may be any given functions of x.

* If in an application the independent variable is time, we write t
instead of x.



Homopeneous Linear ODE. We want to solve (1) in some imterval a < x < b, call
it J, and we begin with the simpler special case that rix) is zero for all x in J. (This is
sometimes written Ax) = 0.) Then the ODE (1) becomes

(2) ¥ + pixiy =0

and is called homogeneous. By separating variables and integrating we then obtain

ay

? = —pix)dx. thns In |¥| = — Jp(xj:!:: + r*,
Taking exponents on both sides, we obtain the general solution of the homogensons
ODE (2),
(3) y(x) = pe [P (c = = when v =0

here we may also choose ¢ = 0 and obtain the trivial solution wx) = 0 for all x in that
interval.



Monhomogeneous Linear ODE. We now solve (1) in the case that nx) im (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.

We multiply (1) by F(x), obtaining

(1%) Fy' + pFy = rF.
The left side is the derivative {Fv)" = F'y + Fv" of the product Fy if
pEy = F'y, thus  pF = F'.
By separating variables, dF/F = p dx. By integration, writing h = [pdx,
In|F|=h = de.n thus  F ="
With this F and ' = p. Eq. (1*) becomes
e+ B ey = e o+ (@)Y = (@M = re®
By integration,

f"}' = Jf"r:ﬂ' + .

Dividing by fhﬁ we obtain the desired solution formula

(4) wx) = e"‘Ue"rm + c) h = Jp{x]d.:.



(4%)

wx) = E_"Jf"nﬂ' + ff_",

we seg the following:

(5) Total Output = Response to the Input r + Response to the Initial Data.

EXAMPLE 1

Frst-Order ODE, General Solution, Initial Value Problem
Solve the initial value problem

v +ytnxr=gnly, W=l
Solwtion. Hame p = tan @, 7 = sin 2y = 2 sin rcoax, and

- de:— Jtaﬂ:d:—h|m:1.
From thiz we ses that in (4),

e mgacxy, e MN=gosr  &F = (me 2 S0 roosx) = 2 S0 X

and the general solution of our equation is
VL) - ::::-a:(lJ’aiu:d:+ :‘)— cc08 X — 2 COEK.
From this and the initial condition, 1 = ¢ - 1 — 2 - 1®; thus ¢ = 3 and the solution of our initial value problem

ia].'-E-ma.t—Eca:la:.t.HmEIm:ﬁhmﬁﬂxiﬂﬁﬂdﬂmﬂ—ima’:i&ﬂlm@mmI:h.a
input zin 2x. N



EXAMPLE 2 Electric Circuit

Model the RL-cirenit in Fig. 19 and solve the resulting ODE for the current I A (amperes), where r is
time. Assume that the circuit containg as an EMF E(n (electromotive force) a battery of E = 48 V (volts), which
is congtant, aresisfor of B = 11 {1 (chms), and andsdnator of L = 0.1 H (henrys), and that the current is initially
Da,

Physical Laws. A current [ in the circuit canses a voltage drop B acroas the resistor (Ohm's law) and
a voltage drop LI" = L dljai acooas the conductor, and the sum of these two voltage drops equals the EMF
[ Kirchhoff"s Voltage Law, KVL).

Hemark. In general, KVL states that “The woltage (the electromotive force EMF) impressed on a closed
lIoop 48 equal to the sum of the voltage drops acroas all the other elements of the loop.” For Kirchoff™s Current
Law (KCL) and historical information, see footnote 7 in Sec. 2.9

Solution.  According to these laws the model of the BL-circuit is ILI" + BRI = Eif., in standand form

R, ED
& =7

@ 4K\\
5-a0v 2/

[}
L=0O1H 0. ﬂl ﬂ.ﬂE 0, IZI3 .m .05 §
Clrcult Current £

Fig. 19. RL-circuit



Wea can solwe thiz linear ODE by (4 withx =,y = [, p = R/L.h = (R/L}, obtaining the general sclution

I = s‘rR"L""'[i ‘E‘"-"“%d:+ :‘)

By integration,

Rl
(7 J = g iR Ee + :‘) ¥ % + cg— AL

In our case, RYL = 11/0.1 = 110 and E(f) = 48/0.1 = 480 = const; thus,

Il g g1l

In modeling, one often gets better ingight inbo the nature of a solution (and smaller roundoff errens) by inserting
given numeric data only near the end. Here, the general solution (7) shows that the current approaches the limit
E/R = 48/11 faster the larger B/L iz, in cour case, BYL = 11001 = 110, and the approsch iz wery fast, from
bedow if 0D < 45/11 or from above if K00 = 48711 IEN0) = 48 /11, the solution i= constant (48711 A). See

Fig. 19.
The initial value KO) = O givea i) = E/R + ¢ = 0, ¢ = —E/R and the particular soluticn

_E B P—
(8} :Hﬂs”':u-ﬂm:uﬂs:t o



EXAMPLE 3

Hormone Level

Aszume that the level of a certain hormone in the blood of a patient waries with time. Suppose that the time rate
of change is the difference between a siomaoidal input of a 24-hour period from the thyredd gland and a continnons
remnoval rate proportional to the level present. Sat up a mode] for the hormone level in the blood and find its
general soluticn. Find the particular sclution satisfying a suitable imitial condition.

Solution. Sep 1. Setting mp a model. Lat w1 be the hormone level at time ¢ Then the removal rate is (5.

The input rate is A + B cos af, where w = 29,24 = /12 and A iz the average mput rate; hers A = B o make
the input tate nonoegative. The corstants A, B, K can be determined from measarements. Hence the model is the

liesar OLYE
Vi) =In— Out = A+ Beosalf — Epif), thns  y" + Ey = A + Boosal,

The initial condition for a particular solution Y., 18 ¥p,0) = ¥ with 7 = 0 suitably chosen, for example,
LN

Slep 2. Genenal solmiion. In (4) we have p = K = comt, § = Ki, and r = A + B cos wi. Hence (4) gives the
gemeral soluticn (evaluate J'smn:a:ﬂ i df by integration by parts)



Wi - E'I‘J’Em[iﬂ. +B'l:=:l3|:.|.l.l')|::l'.l' + et

- K K¢ — K
- —+—! I wf + il +
& & 5 ( COg ot 210 ::]:| e

As B [:i:'-:::m.i'r'r+Wsj'lew-'r:]+-:'.5"":t
E K +iwiin® 212 '

The last term decresses to 0 as [ inceeases, practically after a short time and regardless of ¢ (that is, of the initial
condition). The other part of wir) is called the steady-state solution because it consists of constant and periodic
terma. The entire solution is callsd the tramsient-siate solution becanse it models the transition from reat to the
steady state. These terms ame used quite generally for phiysical snd other sysiems whoss behavicr depends on time.

Step 3. Padicular selution. Setting f = 0 in Wi and choosing v, = 0, we have
A B i A KB

() ==+ —K +c=0, thuos O o-—— .
d E KB iimnaw E K24 (m/2@

Inserting this result ioto W), we obtain the particulsr solution

A B [i at oW w-.r) (ﬁ_ KB ) B
parkf] = 2= + K cos — + — sin -|=+ &
¥ E K 4+omna® 212 I E E*4imnnt

with the steady-state part as before. To plot ., we must specify values for the constants, gy, A = B = 1
and K = 0005, Figure 20 shows thiz solotion. Motice that the transition period iz relatively short (although
K iz amall), and the curve scon looks sinuscidal; this is the response to the input A + Beos Gy wf) =
1 + cos (@), L]

1
0 100 200

Fig. 20, Particular solution in Example 3



Homogeneous Linear ODEs of Second Order

A second-order ODE 15 called hinear if it can be written
(1) v+ px)y’ + glx)y = r(x)

and nonlinear 1if it cannot be written 1n this form.

(2) v+ p)y’ + glx)y =0

and 1s called homogeneous. If r(x) £ (), then (1) 1s called nonhomogeneous.

an example of a nonlinear ODE 1s

" re
yvy+y-=A0



EXAMPLE 1 Homogeneous Linear ODEs: Superposition of Solutions
The functions y = cos x and v = sin x are solutions of the homogeneous linear ODE

y+y=10
for all x We verify this by differentiation and substitution. We obtain {cos x)" = —cos x; hence

v'+v=(cosx)" +cosx= —cosx + cosx = 0.
Similarly for y = sin x (verify!). We can go an important step further. We multiply cos x by any constant, for
instance, 4.7, and sin x by, say, —2, and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

(4T cosx —2sinx)” + (4. Tcosx— 2sinx) = —4Tcosx +2sinx + 4. Tcosx — 2 sinx = 0. L]



EXAMPLE 2 A Nonhomogeneous Linear ODE

Verify by substitution that the functions y = 1 + cosxand y = 1 + sin x are solutions of the nonhomogeneous
linear ODE

yVWo+y=1,

but their sum is not a solotion. Meither is, for instance, 2(1 + cos x) or 5(1 + sin x). ]

EXAMPLE 3 A Nonlinear ODE
Verify by substitution that the functions v = x® and v = 1 are solutions of the nonlinear ODE
¥Vy-xn'=0,

but their sum is not a solution. Neither is —x, so you cannot even multiply by —1! [



EXAMPLE 4

Initial Value Problem
Solve the initial value problem
Y o4+y=0, w0)=30, y'0)=—05.

Solution.  Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example 1),
and we take

¥ = £ COSX + Cp 80X,

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative ¥' = —ry sin x + ¢z cos x. From this and the
initial values we obtain, since cos 0 = | and sin 0 = 0,

vil)=¢ =30  and  ¥N0) =g = —05.
This gives as the solution of our initial value problem the particular solution

¥ =30cosx — (.5 sin x.

Fig. 29. Particular solution
and initial tangent in Figure 29 shows that at x = 0 it has the value 3.0 and the slope —0.5, s0 that its tangent intersects

Example 4

the x-axis atx = 3.0/035 = 6.0 . (The scales on the axes differ!) []



Homogeneous Linear ODEs with Constant Coefficients

(1) y' +ay + by =0.

r
the solution of the first-order linear ODE with a constant coefficient k _’_F + .ﬁ'.'__'l-" — 'EI'

1s an exponential function y = ce ™ This gives us the idea to try as a solution of (1) the
function

(2) y= e
Substituting (2) and its derivatives

y' = Ae™” and y' = AZeM®
mto our equation (1), we obtain

(A2 + gk + b)e™™ = 0.



Hence if A 15 a solution of the important characteristic equation (or awxiliary equation)
(3) M +ak+b=0

then the exponential function (2) 15 a solution of the ODE (1). Now from algebra we recall
that the roots of this quadratic equation (3) are

4) am=tlar VaZ—ab),  re=%(-a— Va® —ab).

(3) and (4) will be basic because our derivation shows that the functions

(5) yp=e"  and  yp ="

are solutions of (1). Verify this by substituting (3) mnto (1).



depending on the sign of the discriminant a® — 4b, namely,

(Case I) Two real roots if a> — 4b = 0,
(Case II) A real double root if a2 — 4b = 0,
(Case III) Complex conjugate roots if a> — 4b < 0.

Case |. Two Distinct Real-Roots A; and A,

In this case, a basis of solutions of (1) on any interval is

yp = eMi’ and yg = ehet

hecause yy and yo are defined (and real) for all x and their quotient 1s not constant. The
corresponding general solution is

(6) y = &M + 9.



EXAMPLE 2 Initial Value Problem in the Case of Distinct Real Roots :é
Solve the initial value problem 5
Y4y —2y=0, y0=4 0 =-5 4
T.%________F
Solution. Step 1. Gemeral solution. The characteristic equation is 2
| | | |
Mira—2=0 % 065 1 15 2z =

Its roots are
M=g(-1+V0 =1 and Az=3(-1-VT=-2
so that we obtain the general solution
¥ = cpe” + E'gf_m.

Step 2. Particular solution. Since y'(x) = e — Efzf_n, we obtain from the general solution and the initial
conditions

W0l = + o2 =4,

vil) = ¢, — 2o, = =5,
Hence ¢; = | and ¢ = 3. This gives the answer y = €* + 3¢™2. Figure 30 shows that the curve begins at

¥ = 4 with a negative slope {—35, but note that the axes have different scales!), in agreement with the initial
conditions. [



Case Il. Real Double Root A = —a/2

If the discriminant a® — 4b is zero, we see directly from (4) that we get only one root,
A=Ay = Ay = —al, hence only one solution,

yy = e—(@/2x

To obtain a second independent solution ys (needed for a basis), we use the method of
reduction of order discussed in the last section, setting vo = wyq. Substituting this and its

derivatives y5 = u'yy + uy] and yg into (1), we first have

(u'yy + 2u'y] + wyl) + alu'yy + wyy) + buyy = 0.



Collecting terms in u", u', and u, as in the last section, we obtain
u"yy + u'(2yy + ayy) + uly’] + ayy + byy) = 0.

The expression in the last parentheses 1s zero, since vy 18 a solution of (1). The expression
in the first parentheses is zero, too, since

2y1 = —ae = —ay.

We are thus left with u"v; = 0. Hence u” = 0. By two integrations, u = c1x + c2. To
get a second independent solution ve = wyq,, we can simply choose ¢ = 1, e = 0 and
take i = x. Then v = xy;. Since these solutions are not proportional, they form a basis.

Hence in the case of a double root of (3) a basis of solutions of (1) on any interval 1s

The corresponding general solution 1s

(7) y = (c] 4+ cox)e” T2,



EXAMPLE 4 Initial Value Problem in the Case of a Double Root
solve the initial valve problem
Yoy 4025 =0, w0)=30, D) =-35

Solution. The characteristic equation is AZ + A + 025 = (A + 0.5)2 = 0. It has the double roat A = —0.5.
This gives the general solution
¥ = () + cprle™ 05T,
We need its derivative
v = e ™5 — 0.5(c; + cox)e "B,
From this and the initial conditions we obtain

vy =¢, =30, ¥(0)=cy —0.5c; =35 hence gy = —2.

The particular solution of the initial value problem is y = (3 — 2x)e ™", See Fig. 31. [
>
3
2 1L
! _\
0 I T N T R B
24 & 8§ 10 12 14

-1+
Fig. 31. Solution in Example 4



1 = 1 ®
Case lll. Complex Roots —35a + iw and —3a — iw

This case occurs if the discriminant a> — 4k of the characteristic equation (3) 1s negative.
In this case, the roots of (3) are the complex A = — 1_:15:1 = 1w that give the complex solutions
of the ODE (1). However, we will show that we can obtain a basis of real solutions

ax/2

(8) ¥y = e W2 g @, Yo = & 511 X (w = 0)

where @” = b — :%az. It can be verified by substitution that these are solutions in the

present case. We shall derive them systematically after the two examples by using the
complex exponential function. They form a basis on any interval since their quotient
cot wx 1s not constant. Hence a real general solution in Case II1 1s

(9) y = e 2 (A cos wx + B sin wx) (A, B arbitrary).



EXAMPLE 5 Complex Roots. Initial Value Problem
Solve the initial value problem
¥+ 04y +904y =0, 0 =0, y'i0)=3.

Solution. Step 1. General solution. The characteristic equation is A~ + 0.4A4 + 9.04 = 0. It has the roots
—0.2 * 3{. Hence @ = 3, and a general solution (9} is

y = "4 cos 3x + B sin 3x).

Step 2. Particular solufiow. The first initial condition gives wi) = A = 0. The remaining expression is
¥ = Be ~%2F gip 3x. We need the derivative (chain rule!)

y' = B(—0.2¢7%% sin 3r + 3727 cos 3x).
From this and the second initial condition we obtain ¥'(0) = 38 = 3. Hence B = 1. Our solution is

1.0} v = e " gin 3x.

Fig. 32. Solution in Example 5



Thank you
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Undetermined Coefficients:
Particular Integrals

* Like the nonhomogeneous second order constant coefficient
differential equation, a particular integral yp(x) of the
nonhomogeneous linear higher order constant coefficient differential
equation

d"y d™ 1y dy (53)

mﬂn o1 Tt oot any = f(x)

is a solution of the equation that does not contain arbitrary constants,

SO
ary A1y dy
JP L a JP | | “.” | d:’

+a, v, = f(x).
dx" Py nYp = J(x]




* The complementary function yc(x) associated with (53) is the general
solution of the homogeneous form of the equation

d"y, d" 1y, dy,
:’IT”_I + e + ﬂ;r_l_E + Hrg_'!l-".ﬂ_' == {]-.

* It follows from the definitions of yc(x) and yp(x) and the linearity of
the equation that the general solution y(x) of (53) can be written

y(x) = yel(x) + yp(x). (54)



Example: Find the general solution of

Find the general solution of

V' + 5y +6y=4¢" + 5sinx.

Solution  The general solution is

y(x) = ye(x) + yp(x),

where y,(x) is the complementary function satisfying the homogeneous form of the
equation

Ye +3y, +6y. =0,

and yp(x) is a particular integral that corresponds to the nonhomogeneous term
4~ + Ssin x.
The characteristic equation 1s

W4+ 6=0,

with the roots 43 = —2 and i; = —3 corresponding to the linearly independent
solutions ¢=** and %, so the complementary function is

yelx) = Cie ™™ + Coe™>,

where C; and (; are arbitrary constants.



To find a particular integral, we notice first that neither the term ¢~ nor the term
sin x i1s contained in the complementary function. This means that the only form

of particular integral yp(x) that can produce the nonhomogeneous term 4e™* +
Jsin x 1S

yp(x) = Ae ™ + Bsinx + Ccos x,

where A, B, and C are the undetermined coefficients that must be found.
Substituting this expression for yp(x) into the differential equation leads to the
result

(Ae " — Bsinx — Ccosx) + 5(— Ae " + Bcosx — Csinx)
+ 6(Ae ™ + Bsinx + Ccosx) = 4¢~" 4 3sinx.

When we collect terms involving e, sin x, and cos x this becomes
2A¢™ +5(B— C)sinx +5(B + C)cosx = 4e* + Ssinx.

If yp(x) 1s a particular integral, this expression must be an identity (true for
all x), but this is only possible if the coefficients of corresponding functions of x on
either side of the equation are identical. Equating corresponding coefficients gives



(coefficientsof e™) 2A=4, soA=2
(coefficient ofsmx) 3(B—-C)=35
(coefficient ofcosx) S(B+C)=0.

Solving the last two equations for B and C gives B=1/2, C = —1/2, so the
particular integral 1s

yp(x) =2¢™" + (1/2)sinx — (1/2)cos x.
Substituting y.(x) and y,(x) into y(x) = y.(x) + yp(x) shows that the general solu-
tion 1s
y(x)=Cie ™™ + Gee ™ +2¢* + (1/2)sinx — (1/2)cos x. ]

A complication arises if a term in the nonhomogeneous term f(x) is contained
in the complementary function, as illustrated in the next example.



Example:

Find a particular integral of the equation

YV +y —12y =e™.

Solution  This equation has the complementary function

}:E'{I} — CIEEI i EEE_;“f

so e* is contained in both the nonhomogeneous term and the complementary

function.

An attempt to find a particular integral of the form y,(x) = Ae’* will fail,
because ¢** is a solution of the homogeneous form of the equation, so its substitution
into the left-hand side of the differential equation will lead to the contradiction
0 = . To overcome this difficulty we need to seek a more general particular
integral that, when substituted into the differential equation, produces a multiple

of e** whose scale factor can be equated to the coefficient of the nonhomogeneous



term and other terms that cancel. As exponentials are involved, a natural choice 1s
vp(x) = Ave'™,
Differentiation of y,(x) gives

y,(x) = Ae™ +3Axe™ and y)(x) = 6Ae™ + 9Axe™.
Substituting these results into the differential equation gives
6Ae™ + 9Axe™ + Ae™ + 3 Axe™ — 12Axe™ =&,
so after cancellation of the terms in Axe’* this reduces to
7 A8 = &%

showing that A= 1/7. So the required particular integral is

yp(x) = %IEH. o



TABLE 6.2 Particular Integrals by the Method of Undetermined Coefficients

The method applies to the linear constant coefficient differential equation

dy d" 1y dy
o T gt T e gt any = f),

which has the charactenstic equation
A"t A" e bap At an =0,
with the roots Ay, 32, ..., i, and the complementary function
J"EEI} =GOy -I:.:r::l + CE_}’IEI} +-- Cn_}’n{x]~

where yi(x). wix),.... vpl(x) are the hnearly independent solutions of the homogeneous equation ap-
propriate to the nature of the roots.



1. f(x) = constant. (A #0)

Include in yp(x) the constant term K.
2. flx)=ap+ax + axx” + - - + dpx™.

(a) If the left-hand side of the differential equation contains an undifferentiated term y(x),
include in yp(x) the polynomial

Apx™ + Apx™ 4. A

(b) If the left-hand side of the differential equation contains no undifferentiated function of
y(x). and the lowest order derivative 18 a y/dx”, include in yp(x) the polynomal

Agr™s 4 g emts—l 4 4 oA 5

3. f(x) = Peax.

(a) If «%* 1s not contained in the complementary function, include in yy(x) the term

Bet,



(b) If the complementary function contains the terms ™, xe™, ..., x™e™, include in yp(x)
the term

Bx™H AT

4. f(x)contains terms in cos px and/or sin px.

(a) If cos px and/or sin px are not contained in the complementary function, include in y,(x)
the terms

FPcos px + O'sin px.

(b) Ifthe complementary function contains the terms x cos px and/or x sin px, include in yp(x)
terms of the form

x*( Pcos px + Osin px).



Fan

(c) If the complementary function contains the terms x? cos px and/or x? sin px, include in
vpl(x) terms of the form

x*( Pcos px + Osin px).

f(x) contains terms in ™ cos gx and/or ™ sin gx.

(a) If ™ cosgx and/or ™ singx are not contained in the complementary function, include
1N yp(x) terms of the form

e ( Reos gx + Ssingx).

(b) If the complementary function contains xe™ cosgx and/or xe sin gx, include mn yp(x)
terms of the form

x*e™( Rcos gx + Ssin gx).



6.

7.

The required particular integral y,(x) 15 the sum of all the terms produced by identifying each
term belonging to f(x) with one of the types of term hsted above.
The values of the undetermined coefficients K, Ag, Ay, ..., An. B, P, @, K. and § are found

by substituting y,(x) into the differential equation, equating the coefficients of corresponding
functions on either side of the equation to make the result an identity, and then solving the
resulting simultaneous equations for the undetermined coefficients.

Table 6.2 lists the form of particular integral that correspond to the most com-
mon nonhomogeneous terms. Each of its entries can be constructed by using ar-
guments similar to the one just given. When the nonhomogeneous term is a linear
combination of terms in the table, the form of y,(x) 1s found by adding the forms
of the corresponding particular integrals.



Example:

Find the general solution of

y" =5y 4+ 6y =x* +sinx.

Selution  'The characteristic equation 1s
=53 +60=0, or A(A*—51+6)=0,
with the roots 43 =0, 42 = 2, and A3 = 3, so the complementary function is
ve(x) = C) + Cae™ + Gze™.

The function x* on the right-hand side is not contained in the complementary
function, but there i1s no undifferentiated term involving y(x) in the equation, so

from Step 2(b) in Table 6.2 the approprnate form of particular integral correspond-
ing to this term 1s

Ax + Bx* + Cx’.



The function sin x 1s not contained in the complementary function, so the form
of particular integral appropriate to this term is seen from Step 4(a) to be

Dsinx + Ecosx.
Combining these two forms shows that the general form of y,(x) s
vp(x) = Ax + Bx* + Cx” + Dsinx + Ecosx.
Substituting yp(x) into the differential equation gives

(6C — Deosx + Esinx) —5(2B+ 6Cx — Dsinx — Ecosx)
+6(A+2Bx +3Cx" + Dcosx — Esinx) = x* +sinx.



Equating coefficients of corresponding functions on each side of this expression
to make it an identity, we have
(constant terms) 6C — 10B+6A=10,
(terms In x) —30C+ 128 =0,
(terms in x*) 18C =1,
(terms in sin x) SD—-5E =1,
(termsincosx) JD+5E=0.

Solving these simultaneous equations gives A= 19/108, B=5/36,C =1/18, D =
1/10, and E = —1/10, so the particular integral 1s

-'{:-:}—19;:+5J:1+113+15i11:-:—lcc-sx
=108 T3 TR T 10 TR



Combining this with the complementary function shows the general solution to be

y(x) = C, + Ce™ + Gze™ + %I + ;—612 + 1—1813 + 11—[' sinx — %msx. B

Theorem:

Existence and uniqueness of solutions of nonhomogeneous linear equations Let
the coefficients and nonhomogeneous term of differential equation (53) be contin-
uous functions over an interval @ < x < b that contains the point x;. Then a unique

solution exists on this interval that satisfies the initial conditions

y(xo) = ko, YW(x0)=ki, ..., y" (x0) = k.



Example:

Solve the initial value problem

}:,H' — 4_}!" + 3_}1 — E_I, with -}J({]} — 2!. _}Jr({]} —1

Solution The charactenstic equation is
M+4+3=0,
with the roots 4, = —1 and 4, = —3, so the complementary function 1s
Ve(x) = Cie™ + G,

The nonhomogeneous term ¢ * 1s contained in the complementary function,
so by Step 3(b) in Table 6.2 we must seek a particular integral of the form

vp(x) = Axe™.
Substituting the expression for y,(x) into the differential equation gives

(—2Ae™ + Axe ')+ 4(Ae™ — Axe ™) +3Axe " =e¢", or 2Ae ™t =e ",



showing that A= 1/2. 50, in this case, the particular integral 15 y,(x) = (1/2)xe™"
and the general solution is

y(x) = Cre™ 4+ Cae ™ + (1/2)xe™".
The initial condition y(0) = 2 will be satisfied if

2=0C+(C,,
and the initial condition y'(0) = 1 will be satisfied if
1/2 =—-C, — 30,

so Cy = 13/4 and (; = —5/4. Substituting these values for C; and (; in the general
solution gives the solution of the initial value problem

13 1 3
y(x) = (T + EI) e — EE_JI. N
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Exact, Least-Squares, and Cubic Spline
Curve-Fits

* Engineers conduct experiments and collect data in the laboratories.
To make use of the collected data, these data often need to be fitted

with some particularly selected curves.

* For example, one may want to find a parabolic equation y = ¢ 1+ cax +
c3x"a2.

* which passes three given points (xi,yi) fori=1,2,3.
* This is a problem of exact curvefit.



* In case that we may want express this straight line by the equationy =
c 1+ c2x for the stress and strain data collected for a stretching test of
a metal bar in the elastic range, then the question of how to
determine the two coefficients c1 and c2 is a matter of deciding on
which criterion to adopt.

* The Least-Squares method is one of the criteria which is most
popularly used. The two cases cited are the consideration of adopting
the two and three lowest polynomial terms, x(0), x(1), and x(2),and
linearly combining them.



It the collected data are supposed to represent a sinusoidal function of time, the
curve to be determined may have to be assumed as x(t) = ¢,sint + ¢,sIn3t + ¢;51n5t
+ ¢ sin’/t by linearly combining 4 odd sine terms. This is the case of selecting four
particular functions, namely, f.(t) = sin(2i—1)t for 1 = 1,2,3.4., and to determine the
coefficients ¢,_, by application of the least-squares method.

EXACT CURVE FIT

let us consider the problem of finding a parabolic equation
y = C 1+ CX + Cax™: which passes three given points

(%.y;) for 1= 1.2.3. This is a problem of exact curve-fit. By simple substitutions of
the three points into the parabolic equation, we can obtain:

¢, +C,.X, +CX. =Y, fori=1,23 (1)



In matrix form, we write these equations as:

[A{C}=1{Y] (2)

where {C} = [c, ¢, ¢;]% { Y]} = [y, v, v:]'. and [A] is a three-by-three coefficient

matrix whose elements if denoted as a;; are to be calculated using the formula:

a. =x" fori,j=1,2,3 (3)



GENERALIZED LEAST-SQUARES
CURVEFIT

Let us consider N points whose coordinates are (X,..Y,) for k=1 to N and let
the M selected function be f,(X) to f,(X) and the equation determined by the least-
squares curve-fit be:

Y(X)=a,f(X)+af,(X)+...+a,f (X)= Zajfj{}{] (1)



Series Solutions of
Differential Equations



Y 4 p(x)y =r(x)  with y(xg) = », (1)

y' + P(x)y' + Q(x)y = R(x) with y(xo) = y. y'(x0) = n. (2)

where the functions p(x), r{x). P(x), Q(x), and R(x)can all be expanded as Taylor
series about the point x;.

Functions with this property are said to be analytic in a neighborhood of the
point x; or, more simply, to be analytic at x;. The method to be developed will be
seen to be capable of extension to a higher order linear differential equation in an
obvious manner, provided only that the coefficients of y and its derivatives that are
involved and the nonhomogeneous term are analytic at xp.

The approach is best illustrated by considering equation (1), and seeking a
solution about xp of the form

(x — xp)’

3!

X — X 2
V() = y(x0) + (x = 2}y (x0) + Sy () + ko) -

=) (x ;f“}n v xp).,  with y"(x) = d"y/dx".
=l -

(3)



Setting x = xp in (1) gives

v W(x0) + p(xo)y(xo) = r(xo),

but y(xo) = yo, 50

vy (x0) = r(x0) — p(xo)y(x0)
= r(xp) — plxo)yo.

To determine y'*'(x) we differentiate equation (1) once with respect to x to obtain

YA (x) 4+ p Y (x)v(x) + px)yM(x) = rD(a),

where p[”gx] = p'(x) and r'V(x) = r’(x). Then, after setting x = xy and using the
fact that v'"")(xo) = r(x0) — p(x0) . we find that

yH(x) = r'V(x0) — pM(x0) w0 — p(xo)[r(x0) — p(x0)y0].



Find the first five terms in the series solution of

Vv 4+ (14+x)y=sinx, withy(0)=a.

Solution  As the initial condition is specified at x = 0, the power series solution is
an expansion about the origin and so is, in fact, a Maclaurin series. The functions
1 + x* and cos x are analytic for all x, so the series expansion can certainly be found
about the origin.

Setting x = 0 in the equation and substituting for the initial conditions shows
that y'(0) = y'(0) = —a. Differentiation of the differential equation gives

v 4 2xy + (1 4+ 2y = cosx,
where y'*) = y”, so setting x = 0 this becomes
yA(0) + ¥ M0y =1,

but y'')(0) = —a and so y*/(0) = 1 4+ a. Repeating this process to find higher order
derivatives leads to the results y*(0) = —(1 + 3a), ¥'¥(0) = 9a, .. .. Substituting
these results into series (3) shows that, to terms of order x*, the required solution
takes the form

Xt x xt
y(x}za—ax—l—(l+E}E—(l—|—3ﬁr}ﬁ+9ﬂi+“=. N



Find the terms up to x° in the series solution of

Vi+xy +(1—x)y=x with y(0)=a, y'(0)=>.

Solution The coefficients x and (1 — x*) and the nonhomogeneous term x are
analytic for all x, so as the initial data is given at x = 0, a Maclaurin series solution
can be found.

Setting x = 0 in the equation and using the initial conditions y(0) =a and
v'(0) = b gives y'?)(0) = —a. Differentiating the differential equation we have

},[31_'_},11}_'__”,[ —2xyv+(1l —x }}[1]_

s0 setting x = 0 and using the results y*/(0) = —a and y'''(0) = b shows that
y30)=1 —2b. A repetition of this process leads to the results y'*(0) =
v2)(0) = 14b — 4, ..., so substituting into (3) shows that to terms of order x° the
Maclaurin series expansion of the solution 1s

}’(I}=ﬂ+b.t—%axz+ (1 _ﬁzb)ﬂ +i—jx"+(?bﬁgz)f+---. o




A General Approach to Power Series
Solutions of Homogeneous Equations

V(X)) =ap+@x+ax’ +ax +-- = Znnr”. (7)

ViX)=a1 + 2ax + 3asxt +-- - = an;x”‘]* (8)

Vix)=2a,+2 -3azx+3-dayx* 4+ - = Zﬂ{ﬂ — Da,x"=. (9)



Example

Find the recurrence relation that must be satished by coefficients in the series
solution of the differential equation

Y+ 20y + (14 x%)y =0

when the expansion i1s about the origin. Solve the initial value problem for this
differential equation given that y(0) = 3 and y'(0) = —1.

Solution  Substituting y(x) = 3 ° , a,x" into the differential equation and using
(8) and (9) gives

00 30 (W
Z n(n — 1a,x"* + 2x E na,x™ 1 + (1 + x?) Zﬂﬂx” = 0.
n=2 n=1 =i



Taking the factor 2x in the second term and the factor x* in the third term under
their respective summation signs allows the equation to be written in the form

& oo oo oo
Zﬂ{ﬂ — Da,x"— + ZEHIIHI" -- Za,,r” -- Zﬂ,,r”” = 0.
n=2 n=1 n=0 n=0

The powers of x in the first and last summations are different from those in the
middle two summations, so before combining the summations in order to find the
coefficient of each power of x, it will first be necessary to change the power of x in
the first and last terms fromn — 2 and n + 2 to n.

[n the first summation we set m = n — 2, causing the summation to become

i[m + 2)(m+ 1)ay,, x™.

m={



However, m1s simply a summation index that can be replaced by any other symbol,
so we will replace 1t by n to obtain the equivalent expression

o0

Z:(ﬂ + 2)(n+ 1agy,x".

n=0

Similarly, by setting m = n + 2 in the last summation, and then replacing m by n,
we find that

E a,x™ becomes E dy_ X"

n=2

We now substitute these last two results into the series solution of the differen-
tial equation to obtain

o0

Z[n +2)(n+ Dap2x" + z 2nayx" + z::rﬂx” - z::rﬂ 2x" =0,

n=0 n=1 n=2

where now each summation involves x", though not all summations start from n = 0.



Separating out the terms corresponding to n = () and n = 1, and collecting all
the remaining terms under a single summation sign in which the summation starts
from n = 2, this becomes

o0
2a; + ao + (6az + 3a)x + Y [(n+2)(n+ 1ansz + 3@ + ap_2]x" = 0.

n=>2

As already remarked, 1if this power series is to be a solution of the differential

equation it must satisfy the equation identically for all x, but this will only be possible
if in the foregoing expression the coefficient of each power of x vanishes. Applying

this condition to the preceding series we find that for it to vanish 1dentically for
all x.

(coefficient of x") 2a; +ay =10
(coefficient of x) 6asz 4+ 3a; =0



and

(coefficient of x") (n+2)(n+ 1)a,.» +3a,+a, =0, fornz=2

The first condition shows that

where ap and a; are arbitrary constants.



Legendre’s equation

* An important application of the power series method of solution is to
the Legendre differential equation

(1—x2)y" —2xy +a(x+ 1)y =0, (10)

in which & = 0 1s a real parameter. The equation arises in a variety of applica-
tions, but mainly in connection with physical problems in which spherical sym-
metry 1s present. It will be seen later that the equation finds its origin in the
study of Laplace’s equation when expressed in spherical coordinates. Solutions
of (10) are called Legendre functions, and they are examples of special functions,
or so-called higher transcendental functions, as distinct from elementary functions
such as sine, cosine, exponential, and logarithm. We first develop the series solu-
tions for arbitrary & = (), and then consider the cases e =n=10,1,2, ..., which
lead to a special class of polynomial solutions F,(x) called Legendre polynomials
in which n 1s the degree of the polynomial. The important properties of Legen-
dre polynomials will be examined later when the topic of orthogonal functions 1s
introduced.



Singular Points of Linear Differential
Equations

* Previously, the power series method was used to find a solution of a
homogeneous variable coefficient differential equation of the form

al(x)v" + b(x)yv +c(x)y = 0. (19)

* Expressed differently, when (19) is written in the standard form
v+ P(x)y' + QO(x)y =0, (20
with

. b(x) e .
P{}.}—m and Q{}.]—m. (21)



* the power series method can be applied to develop a solution about
any point x0 at which the functions P(x) and Q(x) are analytic.

* Points regular and singular where P(x) and Q(x) are analytic are called
regular points of the differential equation, and points where at least
one is not analytic are called singular points.

* Equation (20) will be said to have a regular singular point at x0 if the
functions

(x —xg)P(x) and (x— I[,}JQ[I}

 are analytic at x0, and so have Taylor series expansions about x0. If at
least one of these functions is not analytic at x0, the point will be said
to be an irregular singular point.
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Let A = [a;] be an n X n matrix. Consider the equation

(12) AX = Ax

where A is a scalar (a real or complex number) to be determined and x is a vector to be
determined. Now, for every A, a solution is x = 0. A scalar A such that (12) holds for
some vector X # 0 is called an eigenvalue of A, and this vector is called an eigenvector
of A corresponding to this eigenvalue A.

We can write (12) as
(13) (A — ADx = 0.

These are n linear algebraic equations in the n unknowns x4, ---, x,, (the components
of x). For these equations to have a solution x # 0, the determinant of the coefficient

matrix A — Al must be zero. This is proved as a basic fact in hinear algebra (Theorem 4



For n=2

(14) = ;

in components,
(14%) (@ — Ay + aypxs =10
dg1xXy  t+ (agg — Axg = 0.

Now A — Al is singular if and only if its determinant det (A — AlI), called the characteristic
determinant of A (also for general n), is zero. This gives

aj; — A a1
det (A — AI) =
{91 dgs — A
(15) = (ay; — Allagz — A) — ayaday

2
= A" — (ayy + @az)A + ayydsy — apsds; = 0.



This quadratic equation in A is called the characteristic equation of A. Its solutions are
the eigenvalues Ay and As of A. First determine these. Then use (14%) with A = Ay t0
determine an eigenvector x'V of A corresponding to A;. Finally use (14%) with A = Ao

to find an eigenvector X' of A corresponding to A-. Note that if x 15 an eigenvector of
A, sois kx with any k£ # 0.

Example
Eigenvalue Problem
Find the eigenvalues and eigenvectors of the matrix

(16) A=
—16 12

—4.0 4.{}]

Soelution. The characteristic equation is the quadratic equation

—4 — A 4

det |[A — Al| = = A2+ 280+ L6 =0.

— 1.6 1.2 — A

It has the solutions Ay = —2 and As = —0.8. These are the eigenvalues of A.
Eigenvectors are obtained from (14%). For A = Ay = —2 we have from { 14%)

(—40+ 200y + 40xs =0
—1.6x; +(1.24 2.00xs = 0.



A solution of the first equation 1s xy = 2, x9 = |. This also satisfies the second equation. {Why?) Hence an
eigenvector of A comesponding to Ay = —2.01s

2 1
(17 xL = [ ] Similarly, x=' = [ ]
1 0.8

15 an eigenvector of A corresponding to As = —0.8, as obtained from (14%) with A = As. Verify this. ]



Separable ODEs. Modeling

Many practically useful ODEs can be reduced fo the form

(1) 2 ¥ = f(x)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

(2) J gy) y'dx = J f(x) dx + c.

On the left we can switch to v as the variable of integration. By calculus, v'dx = dy, so that
o) [gma':u - [fmdx ‘e

If fand g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and v only on the left.



Mixing Problem

Mixing problems occur quite frequently in chemical indusiry. We explain here how to solve the basic model
nvolving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 1b of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time .

Solution. Step 1. Setting up a model. Let Wf) denote the amount of salt in the tank at time #. Its time rate

of change 1s
}1’ = Salt inflow rate — Salt outflow rate Balance law.

5 lb times 10 gal gives an inflow of 50 b of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01
{= 1% of the total brine content in the tank, hence 0.01 of the salt content w(¢), that is, 0.01 w#). Thus the
model 15 the ODE

() y' =50 — 0.0ly = —0.01(y — 5000).

¥
5000
4000
3000
2000

:2 1000
—_—

100 E | | | | |
0O 100 200 300 400 500 ¢

Tank Salt content w(t)




Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

¥ _dgm} = —0.01 dt, In [y — 5000| = —0.01z + c*, ¥ — 5000 = ce 01t

Initially the tank contains 100 Ib of salt. Hence w(0) = 100 is the initial condition that will give the unique

solution. Substituting y = 100 and ¢ = 0 in the last equation gives 100 — 5000 = ce? = . Hence ¢ = —4900.
Hence the amount of salt in the tank at time r is

(5) ¥it) = 5000 — 4900e 01,

100 & | | | | |
0 100 200 300 400 500 ¢

Salt content ¥(t)

Tank



Systems of ODEs as Models in Engineering
Applications

'F_____\‘] 2 gallmin .
T 1 2 gallmin T,
N
* Mixing Problem Involving Two Tanks ) System of tanks

* A mixing problem involving a single tank is modeled by a single ODE.
* The model will be a system of two first-order ODEs.

* Tank and in Fig. contain initially 100 gal of water each. In the water is
pure, whereas 150 |b of fertilizer are dissolved in . By circulating liquid
at a rate of and stirring (to keep the mixture uniform) the amounts of
fertilizer in and in change with time t.

* How long should we let the liquid circulate so that T1 will contain at
least half as much fertilizer as there will be left in 727



Solution. Step 1. Setting up the model. As for a single tank, the time rate of change y1(#) of y,(f) equals
inflow minus outflow. Similarly for tank T3. From Fig. 78 we see that

2 2

?J—Il'lﬂl.'.'lw min — Outflow/min = — - % lank Tj

! JIF }F I'EH}H 100 ! { 1:}
}"J Inﬂnw}"min - E}l.'ll.ﬂl.'.'l"ilu"]l'rmll'l Y1 — ¥ {]ﬂl'll{ TE:}
: 100 . 100 : L

Hence the mathematical model of our mixture problem is the system of first-order ODEs

yi = —0.02y; + 0.02ys (Tank Tq)

ya = 0.02y; — 0.02y2 (Tank Ta).

¥1

As a vector equation with column vector y = [ ] and matrix A this becomes

¥2



002 002
¥y = Ay, where A= :
0.02 —0.02

Step 2. General solation. As for a single equation, we try an exponential function of f,
(1) y = xe'’, Then v = Axe™ = Axe™.

Dividing the last equation Axe™ = Axe™ by e* and mierchanging the left and right sides, we obiain
Ax = Ax.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

—0.02 — A 0.02
(2) det (A — Al = = (—0.02 — A% —0.02% = AA + 0.04) = 0.
0.02 —0.02 — A



We see that Ay = 0 (which can very well happen—don’t get mixed up—it is eigenvectors that must not be zero)
and As = —0.04. Eigenvectors are obtained from (14*) in Sec. 4.0 with A = 0 and A = —0.04. For our present

A this gives [we need only the first equation in (14%)]

—0.02xy + 0.02xs = 0 and (—0.02 + 0.04)xy + 0.02xg = 0,

respectively. Hence xy = x5 and xy = —x,, respectively, and we can take xy = xs = land xy = —x9 = L.
This gives two elgenvectors corresponding to Ay = 0 and As = —0.04, respectively, namely,

1 1
D = and X = .
1 —1

|
(3) v = epxPettt + oo @etat = | |+ e ,—0.04t
| —1

we thus obtain a solotion

where ¢y and cg are arbiirary constants. Later we shall call this a general solution.



Step 3. Use of initial conditions. The mitial conditions are yy(0) = 0 {no fertilizer in tank Ty) and yo(0) = 150.

From this and (3) with + = 0 we obtain
| | c] + oo [
+ o = = .
| —1 ] — 2 150

In components this is ¢y + ¢ = 0,6y — g = 150. The solution 1s ¢y = 75, c5 = —75. This gives the answer

¥(0) =

1 1
y = T5x"Y — 755 00t — ?5[ l - 75[ ]r“”‘“.
1 —1

In components,

y1 =75 — 7504 (Tank Tj, lower curve)
ya = 75 + T5e 0¥ (Tank T3. upper curve). i’{;
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Electrical Network

* Find the currents I1 and 12 in the network. Assume all currents and
charges to be zero at t=0, the instant when the switch is closed.

* Solution. Step 1. Setting up the mathematical model. The model of

this network is obtained from
L=1henry C=0.25farad

Kirchhoff’s Voltage Law, — 00— ——
tch w1, Ly| (1, Ly
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