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Logic circuits are of two types: 
1. Combinational circuits 

2. Sequential circuits 

The combinational logic circuit  is built from logical gates only. 

While the sequential logic circuit is mainly built from flip flops in  addition 

to logical gates 

 

 
 

The sequential logic circuit (or state machine) differs from the 
combinational circuit in that it has a memory. Its output(s) depend(s) 
on its present input(s) and the previous states of the circuit. 
The state machines are either synchronous or asynchronous 

ll the units (flip flops) machine, a synchronous statecircuits. In the 
of the circuit change their present states to the next states 

controlled by a master clock).simultaneously ( 
 no master clockstate machine, there is  the asynchronousIn 

controlling the transition of the circuit’s units from the present 
states to the next states. 
There are two models for designing state machines (the Mealy 

mode MOOREThe model  
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Starting from an initial waiting state A, if a 0 is received the circuit 
stays in the same state. For a 1, however, there is a transition to 
state B, indicating the start of the required sequence. If, while in this 
state, a 0 is received, i.e. sequence (10), the circuit changes to state 
C. When in state C, if a 1 is received, completing the sequence (101), 
the circuit changes to state D, giving the required output. An input 
of 0 returns the circuit to state A to await the start of another 
sequence. When the circuit is in state D, a 1 returns it to state B, and 
a(0) returns it to state A. 
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It is clear that the output column in the Moore state – table has a 

unique value for each state. 

Analysis of Synchronous State Machines 
The analysis process is the reverse of the design process. Here, we 
have a designed state machine (or sequential logic circuit) and it is 
required to obtain its state-diagram. 
In the design, we start with a state-diagram and end with the circuit 
diagram. But in the analysis, we start with the circuit diagram and 
end with the state-diagram. 
Therefore in the analysis, the steps of design are applied reversely: 
From the circuit diagram, 
 1-the equations of the flip flops inputs as well as the         

output(s) equation(s) are derived                                                 
2-Drawing the K-map of each equation. 
3-Construction of the binary-assignment table. 
4-Obtaining the state-table. 
5-Drawing the state-diagram. 

: 1 Example 

Let us analyze the following synchronous sequential 
circuit. 
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The following equations are derived from the circuit 
diagram: 

 
Since Z is independent of the input X, so the circuit was 

designed by the Moore model. 

The K-map of the equation (D1 = X1 + y2 ' )is obtained as follows: 

The first term in the equation is X1, the cells in the K-map that 

gives the value ofthe group shown in blue color are filled by 1. 

The Boolean expression of this group is X1. 

 

 

 



 

5 
 

 

 

Since Z = y1 then the last column of Z values is filled with the same 

values of y1 in the first column. The final binary assignment table 

will be: 
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in the state-assignment table, each state is denoted by a binary 

code. Now, we have to represent the states by symbols instead of 

codes. 

 

 

Finally, the state-diagram is constructed from the above 

state table. 

 



 

7 
 

 

 



 

8 
 

 

 

 

    



 

9 
 

 

 

 



 

10 
 

Counters                                                                                         

● A counter is a sequential circuit (aka. finite state machine) that 
cycles through a fixed sequence of states.  

● The state of the counter is stored in Flip-Flops.  

● An n-bit counter 

 – has n Flip-Flop 

– can cycle through at most 𝟐𝒏 states. 

 

 



 

11 
 

Binary Counters 

● An n-bit binary counter is a counter that cycles through all 
     2 n states in ascending (or descending) order. 
      

 

 Binary Counters: Design 

1. Draw a state graph that specifies the desired sequence 
    Of the counter.    
2. Construct a state table from the state graph.  
    One Flip-Flop for each bit in the state.  
3. Derive a K-map from the state table for each Flip-Flop.      
    Input Select the type of Flip-Flop to be used. 
4. Determine the input equation(s) for each Flip-Flop. 
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(0 to 7 to 0) State Table (using D FF) Example:  

                  

 

DA=A’ 
DB= AB’+A’B=A⊕ B 
DC=B’C +A’C +ABC’ 

 
Binary Counters: Design Example: 

Circuit Diagram (using D FF) 
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Binary Up-Down Counters.(U-UP),(D-DOWN)  

 

 

Binary Up-Down Counters 



 

14 
 

 

is one that is capable of progressing in either direction  up/down counterAn 

through a certain sequence. An up/down counter, sometimes called a 

bidirectional counter, can have 

 upwardbit binary counter that advances -any specified sequence of states. A 3

through its sequence 

 (0, 1, 2, 3, 4, 5, 6, 7) 

and then can be reversed so that it goes through the 

sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of 

sequential operation up/down 

         

 

     
 

Design the following counter using  Example: 

D- Flip-Flops. 
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Example: K-maps (for D FF inputs) 
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Circuit Diagram (using D FF) 

 

General Models of Finite State Machines 
A Moore state machine consists of combinational logic that 

determines the sequence and memory (flip-flops), as shown in 

Figure 9–1(a). A Mealy state machine is shown in part (b) 

 

FIGURE 9–1 Two types of sequential logic. 

In the Moore machine, the combinational logic is a gate array with outputs 
that determine the next state of the flip-flops in the memory. There may or 
may not be inputs to the combinational logic. There may also be output 
combinational logic, such as a decoder. 
If there is an input(s), it does not affect the outputs because they always 
correspond to and are dependent only on the present state of the 
memory. For the Mealy machine, the present state affects the outputs, 
just as in the Moore machine; but in addition, the inputs also affect the 
outputs. 
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The outputs come directly from the combinational logic and not the 
memory. 
Example of a Moore Machine 
Figure 9–2(a) shows a Moore machine (modulus-26 binary counter with 
states (0 through25) that is used to control the number of tablets (25) that 
go into each bottle in an assembly 
line. When the binary number in the memory (flip-flops) reaches binary 
twenty-five(11001), the counter recycles to 0 and the tablet flow and clock 
are cut off until the next bottle is in place. 
The combinational logic for the state transitions sets the modulus of the 
counter so that it sequences from binary state 0 to binary state 25, where 
0 is the reset or rest state 
and the output combinational logic decodes binary state 25. There is no 
input in this case, other than the clock, 
so the next state is determined only by the present state, 
which makes this a Moore machine. One tablet is bottled for each clock 
pulse. Once a bottle is in place, 
the first tablet is inserted at binary state 1, the second at binary state 2, 
and the twenty-fifth tablet when the binary state is 25. 
Count 25 is decoded and used to stop the flow of tablets and the clock. 
The counter stays in the 0 state until the next bottle is in position 
 (indicated by a 1). Then the clock resumes, the count goes to 1, and the 

cycle repeats, as illustrated by the state diagram in Figure 9–2(b). 
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FIGURE 9–2 A fixed-modulus binary counter as an example of a Moore state 

machine. The dashed line in the state diagram means the states between 

binary 1 and 25 are not shown for simplicity 

Example of a Mealy Machine 
Let’s assume that the tablet-bottling system uses three different 
sizes of bottles: a 25-tablet bottle, a 50-tablet bottle, 
and a 100-tablet bottle. This operation requires a state machine with 
three different terminal counts: 25, 50, and 100. 
One approach is illustrated in Figure 9–3(a). 
The combinational logic sets the modulus of the counter depending 
on the modulus-select inputs. 
The output of the counter depends on both the present state and the 
modulus-select inputs, 
making this a Mealy machine. The state diagram is shown in part (b). 
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FIGURE 9–3 A variable-modulus binary counter as an example of a 
Mealy state machine. The red arrows in the state diagram represent the 
recycle paths that depend on the input 
number. The black dashed lines mean the interim states are not shown for 

simplicity. 

Asynchronous Counters 

The term asynchronous refers to events that do not have a 
fixed time relationship with each other and, generally, do 
not occur at the same time. An asynchronous counter is 
one in which the flip-flops (FF) within the counter do not 
change states at exactly the same time because they do 
not have a common clock pulse 
A counter is a register that goes through a predetermined 
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sequence of states upon the application of clock pulses . 
Asynchronous counters 
Synchronous counters 
Asynchronous Counters (or Ripple counters) 

the clock signal (CLK) is only used to clock the first FF 
Each FF (except the first FF) is clocked by the preceding FF 
Synchronous Counters 

the clock signal (CLK) is applied to all FF, which means that 
all FF shares the same clock signal    
thus the output will change at the same time 
Asynchronous (Ripple) UP Counters 

The Asynchronous Counter that counts 4 number starts from 

 00  ,01,10,11 and back to 00 is called (MOD-4 Ripple Asynchronous Up-

Counter)   

Next state table and state diagram 

 

    
MPLE 9–4 

EXAMPLE 

Design a counter with the irregular binary count sequence shown  
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in the state diagram of Figure Use D flip-flops.  

 Solution: 
Step 1: The state diagram is as shown. Although there are only 
four states, a 3-bit counter binary states, 
the invalid states (0, 3, 4, and 6) can be treated as “don’t cares” 
state, you must make sure that it goes back to a valid state. 
Step 2: The next-state table is developed from the state diagram 
and is given in Table 

 
Step 3: The transition table for the D flip-flop is shown in Table 

 
Step 4: The D inputs are plotted on the present-state K-arnaugh maps Also 
“don’t cares” can be placed in the  
            cells corresponding to the invalid states of 000, 011, 100, and 110, 
as indicated by the red Xs. 
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Step 5: Group the 1s, taking advantage of as many of the “don’t 
care” states as possible for maximum simplification, as shown in 
The expression for each D input taken from the maps is as 
follows: 
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Step 6: The implementation of the counter is shown in Figure 

 
 

EXAMPLE  

Design a counter with the irregular binary count sequence shown 
in the state diagram of Figure Use D flip-flops. 
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A Synchronous Counter Design Using D Flip-Flops  
We will show how to design a synchronous counter which is capable of 
storing data and counting either up or down, based on input, using D flip-
flops.  Specifically, the counter will count up: 0, 1, 2, 3, 0, 1, 2, 3, … when 
the input x = 1, and count down when the input x = 0. 
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Suggested state definition tables, transition diagrams, transition tables, K-
maps for the respective logic functions, and schematics of the 
implementation using flip-flops and logic gates for D flip-flop scenario will 
be given. 
Brief Background 

A flip-flop (also called a latch), is a circuit that has two stable states and is 
often used to store state information (e.g., on/off, 1/0, etc.).  Indeed, it is a 
basic storage element used in sequential logic and a fundamental unit of 
digital electronic design for computer and communication systems, 
among others.  the flip-flop circuit can change states when a signal is 
applied to one or more control inputs, conveniently resulting in one or two 
outputs.  The flip-flop stores a single bit of data, and its two possible 
resulting states represent either a “one” or a “zero” condition. When used 
in finite-state machine design, the output and next state depend on both 
the current input as well as the current state, with the current state 
resulting from previous inputs.   As a result, the flip-flop can be used to 
count pulses and synchronize variably-timed input signals with a basic 
reference signal .While the terms flip-flop and latch are sometimes used 
interchangeably, we generally refer to the unit as a flip-flop if it is clocked; 
if it is simple, we refer to it as a latch , 

The popular D (“data” or “delay”) flip-flop can really be thought of as a 
memory cell, a delay line, or a zero-order hold .  Its true usefulness is its 
ability to capture the value of the D-input at a defined moment or portion 
of the clock cycle (such as the rising edge). This value, in turn, becomes 
the Q output ,  Inputs and resulting outputs can then be tracked and 
assessed by means of a truth table. 
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Figure 1: State Transition Diagram (D Flip-Flops) 

 

Table 2: State Transition Table (D Flip-Flops) 
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𝐷0 = 𝑄0 



 

29 
 

 

 

Example :Design a counter to count (1,4,5,3,2,6) using FSM? 

 Solution: 
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𝐴∗= 𝐴 B + 𝐴𝐶                                         𝐵∗= 𝐴  𝐵 +  𝐵   𝐶  + 𝐴 𝐶 

 



 

31 
 

 

𝐶∗= 𝐴 C + 𝐴𝐶 

 

A sequential circuit that goes through a prescribed sequence of states 

upon the application of input pulses is called a counter. The input pulses, called 

count pulses, may be clock pulses. In a counter, the sequence of states may 

follow a binary count or any other sequence of states. Counters are found in 

almost all equipment containing digital logic. They are used for counting the 
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number of occurrences of an even and are useful for generating timing 

sequences to control operations in a digital system.  

A counter is a sequential circuit with 0 inputs and n outputs. Thus, the 

value after the clock transition depends only on old values of the outputs. For a 

counter, the values of the outputs are interpreted as a sequence of binary digits 

(see the section on binary arithmetic). We shall call the outputs o0, o1, ..., on-1. 

The value of the outputs for the counter after a clock transition is a binary 

number which is one plus the binary number of the outputs before the clock 

transition. We can explain this behavior more formally with a state table. As an 

example, let us take a counter with n = 4. The left side of the state table 

contains 4 columns, labeled o0, o1, o2, and o3. This means that the state table 

has 16 rows. Here it is in full:  

 

As you can see, the right hand side of the table is always one plus the 
value of the left hand side of the table, except for the last line, where the value 
is 0 for all the outputs. We say that the counter wraps around. 
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Counters (with some variations) play an important role in computers. 
Some of them are visible to the programmer, such as the program counter (PC). 
Some of them are hidden to the programmer, and are used to hold values that 
are internal to the central processing unit, but nevertheless important. 
Important variations include: 

• The ability to count up or down according to the value of an additional 
input  

• The ability to count or not according the the value of an additional input  
• The ability to clear the contents of the counter if some additional input is 

1 
 • The ability to act as a register as well, so that a predetermined value is 

loaded when some additional input is 1 • The ability to count using a different 
representation of numbers from the normal (such as Gray-codes, 7- segment 
codes, etc)  

• The ability to count with different increments that 1 
Design of Counters  

Example A counter is first described by a state diagram, which is shows the 

sequence of states through which the counter advances when it is clocked. 

Figure  shows a state diagram of a 3-bit binary counter. 

 

The circuit has no inputs other than the clock pulse and no outputs other 

than its internal state (outputs are taken off each flip-flop in the counter). The 

next state of the counter depends entirely on its present state, and the state 
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transition occurs every time the clock pulse occurs. Figure  shows the sequences 

of count after each clock pulse. 

 

 

 

 

Once the sequential circuit is defined by the state diagram, the next step is to 

obtain the next-state table, which is derived from the state diagram in Figure  

and is shown in Table. 

 

 

 


