

1

Logic circuits are of two types:
1. Combinational circuits

2. Sequential circuits

The combinational logic circuit is built from logical gates only.

While the sequential logic circuit is mainly built from flip flops in addition

to logical gates

The sequential logic circuit (or state machine) differs from the
combinational circuit in that it has a memory. Its output(s) depend(s)
on its present input(s) and the previous states of the circuit.
The state machines are either synchronous or asynchronous

ll the units (flip flops) machine, a synchronous statecircuits. In the
of the circuit change their present states to the next states

controlled by a master clock).simultaneously (
 no master clockstate machine, there is the asynchronousIn

controlling the transition of the circuit’s units from the present
states to the next states.
There are two models for designing state machines (the Mealy

mode MOOREThe model

2

Starting from an initial waiting state A, if a 0 is received the circuit
stays in the same state. For a 1, however, there is a transition to
state B, indicating the start of the required sequence. If, while in this
state, a 0 is received, i.e. sequence (10), the circuit changes to state
C. When in state C, if a 1 is received, completing the sequence (101),
the circuit changes to state D, giving the required output. An input
of 0 returns the circuit to state A to await the start of another
sequence. When the circuit is in state D, a 1 returns it to state B, and
a(0) returns it to state A.

3

It is clear that the output column in the Moore state – table has a

unique value for each state.

Analysis of Synchronous State Machines
The analysis process is the reverse of the design process. Here, we
have a designed state machine (or sequential logic circuit) and it is
required to obtain its state-diagram.
In the design, we start with a state-diagram and end with the circuit
diagram. But in the analysis, we start with the circuit diagram and
end with the state-diagram.
Therefore in the analysis, the steps of design are applied reversely:
From the circuit diagram,
 1-the equations of the flip flops inputs as well as the

output(s) equation(s) are derived
2-Drawing the K-map of each equation.
3-Construction of the binary-assignment table.
4-Obtaining the state-table.
5-Drawing the state-diagram.

: 1 Example

Let us analyze the following synchronous sequential
circuit.

4

The following equations are derived from the circuit
diagram:

Since Z is independent of the input X, so the circuit was

designed by the Moore model.

The K-map of the equation (D1 = X1 + y2 ')is obtained as follows:

The first term in the equation is X1, the cells in the K-map that

gives the value ofthe group shown in blue color are filled by 1.

The Boolean expression of this group is X1.

5

Since Z = y1 then the last column of Z values is filled with the same

values of y1 in the first column. The final binary assignment table

will be:

6

in the state-assignment table, each state is denoted by a binary

code. Now, we have to represent the states by symbols instead of

codes.

Finally, the state-diagram is constructed from the above

state table.

7

8

9

10

Counters

● A counter is a sequential circuit (aka. finite state machine) that
cycles through a fixed sequence of states.

● The state of the counter is stored in Flip-Flops.

● An n-bit counter

 – has n Flip-Flop

– can cycle through at most 𝟐𝒏 states.

11

Binary Counters

● An n-bit binary counter is a counter that cycles through all
 2 n states in ascending (or descending) order.

 Binary Counters: Design

1. Draw a state graph that specifies the desired sequence
 Of the counter.
2. Construct a state table from the state graph.
 One Flip-Flop for each bit in the state.
3. Derive a K-map from the state table for each Flip-Flop.
 Input Select the type of Flip-Flop to be used.
4. Determine the input equation(s) for each Flip-Flop.

12

(0 to 7 to 0) State Table (using D FF) Example:

DA=A’
DB= AB’+A’B=A⊕ B
DC=B’C +A’C +ABC’

Binary Counters: Design Example:

Circuit Diagram (using D FF)

13

Binary Up-Down Counters.(U-UP),(D-DOWN)

Binary Up-Down Counters

14

is one that is capable of progressing in either direction up/down counterAn

through a certain sequence. An up/down counter, sometimes called a

bidirectional counter, can have

 upwardbit binary counter that advances -any specified sequence of states. A 3

through its sequence

 (0, 1, 2, 3, 4, 5, 6, 7)

and then can be reversed so that it goes through the

sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of

sequential operation up/down

Design the following counter using Example:

D- Flip-Flops.

15

Example: K-maps (for D FF inputs)

16

Circuit Diagram (using D FF)

General Models of Finite State Machines
A Moore state machine consists of combinational logic that

determines the sequence and memory (flip-flops), as shown in

Figure 9–1(a). A Mealy state machine is shown in part (b)

FIGURE 9–1 Two types of sequential logic.

In the Moore machine, the combinational logic is a gate array with outputs
that determine the next state of the flip-flops in the memory. There may or
may not be inputs to the combinational logic. There may also be output
combinational logic, such as a decoder.
If there is an input(s), it does not affect the outputs because they always
correspond to and are dependent only on the present state of the
memory. For the Mealy machine, the present state affects the outputs,
just as in the Moore machine; but in addition, the inputs also affect the
outputs.

17

The outputs come directly from the combinational logic and not the
memory.
Example of a Moore Machine
Figure 9–2(a) shows a Moore machine (modulus-26 binary counter with
states (0 through25) that is used to control the number of tablets (25) that
go into each bottle in an assembly
line. When the binary number in the memory (flip-flops) reaches binary
twenty-five(11001), the counter recycles to 0 and the tablet flow and clock
are cut off until the next bottle is in place.
The combinational logic for the state transitions sets the modulus of the
counter so that it sequences from binary state 0 to binary state 25, where
0 is the reset or rest state
and the output combinational logic decodes binary state 25. There is no
input in this case, other than the clock,
so the next state is determined only by the present state,
which makes this a Moore machine. One tablet is bottled for each clock
pulse. Once a bottle is in place,
the first tablet is inserted at binary state 1, the second at binary state 2,
and the twenty-fifth tablet when the binary state is 25.
Count 25 is decoded and used to stop the flow of tablets and the clock.
The counter stays in the 0 state until the next bottle is in position
 (indicated by a 1). Then the clock resumes, the count goes to 1, and the

cycle repeats, as illustrated by the state diagram in Figure 9–2(b).

18

FIGURE 9–2 A fixed-modulus binary counter as an example of a Moore state

machine. The dashed line in the state diagram means the states between

binary 1 and 25 are not shown for simplicity

Example of a Mealy Machine
Let’s assume that the tablet-bottling system uses three different
sizes of bottles: a 25-tablet bottle, a 50-tablet bottle,
and a 100-tablet bottle. This operation requires a state machine with
three different terminal counts: 25, 50, and 100.
One approach is illustrated in Figure 9–3(a).
The combinational logic sets the modulus of the counter depending
on the modulus-select inputs.
The output of the counter depends on both the present state and the
modulus-select inputs,
making this a Mealy machine. The state diagram is shown in part (b).

19

FIGURE 9–3 A variable-modulus binary counter as an example of a
Mealy state machine. The red arrows in the state diagram represent the
recycle paths that depend on the input
number. The black dashed lines mean the interim states are not shown for

simplicity.

Asynchronous Counters

The term asynchronous refers to events that do not have a
fixed time relationship with each other and, generally, do
not occur at the same time. An asynchronous counter is
one in which the flip-flops (FF) within the counter do not
change states at exactly the same time because they do
not have a common clock pulse
A counter is a register that goes through a predetermined

20

sequence of states upon the application of clock pulses .
Asynchronous counters
Synchronous counters
Asynchronous Counters (or Ripple counters)

the clock signal (CLK) is only used to clock the first FF
Each FF (except the first FF) is clocked by the preceding FF
Synchronous Counters

the clock signal (CLK) is applied to all FF, which means that
all FF shares the same clock signal
thus the output will change at the same time
Asynchronous (Ripple) UP Counters

The Asynchronous Counter that counts 4 number starts from

 00 ,01,10,11 and back to 00 is called (MOD-4 Ripple Asynchronous Up-

Counter)

Next state table and state diagram

MPLE 9–4

EXAMPLE

Design a counter with the irregular binary count sequence shown

21

in the state diagram of Figure Use D flip-flops.

 Solution:
Step 1: The state diagram is as shown. Although there are only
four states, a 3-bit counter binary states,
the invalid states (0, 3, 4, and 6) can be treated as “don’t cares”
state, you must make sure that it goes back to a valid state.
Step 2: The next-state table is developed from the state diagram
and is given in Table

Step 3: The transition table for the D flip-flop is shown in Table

Step 4: The D inputs are plotted on the present-state K-arnaugh maps Also
“don’t cares” can be placed in the
 cells corresponding to the invalid states of 000, 011, 100, and 110,
as indicated by the red Xs.

22

Step 5: Group the 1s, taking advantage of as many of the “don’t
care” states as possible for maximum simplification, as shown in
The expression for each D input taken from the maps is as
follows:

23

Step 6: The implementation of the counter is shown in Figure

EXAMPLE

Design a counter with the irregular binary count sequence shown
in the state diagram of Figure Use D flip-flops.

24

25

A Synchronous Counter Design Using D Flip-Flops
We will show how to design a synchronous counter which is capable of
storing data and counting either up or down, based on input, using D flip-
flops. Specifically, the counter will count up: 0, 1, 2, 3, 0, 1, 2, 3, … when
the input x = 1, and count down when the input x = 0.

26

Suggested state definition tables, transition diagrams, transition tables, K-
maps for the respective logic functions, and schematics of the
implementation using flip-flops and logic gates for D flip-flop scenario will
be given.
Brief Background

A flip-flop (also called a latch), is a circuit that has two stable states and is
often used to store state information (e.g., on/off, 1/0, etc.). Indeed, it is a
basic storage element used in sequential logic and a fundamental unit of
digital electronic design for computer and communication systems,
among others. the flip-flop circuit can change states when a signal is
applied to one or more control inputs, conveniently resulting in one or two
outputs. The flip-flop stores a single bit of data, and its two possible
resulting states represent either a “one” or a “zero” condition. When used
in finite-state machine design, the output and next state depend on both
the current input as well as the current state, with the current state
resulting from previous inputs. As a result, the flip-flop can be used to
count pulses and synchronize variably-timed input signals with a basic
reference signal .While the terms flip-flop and latch are sometimes used
interchangeably, we generally refer to the unit as a flip-flop if it is clocked;
if it is simple, we refer to it as a latch ,

The popular D (“data” or “delay”) flip-flop can really be thought of as a
memory cell, a delay line, or a zero-order hold . Its true usefulness is its
ability to capture the value of the D-input at a defined moment or portion
of the clock cycle (such as the rising edge). This value, in turn, becomes
the Q output , Inputs and resulting outputs can then be tracked and
assessed by means of a truth table.

27

Figure 1: State Transition Diagram (D Flip-Flops)

Table 2: State Transition Table (D Flip-Flops)

28

𝐷0 = 𝑄0

29

Example :Design a counter to count (1,4,5,3,2,6) using FSM?

 Solution:

30

𝐴∗= 𝐴 B + 𝐴𝐶 𝐵∗= 𝐴 𝐵 + 𝐵 𝐶 + 𝐴 𝐶

31

𝐶∗= 𝐴 C + 𝐴𝐶

A sequential circuit that goes through a prescribed sequence of states

upon the application of input pulses is called a counter. The input pulses, called

count pulses, may be clock pulses. In a counter, the sequence of states may

follow a binary count or any other sequence of states. Counters are found in

almost all equipment containing digital logic. They are used for counting the

32

number of occurrences of an even and are useful for generating timing

sequences to control operations in a digital system.

A counter is a sequential circuit with 0 inputs and n outputs. Thus, the

value after the clock transition depends only on old values of the outputs. For a

counter, the values of the outputs are interpreted as a sequence of binary digits

(see the section on binary arithmetic). We shall call the outputs o0, o1, ..., on-1.

The value of the outputs for the counter after a clock transition is a binary

number which is one plus the binary number of the outputs before the clock

transition. We can explain this behavior more formally with a state table. As an

example, let us take a counter with n = 4. The left side of the state table

contains 4 columns, labeled o0, o1, o2, and o3. This means that the state table

has 16 rows. Here it is in full:

As you can see, the right hand side of the table is always one plus the
value of the left hand side of the table, except for the last line, where the value
is 0 for all the outputs. We say that the counter wraps around.

33

Counters (with some variations) play an important role in computers.
Some of them are visible to the programmer, such as the program counter (PC).
Some of them are hidden to the programmer, and are used to hold values that
are internal to the central processing unit, but nevertheless important.
Important variations include:

• The ability to count up or down according to the value of an additional
input

• The ability to count or not according the the value of an additional input
• The ability to clear the contents of the counter if some additional input is

1
 • The ability to act as a register as well, so that a predetermined value is

loaded when some additional input is 1 • The ability to count using a different
representation of numbers from the normal (such as Gray-codes, 7- segment
codes, etc)

• The ability to count with different increments that 1
Design of Counters

Example A counter is first described by a state diagram, which is shows the

sequence of states through which the counter advances when it is clocked.

Figure shows a state diagram of a 3-bit binary counter.

The circuit has no inputs other than the clock pulse and no outputs other

than its internal state (outputs are taken off each flip-flop in the counter). The

next state of the counter depends entirely on its present state, and the state

34

transition occurs every time the clock pulse occurs. Figure shows the sequences

of count after each clock pulse.

Once the sequential circuit is defined by the state diagram, the next step is to

obtain the next-state table, which is derived from the state diagram in Figure

and is shown in Table.

