
المســــيطرات الرقمـــية المتقدمـــــــة

"المسيطرات الدقيقـــــــة "

Advanced Digital Controllers

"Microcontroller Course"

1) Important Notes over Electronics.

2) What is a Microcontroller?

3) Inside Components of the Microcontroller.

4) How does the Microcontroller Work?

5) Microcontroller Vs Microprocessor.

6) Short list of MCU Brands.

7) How to choose your chip?

8) Necessary connections of PIC Microcontroller.

9) Outputting Data / Signals

10) Applications examples.

11) Important Displays Interfacing For PIC MCU

1) Important Notes over Electronics

a) Pull Down Resistor Connection.

b) Pull UP Resistor Connection.

c) Relay Driver Circuit.

d) Logic Gates.

e) Test Board.

a) Pull Down Resistor Connection
- We use it to prevent the pin's voltage

to be floating due to the noises.

- When the switch is pressed, we get

input HIGH on the pin "B".

- When the switch isn't pressed, we

get input LOW on the pin "B".

- We use it to prevent the pin's voltage

to be floating due to the noises

- When the switch is pressed, we

get input LOW on the pin "B".

- When the switch isn't pressed,

we get input HIGH on the pin "B".

A Relay is an electromechanical

switch, that means that it is a

normal switch but it is controlled

electrically using a coil.

Relays rating is :

 The value and type of the voltage

applied across the coil to energize

the electromagnetic field.

 The max current can pass through

the contact without having a fault.

 The type and max value of the

voltage applied across the contact

without having a fault.

 Relay Driver circuit is a circuit used

to allow any IC to control any load

through a Relay.

 The Relay may require voltage or

current that the IC can't afford so we use this
circuit.

Diode: to prevent the back EMF of the relay's coil
from causing damage to the Transistor.

 Transistor: to allow the IC to control the Relay, We
use the Transistor in the saturation mode (as a
switch) and this makes the IC control the Relay no
matter the current or voltage required by its coil.

Resistor: to limit the current passing through the
base of the Transistor, so it protects the Transistor.

 It is important to be known that 1 in logic or High means 5 volt and
0 or Low means 0 volts.

 Also you must know that there is different forms for numbering:

1) Binary: consists of 0 and 1 only.

2) Decimal: it is the normal numbering system we are
using:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

3) Hex Decimal: consist of (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, F)

4) Octal: consist of (0, 1, 2, 3, 4, 5, 6, 7)

 NOT Gate

• AND Gate

• OR Gate

 It is a board that can be used several times as the component are
fixed and can be replaced from it and its used for prototype design
and testing also for practical experimental .

 Embedded Systems
 An embedded system is a product which uses a computer to run it but

the product itself is not a computer.

Microcontroller (MCU)
 Integrated electronic computing device or a small computer

on a single integrated circuit that includes three major
components on a single chip

 Microprocessor (MPU).

 Memory.

 I/O (Input/Output) ports.

Types of Microcontrollers:
Microcontrollers can be classified on the basis of internal bus width, architecture, memory and

instruction set. Figure below shows the various types of microcontrollers.

- When the ALU performs arithmetic and logical operations on a byte (8- bits) at an

instruction, the microcontroller is an 8-bit microcontroller. The internal bus width of 8-bit

microcontroller is of 8-bit. Examples of 8-bit microcontrollers are Intel 8051 family and

Motorola MC68HC11 family.

- When the ALU performs arithmetic and logical operations on a word (16-bits) at

an instruction, the microcontroller is an 16-bit microcontroller. The internal bus width

of 16-bit microcontroller is of 16-bit. Examples of 16-bit microcontroller are Intel 8096

family and Motorola MC68HC12 and MC68332 families. performance and computing

capability of 16 bit microcontrollers are enhanced with greater precision as compared to the

8-bit microcontrollers.

- When the ALU performs arithmetic and logical operations on a double word (32-

bits) at an instruction, the microcontroller is an 32-bit microcontroller.

The internal bus width of 32-bit microcontroller is of 32-bit. Examples of 32-bit

microcontrollers are Intel 80960 family and Motorola M683xx and Intel/Atmel

251 family.

The performance and computing capability of 32 bit microcontrollers are
enhanced with greater precision as compared to the 16-bit microcontrollers.

 Memory Architecture: All MCs use one of two basic
design models

- Harvard Architecture:

data bus and address bus are

separate. Thus a greater flow

of data is possible through

the CPU, and of course,

a greater speed of work.

- Von –Neumann (Princeton):

This model use share a common

bus for data and address bus.

 Microcontroller Applications:

These small devices have revolutionized the world of electronics. Today
microcontrollers are everywhere, think of a device and you will find a
microcontroller somewhere in it. May it be your remote control, cell
phone air conditioner, microwave oven, DVD player, home monitoring
system, environmental control (greenhouse, factory, home) television or
all have a microcontroller sitting inside . These small devices can do so
much, that only imagination is the limit. Moreover they are very simple
to use, you don't need to be an expert in electronics to use them in your
next project. A basic understanding of electronics, and digital circuits is
all that is required to get started. Once you are in the business, sky is the
limit. Think of any logical application and you will find microcontroller
handling the job nicely.

Industrial automation including automatic assembly lines, robots and
quality control systems all are backed by some kind of microcontroller.

PIC MUC Components
a) Central processing unit (CPU)

b) Read Only Memory (ROM)

c) Random Access Memory (RAM)

d) Special Function Registers (SFR)

e) Input /Output Ports

f) Serial Communication

g) Timers/Counters

h) A/D Converter

i) Power Supply Circuit

j) Oscillator

a) Central processing unit (CPU)
 This is a unit which monitors and controls all processes within the

microcontroller and the user cannot affect its work.

 It consists of several smaller subunits, of which the most important are:

a) Instruction decoder
b) Arithmetical Logical Unit (ALU)
c) Accumulator

b) Read Only Memory (ROM)
 Read Only Memory (ROM) is a type of memory used to

permanently save the program being executed.

 The size of the program that can be written depends on the size of
this memory.

 ROM can be built in the microcontroller or added as external chip,
which depends on the type of the microcontroller.

 Today’s microcontrollers commonly use 16-bit addressing, which
means that they are able to address up to 64 Kb of memory, i.e.
65535 locations. As a novice, your program will rarely exceed the
limit of several hundred instructions. There are several types of
ROM:-

 Flash Memory: Flash memory is a non-volatile memory used

mainly to store user programs. This type of memory can be

programmed electrically while embedded on the board. Some

microcontrollers have only 1 KB flash memory, while some others

can have 32KB or more. In addition to computers, flash memory is

also used in mobile phones and digital cameras.

 This type of memory was invented in the 80s in the laboratories of

INTEL and was represented as the successor to the UV EPROM.

Since the content of this memory can be written and cleared

practically an unlimited number of times, microcontrollers with Flash

ROM are ideal for learning, experimentation and small-scale

production. Because of its great popularity, most microcontrollers are

manufactured in flash technology today. So, if you are going to buy a

microcontroller, the type to look for is definitely Flash!

- MROM (Masked ROM).

- UV Erasable Programmable ROM (UV EPROM).

- EEPROM (Electric erasable programmable ROM).

 Random Access Memory (RAM) is a type of memory used for temporary storing

data and intermediate results created and used during the operation of the

microcontrollers.

 The content of this memory is cleared once the power supply is off.

 EEPROM Data Memory: EEPROM-type data memory is also very common in

many microcontrollers. The advantage of an EEPROM memory is that the

programmer can store nonvolatile data there and change this data whenever

required. For example, in a temperature monitoring application, the maximum

and minimum temperature readings can be stored in an EEPROM memory. If the

power supply is removed for any reason, the values of the latest readings are

available in the EEPROM memory. The PIC18F452 microcontroller has 256

bytes of EEPROM memory. Other members of the PIC18F family have more

EEPROM memory (e.g., the PIC18F6680 has 1024 bytes). The mikroC language

provides special instructions for reading and writing to the EEPROM memory of

a PIC microcontroller.

c) Random Access Memory (RAM)

 Register: In short, a register or a memory cell is an electronic circuit
which can memorize the state of one byte.

 Special Function Registers (SFR)
 Special Function Registers are part of RAM memory.

 In addition to registers which do not have any special and predetermined

function, every microcontroller has a number of registers (SFR) whose function

is predetermined by the manufacturer.

 Their bits are physically connected to particular circuits within the micro-
controller such as timers, A/D converter, oscillators etc.,

- Any change of their state affects the operation of the microcontroller or some of the circuits

e) Input /Output Ports
 In order to make the microcontroller useful, it has to be connected to additional

electronics, i.e. peripherals.

 Each microcontroller has one or more registers (called a port) connected to the
microcontroller pins.

 So the microcontroller will be connected to the peripheral devices through the pins
connected the port register.

 The port registers are controlled to be input or output using registers called TRIS registers,
so each port has its on TRIS register.

 So any bit in a PORTx can be input if the equivalent bit in the TIRSx
register is (1) and output if the equivalent bit in the TRISx register is
(0).

 Current sink/source capability is important if the microcontroller is
to be connected to an external device that might draw a large
amount of current to operate. PIC microcontrollers can source and
sink 25mA of current from each output port pin. This current is
usually sufficient to drive LEDs, small lamps, buzzers, small relays,
etc. The current capability can be increased by connecting external
transistor switching circuits or relays to the output port pins.

 Parallel connection between the microcontroller and
peripherals via input/output ports is the ideal
solution on shorter distances up to several meters.
However, in other cases when it is necessary to
establish communication between two devices on
longer distances it is not possible to use parallel
connection. Instead, serial communication is used.

 Serial Input-Output or Serial communication (also
called RS232 communication) enables a
microcontroller to be connected to another
microcontroller or to a PC using a serial cable. Some
microcontrollers have built-in hardware called USART
(universal synchronous asynchronous receiver-
transmitter) to implement a serial communication
interface.

Today, most microcontrollers have built in several different systems for
serial communication as a standard equipment. Which of these systems
will be used depends on many factors of which the most important are:

- How many devices the microcontroller has to exchange

data with?

- How fast the data exchange has to be?

- What is the distance between devices?

-Is it necessary to send and receive data simultaneously?

• One of the most important things concerning serial

communication is the Protocol which should be strictly

observed. It is a set of rules which must be applied in order

that devices can correctly interpret data they mutually

exchange. Fortunately, the microcontroller automatically takes

care of this, so that the work of the programmer/user is

reduced to simple write (data to be sent) and read (received

data).

• Baud Rate: The term baud rate is used to denote the number

of bits transferred per second [bps]. Note that it refers to bits,

not bytes. It is usually required by the protocol that each byte

is transferred along with several control bits. It means that one

byte in serial data stream may consist of 11 bits. For example,

if the baud rate is 300 bps then maximum 37 and minimum 27

bytes may be transferred per second.

• The most commonly used serial communication systems are:

1) I²C (Inter Integrated Circuit)

Inter-integrated circuit is a system for serial data exchange
between the microcontrollers and specialized integrated
circuits of a new generation. It is used when the distance
between them is short (receiver and transmitter are usually on
the same printed board). Connection is established via two
conductors. One is used for data transfer, the other is used for
synchronization (clock signal). As seen in figure below, one
device is always a master. It performs addressing of one slave
chip before communication starts. In this way one
microcontroller can communicate with 112 different devices.
Baud rate is usually 100 Kb/sec (standard mode) or 10 Kb/sec
(slow baud rate mode). Systems with the baud rate of 3.4
Mb/sec have recently appeared. The distance between devices
which communicate over an I2C bus is limited to several meters.

2) SPI (Serial Peripheral Interface Bus)

A serial peripheral interface (SPI) bus is a system for
serial communication which uses up to four conductors,
commonly three. One conductor is used for data
receiving, one for data sending, one for synchronization
and one alternatively for selecting a device to
communicate with. It is a full duplex connection, which
means that data is sent and received simultaneously. The
maximum baud rate is higher than that in the I2C
communication system.

This sort of communication is asynchronous, which means that
a special line for transferring clock signal is not used. In some
applications, such as radio connection or infrared waves
remote control, this feature is crucial. Since only one
communication line is used, both receiver and transmitter
operate at the same predefined rate in order to maintain
necessary synchronization. This is a very simple way of
transferring data since it basically represents the conversion
of 8-bit data from parallel to serial format. Baud rate is not
high, up to 1 Mbit/sec.

g) Timers/Counters

The microcontroller oscillator uses quartz crystal for its
operation. Even though it is not the simplest solution, there are
many reasons to use it.

The frequency of such oscillator is precisely defined and
very stable, so that pulses it generates are always of the
same width, which makes them ideal for time
measurement. Such oscillators are also used in quartz
watches. If it is necessary to measure time between two
events, it is sufficient to count up pulses generated by
this oscillator. This is exactly what the timer does.

Most programs use these miniature electronic
‘stopwatches’. These are commonly 8- or 16-bit SFRs
the contents of which is automatically incremented
by each coming pulse. Once a register is completely
loaded, an interrupt may be generated!. If the timer
uses an internal quartz oscillator for its operation
then it can be used to measure time between two
events (if the register value is T1 at the moment
measurement starts, and T2 at the moment it
terminates, then the elapsed time is equal to the
result of subtraction T2-T1). If registers use pulses
coming from external source then such a timer is
turned into a counter.

This is only a simple explanation of the operation
itself. It is however more complicated in practice.

How Does the Timer Operate?

In practice, pulses generated by the quartz oscillator are once

per each machine cycle, directly or via a prescaler, brought to

the circuit which increments the number stored in the timer

register. If one instruction (one machine cycle) lasts for four

quartz oscillator periods then this number will be

incremented a million times per second (each microsecond)

by embedding quartz with the frequency of 4MHz.

It is easy to measure short time intervals, up to 256
microseconds, in the way described above because it is the
largest number that one register can store. This restriction may
be easily overcome in several ways such as by using a slower
oscillator, registers with more bits, prescaler or interrupts. The
first two solutions have some weaknesses so it is more
recommended to use prescalers or interrupts.

Using a Prescaler in Timer Operation:

A prescaler is an electronic device used to reduce frequency by
a predetermined factor. In order to generate one pulse on its
output, it is necessary to bring 1, 2 , 4 or more pulses on its
input.

Most microcontrollers have one or more prescalers built in and
their division rate may be changed from within the program.
The prescaler is used when it is necessary to measure longer
periods of time. If one prescaler is shared by timer and
watchdog timer, it cannot be used by both of them
simultaneously.

Most microcontrollers have one or more prescalers built in
and their division rate may be changed from within the
program. The prescaler is used when it is necessary to
measure longer periods of time. If one prescaler is shared
by timer and watchdog timer, it cannot be used by both of
them simultaneously.

Using Interrupt in Timer Operation: If the timer register consists

of 8 bits, the largest number it can store is 255. As for 16-bit registers it is

the number 65.535. If this number is exceeded, the timer will be

automatically reset and counting will start at zero again. This condition is

called an overflow. If enabled from within the program, the overflow can

cause an interrupt, which gives completely new possibilities. For example,

the state of registers used for counting seconds, minutes or days can be

changed in an interrupt routine. The whole process (except for interrupt

routine) is automatically performed behind the scenes, which enables the

main circuits of the microcontroller to operate normally.

This figure illustrates the use of an interrupt in timer operation.

Delays of arbitrary duration, having almost no influence on the

main program execution, can be easily obtained by assigning

the prescaler to the timer.

Counters: If the timer receives pulses from the

microcontroller input pin, then it turns into a counter.

Obviously, it is the same electronic circuit able to operate in

two different modes. The only difference is that in this case

pulses to be counted come over the microcontroller input pin

and their duration (width) is mostly undefined.

This is why they cannot be used for time measurement, but for

other purposes such as counting products on an assembly line,

number of axis rotation, passengers etc. (depending on sensor

in use).

h) A/D Converter``

which converts continuous signals to
discrete digital numbers. In other words,
this circuit converts an analogue value
into a binary number and passes it to the
CPU for further processing.

This module is therefore used for input
pin voltage measurement (analogue
value). The result of measurement is a
number (digital value) used and
processed later in the program.

A/D converters are especially useful in
control and monitoring applications,
since most sensors (e.g., temperature
sensors, pressure sensors, force sensors,
etc.) produce analog output voltages.

•

External signals are usually fundamentally different from those the

microcontroller understands (ones and zeros) and have to be converted

therefore into values understandable for the microcontroller. An analogue to

digital converter is an electronic circuit

There are two things worth attention concerning the
microcontroller power supply circuit:

- Brown Out

- Reset Pin

Brown Out:

- It is a potentially dangerous state
which occurs when the microcontroller
is being turned off or when power
supply voltage drops to the lowest level
due to electric noise.

j) Oscillator

 Even pulses generated by the oscillator enable the operation of all circuits within the microcontroller.

 One of the factors that controls the speed of the microcontroller is the frequency of the oscillator.

 There are different modes of oscillators like:

 Low Power Crystal (LP)

 Crystal/Resonator (XT)

 High Speed Crystal/Resonator (HS)

 Resistor Capacitor (RC)

- As the microcontroller consists of several circuits which have different operating

voltage levels, this can cause its out of control performance. This circuit

immediately resets the whole electronics when the voltage level drops below the

lower limit.

Reset Pin
Master Clear Reset (MCLR) serves for external reset of the microcontroller. Reset

puts the microcontroller into a known state. Usually, after a reset, the program

starting from memory address 0 of the microcontroller is executed.

- We use capacitors with the oscillators to reduce noises and we chose

the capacitors values depending on the oscillator frequency and type.

- It is important to say that program instructions are not

executed at the rate imposed by the oscillator.

- There are four steps taken by the CPU to do an instruction:

1. Fetch

2. Decode

3. Execute

4. Transfer Finternal-clock = 1/Fosc

Tcycle = 4 * Tosc = Tfetch + Tdecode +

Texecute + Ttransfer

 The program is load into the microcontroller.

 Power supply is turned on, the control logic units disables
all other circuits except quartz crystal to operate.

 Power supply voltage reaches its maximum and oscillator
frequency becomes stable. SFRs are being filled with bits
reflecting the state of all circuits within the
microcontroller.

 Program counter is set to zero. Instruction from that
address is sent to instruction decoder which recognizes it,
after which it is executed with immediate effect.

 The value of the program counter is incremented by (1)
and the whole process is repeated several million times
per second.

 Microcontroller contains a Microprocessor.

 Microprocessor is a single chip CPU, microcontroller contains, a CPU and much
of the remaining circuitry of a complete microcomputer system in a single chip.

 Microcontroller includes RAM, ROM, serial and parallel interface, timer, interrupt
schedule circuitry (in addition to CPU) in a single chip.

 RAM is smaller than that of even an ordinary microcomputer, but enough for its
applications.

 Interrupt system is an important feature, as microcontrollers have to respond to
control oriented devices in real time. E.g., opening of microwave oven’s door
cause an interrupt to stop the operation. (Most microprocessors can also
implement powerful interrupt schemes, but external components are usually
needed).

 Microprocessors are most commonly used as the CPU in microcomputer
systems. Microcontrollers are used in small, minimum component designs
performing control-oriented activities.

 Microprocessor instruction sets are processing intensive, implying powerful
addressing modes with instructions catering to large volumes of data. Their
instructions operate on nibbles, bytes, etc. Microcontrollers have instruction sets
catering to the control of inputs and outputs. Their instructions operate also on a
single bit. E.g., a motor may be turned ON and OFF by a 1-bit output port.

6) How to choose your chip?

Logically:

Decide the type and number of the modules in the microcontroller

you will need in your project.

Check up the microcontrollers available in the market.

Look for the data sheet for each of them to get the one that you need

(look it up in the library of the software proteus easier than the

internet).

PIC16F887 Pin Configuration

 Connect Pin 11 and 32 to the Vcc and Pin 12 and 31 to the GND.

 Connect Pin 1 (MCLR) to a pull down resistor connection.

 Connect pin 13 and 14 to the oscillator and two capacitors like
the figure.

1) Introduction to Programming

2) mikroC Compiler

3) Structure of a Simple Program

4) Variables & Constants

5) Arrays

6) Operators

7) Flow Control

8) Functions

9) Notes

 Programming is writing the instruction that the Microprocessor will do.

 At first programs were written in Machine Code (0, 1).

 Then Assembly Language was invented as the hardware became complex
and we needed to make an easier language.

 Then the higher level languages were invented, They are much easier than

 assembly Language (C, Java).

 The microcontroller executes the program loaded in its Flash memory. This
is so called executable code (sequence of zeros and ones). It is organized in
12-, 14- or 16-bit wide words, depending on the microcontroller’s
architecture. Every word is considered by the CPU as a command being
executed during the operation of the microcontroller. For practical reasons,
as it is much easier for us to deal with hexadecimal number system, the
executable code is often represented as a sequence of hexadecimal
numbers called a Hex code. It used to be written by the programmer. All
instructions that the microcontroller can recognize are to gather called the
Instruction set. As for PIC microcontrollers the programming words of which
are comprised of 14 bits, the instruction set has 35 different instructions in
total.

2) MikroC Complier
The first thing you need to write a program for the microcontroller is a PC

program which understands the programming language you use, C in this case,

and provides a window for writing program. Besides, the software must 'know' the

architecture of the microcontroller in use. In this case, you need a compiler for C

language.

There is no compiler to be used for only one concrete microcontroller as there is

no compiler to be used for all microcontrollers. It’s all about software used to

program a group of similar microcontrollers of one manufacturer compiler. As the

name suggests, the compiler is intended for writing programs for PIC

microcontrollers in C language. It is provided with all data on internal architecture

of these microcontrollers, operation of particular circuits, instruction set, names of

registers, their accurate addresses, pin outs etc. When you start up the compiler,

the next thing to do is to select a chip from the list and operating frequency and of

course - to write a program in C language.

3) Variables and Constants
a) Why using Variables and

Constants?!

b) How to declare a Variable?

c) Variable Types.

d) Variable Name.

e) Examples of Variable declaration.

f) Constants declaration.

a) Why using Variables and Constants?!

- We use Variables and constants to store the data of the

program and deal with them like doing mathematical

operations or displaying their values.

- Variables are stored in RAM so we can change their values

during the program.

- Constants are stored in ROM so we can't change their values

during

the program.

 To declare a variable we need to describe the following:

1.Variable Type.

2.Variable name.

3.Value of the Variable (not a must).

And we write the declaration statement like this:

Variable Type Variable name = Variable
Value;

 Variable Names must be Unique.

 Variable Names must begin with alphabetical characters (uppercase or
lowercase) or Underscore characters.

 It may contain numbers and can contain uppercase or lowercase
characters.

 Variable Names must not be like the reserved names of the compiler.

 It must not contain any special characters like () : ; _ " ' & % $ # } [{].

 Examples:

 Correct Variable Names: (sum, Result, student_1, Student4, _sum).

 Wrong Variable Names: (5student, 5_student, #sum, if, switch, while, enum,
case, else, asm, goto

e) Examples of Variable Declaration

 int x ;

 char n = 'A' ;

 float sum = 0 ;

 long z =12 ;

 Int L = 0b110011 ;

 Declaring a constant is just like declaring a variable, we just put the

word const before the variable type.

 As we can't change the value of the constants during the program so

we must put their value when declaring them.

 Examples:

 const int x = 5 ;

 const char ch_1 = 'L' ;

4) Arrays

a) What are Arrays and why using them?

b) How to declare an array?

A) WHAT ARE ARRAYS AND WHY USING THEM?
•Array used to store elements with the same type in memory.

•We may use arrays to one operation to more than a couple of variables like adding

three number to an other three numbers in the same time.

•Arrays will help you to store and handle data easily during the program such as in

loops and many other uses.

b) How to declare an array?

 Like a variable with declaring name and type but we need to

add the number of elements (optional).

 Index of the elements of an array begins from zero.

 char name [] = "Ahmed" ;

 int numbers [4] = {1, 2, 3, 4} ;

 char name [] = {'A', 'h', 'm', 'e', 'd'} ;

 Arithmetic operators.

 Relational operators.

 Logical operators.

 Bitwise operators.

 Preprocessor operators.

 Ar i t h me t i c o p e r a t o r s

 Re l a t i o n a l o p e r a t o r s

 Lo g i c a l o p e r a t o r s

 Bi t wi s e o p e r a t o r s

 Pr e p r o c e s s o r o p e r a t o r s

 The Preprocessor parts of the code are not compiled.

 Replace symbols with other symbols or values in the program.

 Insert text file into a program.

 The processor operator is the ('#") characters.

 The semicolon characters (";") is not needed to

terminate a preprocessor command.

 Example1:

#define value // global declaration of a value

 Example2:
#include <file.h> // to include source file (headerfile.h)

Lec-5

6) Flow Control
Selection statement:

 if

 switch

Interation statement:

 while

 for

 do while

Unconditional statement:

 goto

 break

Selection statment "if"

 if (condition1)

{
Statement1;

}

else if (condition2)

{

Statement2;

}

else
Statement3;

 If condition1 happend do statement1.
 If condition2 happend do statement2.
 If non of themhappend do statement3.

 Example:

if(x==1)
{
Portb.f0 = 1;
}
else if (x==92&& L==91)

{

Portb.f1=1;

}

else

Portb.f3=1;

 Selection statment "switch“

 Example:

 switch(x) {

case condition1:

statement1;

case condition2:

Statement2;

defult:

Statement3;

}

 Check the variable x.

 If it is equal to condition1 do statement1.

 If it is equal to condition2 do statement2.

 If condition1 or condition2 didn't happen do statement3.

switch (x) {

case 1:

Portb.f0 = 1;

case 4:

Portb.

f3 = 1;

defult:
Portb.f7 = 1;

}

 Iteration statment "while"

 while (condition1)
{

Statement1;

}

If condition1 occurs, do statement1 until it changes.

Example:

while (L<=4)

{
Portc.f4=1;
L++;

}

 Iteration statment "for"

for (initial expression; condition expression; increment expression)

{

Statement1;

}

Example:

for (i=1; i<4; i++)

{

x++;

}

 It will begin with i = 1 then it will check if it is less than 4 and if this true

it will do x++ then increments i with 1 and then checks if the new value of

i is less than 4 or not if it was true it will do x++ then increments i with 1

and so on until i is equal or greater than 4 it will not do the loop and

continue the program.

 Iteration statment "do while"

 do{

Statement1;
}
while(condition1)

 It will do statement 1 then checks if condition 1 is happening it will

continue in the loop until condition 1 don't occur.

 Example:
do{

x++;
}

while(x<10);

 Unconditional statment "goto"

 start:

statement1; goto start;

 goto makes the program jump to the label called after it.

 Example:

Lamp:

x++;
goto lamp;

Unconditional statment "break"

 It breaks the flow of a part in the program.

 In the next example if y equal to 5 the processor will not continue the loop
and breaks it and will do the rest of the program.

 Example:

for (x = 4; x < 40; x ++)

{ y++;
if (y == 5)
break; }

7) Functions

• What is a function?

• How to Declare a function?

• Example.

-- What is a function?

• A function is a process which is outside the main function of the program and
you

can use it in the main function.

• It is similar to a function in Math - but not exactly the same -, it has input values

and it does some kind of operations on it then it gives you an output.

-- How to Declare a function?

•To declare a function we must put:

1.The Function's name.

2.What parameters will the function have as input (number of them and their
type).

3. What parameters will the function return as an output (Type).

 Example
 int square (int x)

In this example we here declared:

 Name of the function as square.

 It have one input parameter.

 The input parameter is integer.

 Its output is also an integer.

 int anything (int x, char y)

In this example we here declared:

 Name of the function as anything.

 It have two input parameters.

 The input parameter is integer and the other one is char.

 Its output is also an integer.

 Note that:

 If you don't want the function to have any input parameters you should

leave the two brackets empty () or write (void) between them.

 Example: int sum (), int sum (void).

 If you don't want the function to return any parameters you will write void

instead of the type that it returns.

 Example: void sum (int x), void sum ().

8) Structure Of Simple Program

Figure below illustrates the structure of a simple program, pointing out the parts.

 We will write the main program in a function called main.

void main () {

Program!

}

 Each statement must end with semi colon " ; ".

 White spaces doesn't matter.

Example: x = 6; is the same as x =6;

 Names are case sensitive (upper case and lower case).

Example: x is different from X

 To write comments use // before them for one line comment

and for more than one line comment use /* in the beginning and

*/ at the end of the comment.

Microcontrollers have dual worlds. An internal world; comprising
of registers, timers, CPU and other integrated devices, and an
external world, which consists of other devices, like LCD,
Keypads, speakers, sensors and what not. In order to
communicate with these devices microcontroller uses its pins,
also called I/O lines. The number of these I/O lines is one of the
major characteristics of a microcontroller.

PIC16F887 microcontroller, which is 40 pin device, it has one
MCLR pin, 4 Power supply and two for oscillator. The rest of 33 I/O
lines are available for connection to other devices.

In order pins’ operation can match internal 8-bit organization, all
of them are, similar to registers, grouped into five so called ports
denoted by A, B, C, D and E. All of them have several features in
common:

 For practical reasons, many I/O pins have two or three functions.
In case any of these alternate functions is currently active, that
pin may not simultaneously use as a general purpose
input/output pin.

 Every port has its “satellite”, i.e. the corresponding TRIS
register: TRISA, TRISB, TRISC etc. which determines
performance, but not the contents of the port bits.

By clearing some bit of the TRIS register (bit=0), the corresponding port pin is
configured as output. Similarly, by setting some bit of the TRIS register (bit=1),
the corresponding port pin is configured as input. This rule is easy to remember 0
= Output, 1 = Input.

Analog and Digital Pins
PIC16F887 has a number of pins, which can acquire analog data. The same pins however

can also be configured as digital, if not to be used as analog.

PORTA and TRISA register
PORTA is an 8-bit wide, bidirectional port. Bits of the TRISA and ANSEL registers control

the PORTA pins. All PORTA pins act as digital inputs/outputs. Five of them can also be

analog inputs (denoted by AN):

 RA0 = AN0 (determined by the ANS0 bit of the ANSELregister)

 RA1 = AN1 (determined by the ANS1 bit of the ANSELregister)

 RA2 = AN2 (determined by the ANS2 bit of the ANSELregister)

 RA3 = AN3 (determined by the ANS3 bit of the ANSELregister)

 RA5 = AN4 (determined by the ANS4 bit of the ANSELregister)

Similar to bits of the TRISA register determine which of the pins are to be
configured as inputs and which ones as outputs, the appropriate bits of
the ANSEL register determine whether pins are to be configured as
analog inputs or digital inputs/outputs.

Let's do it in mikroC...

// The PORTA.2 pin is configured as a digital input.

// All other PORTA pins are digital outputs

ANSEL = ANSELH = 0; // All I/O pins are configured as digital

PORTA = 0; // All PORTA pins are cleared

TRISA = 0b00000100; // All PORTA pins except PORTA.2 are configured as outputs

Similar to PORTA, a logic one (1) in the TRISB register configures the

appropriate PORTB pin as an input and vice versa. Six pins of this port can

act as analog inputs (AN). The bits of the ANSELH register determine

whether these pins are to be configured as analog inputs or digital

inputs/outputs

RB0 = AN12 (determined by the ANS12 bit of the ANSELH register)

RB1 = AN10 (determined by the ANS10 bit of the ANSELH register)

RB2 = AN8 (determined by the ANS8 bit of the ANSELH register)

RB3 = AN9 (determined by the ANS9 bit of the ANSELH register)

RB4 = AN11 (determined by the ANS11 bit of the ANSELH register)

RB5 = AN13 (determined by the ANS13 bit of the ANSELH register)

This port has several features which distinguish it from other ports and make its pins

commonly used:

All the PORTB pins have built in pull-up resistors, which make them ideal

for connection to push buttons (keyboard), switches and optocoupllers. In

order to connect these resistors to the microcontroller ports, the appropriate

bit of the WPUB register should be set.*

Having a high level of resistance (several tens of kiloohms), these ‘virtual’ resistors

do not affect pins configured as outputs, but serves as a useful complement to inputs.

As such, they are connected to the inputs of CMOS logic circuits. Otherwise, they

would act as if they are floating due to their high input resistance.

*Apart from the bits of the WPUB register, there is another bit affecting the

installation of all pull-up resistors. It is the RBPU bit of the OPTION_REG. If

enabled, each PORTB bit configured as an input may cause an interrupt by

changing its logic state. In order to enable pins to cause an interrupt, the

appropriate bit of the IOCB register should be set.

The PORTB pins are commonly used for checking push buttons on the keyboard

because they unerringly register any button press. Thus, there is no need to ‘scan’ these

inputs all the time.

When the X, Y and Z pins are configured as outputs set to logic one (1), it is

only necessary to wait for an interrupt request which arrives upon any button

press. After that, by combining zeros and ones on these outputs it is checked

which push button is pressed. Let's do it in mikroC...

/* The PORTB.1 pin is configured as a digital input. Any change of its logic state will cause

an .i.n.terrupt. It also has a pull-up resistor. All other PORTB pins are digital outputs.*/

ANSEL = ANSELH = 0; // All I/O pins are configured as digital

PORTB = 0; // All PORTB pins are cleared

TRISB = 0b00000010; // All PORTB pins except PORTB.1 are configured as outputs

RBPU = 0; // Pull-up resistors are enabled

WPUB1 = 1; // Pull-up resistor is connected to the PORTB.1 pin

IOCB1 = 1; // The PORTB.1 pin may cause an interrupt on logic state change

RBIE = GIE = 1; // Interrupt is enabled

PIN RB0/INT
The RB0/INT pin is the only ‘true’ external interrupt source. It can be configured

to react to signal raising edge (zero-to-one transition) or signal falling edge (one-

to-zero transition). The INTEDG bit of the OPTION_REG register selects the

appropriate signal.

PORTC and TRISC register

PORTC is an 8-bit wide, bidirectional port. Bits of the TRISC
register determine the function of its pins. Similar to other ports, a
logic one (1) in the TRISC register configures the appropriate
PORTC pin as an input.

PORTD and TRISD register

PORTD is an 8-bit wide, bidirectional port. Bits of the TRISD register

determine the function of its pins. A logic one (1) in the TRISD register

configures the appropriate PORTD pin as an input.

PORTE and TRISE register

Port E is a 4-bit wide, bidirectional port. The TRISE register’s bits determine
the function of its pins. Similar to other ports, a logic one (1) in the TRISE
register configures the appropriate PORTE pin as an input.

The exception is the RE3 pin which is always configured as an input.

Similar to ports A and B, three pins can be configured as analog inputs in this
case. The ANSELH register bits determine whether a pin will act as an analog
input (AN) or digital input/output:

RE0 = AN5 (determined by the ANS5 bit of the ANSELregister);

RE1 = AN6 (determined by the ANS6 bit of the ANSELregister); and

RE2 = AN7 (determined by the ANS7 bit of the ANSELregister).

ANSEL and ANSELH register

The ANSEL and ANSELH registers are used to configure the input mode
of an I/O pin to analog or digital.

The rule is:

To configure a pin as an analog input, the appropriate bit of the ANSEL or
ANSELH registers must be set (1). To configure a pin as a digital
input/output, the appropriate bit must be cleared (0).

The state of the ANSEL bits has no influence on digital output functions.
The result of any attempt to read a port pin configured as an analog input
will be 0.

In Short

•When designing a device, select a port through which the microcontroller will

communicate to peripheral environment. If you use only digital inputs/outputs,

select any port you want. If you intend to use some of the analog inputs, select

the appropriate ports supporting such a pin configuration (AN0-AN13).

• Each port pin may be configured as either input or output. Bits of the

TRISA, TRISB, TRISC, TRISD and TRISE registers determine how the

appropriate port pins- PORTA, PORTB, PORTC, PORTD and PORTE will

act. Simply...

•If you use some of the analog inputs, it is first necessary to set the

appropriate bits of the ANSEL and ANSELH registers at the beginning of

the program.

•If you use switches and push buttons as input signal source, connect them

to PORTB pins because they have pull-up resistors. The use of these

resistors is enabled by the RBPU bit of the OPTION_REG register,

whereas the installation of individual resistors is enabled by bits of the

WPUB register.

•It is usually necessary to respond as soon as input pins change their logic

state.

•However, it is not necessary to write a program for checking pins’ logic

state. It is far simpler to connect such inputs to the PORTB pins and enable

an interrupt to occur on every voltage change. Bits of the IOCB and

INTCON registers are in charge of that.

EXAMPLE 1

Writing header, configuring I/O pins, using delay function and switch
operator. The only purpose of this program is to turn on a few LED diodes
on port B. Anyway, use this example to study what a real program looks
like. Figure below shows connection schematic, while the program is on
the next page.

When switching on, every other LED diode on the PORTB emits light,
which indicates that the microcontroller is properly connected and
operates normally.

This example describes a correctly written header. It’s the same for all
the programs described in this book. To skip repetitiveness, it will not be
written in the following examples, but is considered to be at the
beginning of every program and marked as ‘Header’.

To make this example more interesting, we will enable LEDs
connected to the PORTB to blink. There are several ways to do it:

1. As soon as the microcontroller is turned on, all LEDs will emit
light for a second. The Delay function is in charge of it in the
program. It’s only needed to set delay expressed in milliseconds.

2. After one second, the program enters the for loop and remains
there as long as the variable k is less than 20. The variable is
incremented by 1 after each iteration. Within the for loop, the
switch operation monitors PORTB logic state. If PORTB=0xFF, its
state is inverted into 0x00 and vice versa. Any change of these
logic states causes all LEDs to blink. Duty Cycle is 5:1
(500mS:100mS).

3. When the program exits the for loop, the PORTB logic state
changes (0xb 01010101) and the program enters the endless
while loop and remains there as long as 1=1. The PORTB logic
state is inverted each 200mS.

Lec-7
EXAMPLE 2

8 LEDs are connected to PORT C of a PIC microcontroller. In addition, a

push- button switch is connected to port pin RB0. Write a program to turn

ON the odd numbered LEDs (at bit positions 1, 3, 5 and 7) when the button

is pressed and the even numbered LEDs (at bit positions 0, 2, 4 and 6) if the

button is not pressed.

#define START PORTB.RB0

void main) (

{

ANSEL = ANSELH = 0; // Configure all ports as

digital TRISB = 0x01; // RB0 input

TRISC = 0x00; // PORTC output

for (; ;) // DO FOREVER

{

if (START == 0)

{

PORTC = 0XAA;

Delay_Ms(500); // Delay 500ms

}

if (START == 1)

{

PORTC = 0X55;

Delay_Ms(500);

}

}

}

1) Interfacing 7-Segment Display With Pic MCU.

2) Interfacing Character LCD with PIC MCU.

3) Interfacing Graphics LCD (GLCD) With PIC MC

1) Interfacing 7-Segment Display With Pic MCU

A seven segment display is the most basic electronic display device that can display

digits from 0-9. The most common configuration has an array of eight LEDs

arranged in a special pattern to display these digits. These device are commonly

used in digital clocks, electronics meters, counters and signaling.

A common pin is also associated with the 7-segment, which is used to identify the

type of 7-segment display; whether it is common anode or common cathode. In

common anode display, the positive pins of all the LEDs are tied together to form

the common pin which needs to be provided a ‘HIGH’ signal. In common cathode

display, all the cathode connections of the LEDs are tied together which forms the

common pin that needs to be grounded.

Number gfedcba Hexadecimal

0

1

2

3

4

5

6

7

8

9

0111111

0000110

1011011

1001111

1100110

1101101

1111101

0000111

1111111

1101111

3F

06

5B

4F

66

6D

7D

07

7F

6F

The Liquid Crystal Display (LCD) is one of the most commonly used
displays today. There are basically three types of LCDs as far as the
type of data that can be displayed is concerned: Segment LCD, Dot
Matrix LCD and Graphic LCD.

Dot Matrix LCD is also known as the character LCD. The most
commonly used dot matrix LCD displays are 2 lines of 16 characters.
Each character is represented by 5x7 dots (or 5x8 characters
including the cursor). Dot matrix LCDs can display alphanumeric
data, including a subset of symbols. It can display all the letters of
alphabet, Greek letters, punctuation marks, mathematical
symbols…etc. It is also possible to display symbols made up by the
user. Other useful features include automatic message shift (left and
right), cursor appearance, LED backlight etc..

Liquid crystals do not emit light by themselves, like LEDs. Therefore
you need light to see them; usually the surrounding light is enough to
read the display, yet in case of dark environments it is hard to read the
display. Most LCDs therefore contain an optional backlight, to
produce sufficient contrast, which makes reading easy in dark
environment.

The character LCDs, contain onboard controller, with a connector to
communicate with the parent microcontroller. There are usually 14 pins for
communication and two pins for a backlight LED, if that is there. Thus a total of
16 pin connector is usually required. It is important to identify various pins of
the connector so that they can be sent appropriate date. All 44780 compliant
controllers have following pin definitions.

VEE is the contrasts adjust volts, to adjust the visibility of characters.

RS stands for Register Select pin.

 RW is for Read/write operation.

 E is enable.
D0 to D7 are eight bits of data communication.
(-) and (+) are the Backlight LED connections.

The pins will be referred in programs and discussion by these names. The hardware

design only requires a pot to adjust the contrast. A 50K is enough, connected between

VCC and GND. The center tape is connected to VEE Pin. The RW pin selects if we

want to read in the contents of LCD display. This is rarely required, so this pin is

usually permanently connected to GND, which means a Write mode is selected. D0 to

D7 are 8 bits of data.

We can operate the display in either 8 bit mode or 4 bit mode. In 8 bit mode all 8 bits

are connected to the microcontroller, on a single port. This mode is fast as it sends one

byte at a time. However consumes expansive I/O lines. The 4 bit mode connects data

pins, D4 to D7 to the microcontroller. The main purpose of the 4-bit LCD mode is to

save valuable I/O pins of the microcontroller. The data is sent in two chunks. You can

connect the four bits to either the upper or lower 4 bits of the selected port. Other two

control pins, RS and E can be connected to free pins of the same port, or some other

port. Every compiler has its own default configuration, however you are not bound to

follow it, and you can chose any port and pins you want, the compiler can be

instructed to use the specified pins.

B)LCD Library
The Mikro C PRO for PIC offers a library for communication with LCDs over the 4-

bit interface. For executing LCD commands we should add this LCD Library file to

the program code that represent how the pins of LCD are connected to pic

microcontroller .

Go to Library Manager → then add Lcd_Constants and Lcd

Below shows the table including all the initialization commands in LCD library

of Mikro C.

Important Library Routines for LCD Module

C) LCD Setup

Lcd_Init();

Initializes LCD module to work with PIC Microcontroller.

Lcd_Out(char row, char column, char“Text”);

Writes text on LCD beginning from definite position. Both string variables and

literals can be passed as a text. row: starting position row number. column: starting

position column number text: text to be written.

Lcd_Out_Cp(char *text);

This function prints the text (string) in the current cursor position. When we write

data to LCD Screen, it automatically increments the cursor position.

Lcd_Cmd(_LCD_CLEAR); LCD clear display.

Lcd_Cmd(_LCD_CURSOR_OFF); LCD Cursor off .

D) Algorithm for LCD to PIC program Steps

1. Configure LCD module pin connections.

2. Set PORTC as Output port.

3.Setup LCD display.

4. Send data to LCD display.

Example: write mikroC code for monitoring world(saleem 3alyko0m) at

the first row and (cherif moez) at the second row for the LCD 16x2 for 4-

bit interface mode.

Solution :

Step 1: connect the LCD with the pic microcontroller with port c.

Step 2: Write the program code that represent how the pins of LCD are

connected to pic microcontroller . As shown below

Step 3: write the statements for setup the LCD as shown below

lcd_init(); // Initialize LCD i.e defined pins connection of the LCD to the

pic micro.

lcd_cmd(_lcd_clear); // Clear display
lcd_cmd(_LCD_CURSOR_OFF); // Cursor off

Step 4: Write the mikroc code that send the required text at the LCD

monitor.

while (1)

{

lcd_out(1,1,"saleem 3alykoOm"); // Write text in first row

lcd_out(2,3,"cherif moez"); // Write text in second row there'd
column

**

Complete previous connection program
/* essai simple avec pic 16f887 avec afficheur LCD

realise par cherif moez

CLOK = 8MHz

*/

// LCD module connections

sbit LCD_RS at RC0_bit;

sbit LCD_EN at RC1_bit;

sbit LCD_D4 at RC4_bit;

sbit LCD_D5 at RC5_bit;

sbit LCD_D6 at RC6_bit;

sbit LCD_D7 at RC7_bit;

sbit LCD_RS_Direction at TRISC0_bit;

sbit LCD_EN_Direction at TRISC1_bit;

sbit LCD_D4_Direction at TRISC4_bit;

sbit LCD_D5_Direction at TRISC5_bit;

sbit LCD_D6_Direction at TRISC6_bit;

sbit LCD_D7_Direction at TRISC7_bit;

// End LCD module connections

void main()

 {

 trisc = 0; // configure PORTC as output

 Portc=0;

 lcd_init();

 lcd_cmd(_lcd_clear);

 lcd_cmd(_LCD_CURSOR_OFF);

 while (1)

 {
 lcd_out(1,1,"saleem 3alykoOm");

 lcd_out(2,3,"cherif moez");

 }
}

Lec-8

EXAMPLE Using LCD display

This example illustrates the use of an alphanumeric LCD display for 4-bit mode

. The function libraries simplify this program, which means that the effort made to

create software pays off in the end. A message written in two lines appears on the

display:

Lcd4bit

example

Two seconds later, the message is changed to:

mikroElektronika

EasyPIC6

Two seconds later, the last message is Moved to the left 7 times then it is Moved

to the right 7 times:

// LCD module

connections sbit

LCD_RS at RB4_bit;

sbit LCD_EN at

RB5_bit; sbit

LCD_D4 at RB0_bit;

sbit LCD_D5 at

RB1_bit; sbit

LCD_D6 at RB2_bit;

sbit LCD_D7 at

RB3_bit;

sbit LCD_RS_Direction at

TRISB4_bit; sbit

LCD_EN_Direction at

TRISB5_bit; sbit

LCD_D4_Direction at

TRISB0_bit; sbit

LCD_D5_Direction at

TRISB1_bit; sbit

LCD_D6_Direction at

TRISB2_bit; sbit

LCD_D7_Direction at

TRISB3_bit;

// End LCD module connections

char txt1[] =

"mikroElektronika"; char

txt2[] = "EasyPIC6";

char txt3[] =

"Lcd4bit"; char

txt4[] =

"example";

char i; // Loop variable

void Move_Delay() { // Function used for text moving

Delay_ms(500); // You can change the moving speed here

}

Lcd_Init(); // Initialize LCD

Lcd_Cmd(_LCD_CLEAR); // Clear display

Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

Lcd_Out(1,6,txt3); // Write text in first row

Lcd_Out(2,6,txt4); // Write text in second row

Delay_ms(2000);

Lcd_Cmd(_LCD_CLEAR); // Clear display

Lcd_Out(1,1,txt1); // Write text in first row

Lcd_Out(2,5,txt2); // Write text in second row

Delay_ms(2000);

// Moving text

for(i=0; i<4; i++) { // Move text to the right 4 times

Lcd_Cmd(_LCD_SHIFT_

RIGHT);

Move_Delay();

}

while(1) { // Endless loop

for(i=0; i<8; i++) { // Move text to the left 7 times

Lcd_Cmd(_LCD_SHIFT

_LEFT);

Move_Delay();

}

for(i=0; i<8; i++) { // Move text to the right 7 times

Lcd_Cmd(_LCD_SHIFT_

RIGHT);

Move_Delay();

}

}

 }

3) Interfacing Graphics LCD (GLCD) With PIC

The use of a graphical LCD (GLCD) drastically changes the look of your design. It

provides more freedom for presenting data than the based character LCDs. Because

the GLCDs required large number of I/O and memory there for its required a bigger

size PIC microcontroller like PIC16F887 which has 36 I/O pins and 14KB flash

memory. Also like characters LCD the mikroC Pro for PIC compiler has built-in

GLCD Library to display more complex texts and objects. There are different types of

GLCD this means the pin diagrams of GLCDs is not standardized and it is therefore,

important to read the manufacturer’s datasheet for correct wiring of a GLCD module.

The GLCD consist of tow halves. The two halves of the display can be
individually accessed through the chip select pins (CS1 and CS2). Each
half consists of 8 horizontal pages (0-7) which are 8 bits (1 byte) high.

This is illustrated in the drawing below.

Starting from page 0 on the left half (/CS1 = 0) if you transmit one data

byte, it will appear on the first column of page 0. If you repeat this 64

times, then switch to the second half, and repeat until 128th position is

reached, the first 8 display lines will be plotted. The next 8 lines can be

plotted similarly by switching to page address 1. The total amount of bytes

needed for a complete display frame (128×64 pixels) is, therefore, 2 * 64

pixels * 8 bits = 1024 bytes.

Here’s a brief description of various user-defined function subroutines used in the

code.

GLCD_ON() : This function turns the display on. This can be done by sending the

command 3Fh to both the controllers. So, while sending this command, both CS1

and CS2 must be pulled low. Similarly the RS pin should be low too as the byte

sent is an instruction.

Set_Start_Line() : This function changes the line number to be displayed at

the top of the screen. You can set it to be any number between 0 to 63. It does

not affect the data in the display RAM, it just scrolls the display up and down.

GOTO_COL() : Moves the cursor to specified column (0-127).

GOTO_ROW() : Moves the cursor to specified row or page number (0-7).

GOTO_XY() : Moves the cursor to specified row and column.

GLCD_Write() :Writes a byte of data to the current location.

GLCD_Read() : Returns a byte read from the current display location. If you

see the code for this subroutine, you will see there are two read operations

involved. The first one is a dummy read during which the data is fetched from

the display RAM is latched in to the output register of KS0108B. In the second

read, the microcontroller can get the actual data.

GLCD_Clrln() : Clears a specified row (0-7).

GLCD_CLR() : Clears the whole screen (all 8 pages).

Draw_Point() : Plots a dark or light color point at a specified position.

At the end, the dotted lines are created by plotting too

// Glcd module connections

#define GLCD_Data PORTD

#define GLCD_Dir TRISD

sbit GLCD_CS1 at RB0_bit;

sbit GLCD_CS2 at RB1_bit;

sbit GLCD_RS at RB2_bit;

sbit GLCD_RW at RB3_bit;

sbit GLCD_RST at RB4_bit;

sbit GLCD_EN at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;

sbit GLCD_CS2_Direction at TRISB1_bit;

Analogue-to-digital converter (A/D converter) is used to convert an
analogue input signal into digital form, so that the signal can be
processed within the microcontroller. Most midrange PIC
microcontrollers have built-in A/D converter modules. In general
purpose and low-speed applications, the A/D converters are 8 to 10 bits,
having 256 or 1024 quantisation levels. An A/D converter can either be
unipolar or bipolar. Unipolar converters can only handle signals that are
always positive. Bipolar converters, on the other hand, can handle both
positive and negative signals. The A/D converters implemented in PIC
series of microcontrollers are unipolar. The A/D conversion process is
started by the user program and the conversion can take tens of
processor cycles to complete. The user program has the option of either:
polling the conversion status and waiting until the conversion is
complete, or alternatively, the A/D converter completion interrupt can be
enabled to generate an interrupt as soon as the conversion is complete.

The A/D converter module has the following features:

• The converter generates a 10-bit binary result using the method of
successive approximation and stores the conversion results into the ADC
registers (ADRESL and ADRESH);

• There are 14 separate analog inputs;

• The A/D converter converts an analog input signal into a 10-bit
binary number;

• The minimum resolution or quality of conversion may be
adjusted to various needs by selecting voltage references Vref-
and Vref+.

The operation of A/D converter is in control of the bits of four registers:

- ADRESH Contains high byte of conversion result;

- ADRESL Contains low byte of conversion result;

- ADCON0 Control register 0; and

- ADCON1 Control register 1.

ADRESH and ADRESL Registers

The result obtained after converting an analog value into digital is a10-bit
number that is to be stored in the ADRESH and ADRESL registers. There
are two ways of handling it - left and right justification which simplifies its
use to a great extent. The format of conversion result depends on the
ADFM bit of the ADCON1 register. In the event that

the A/D converter

is not used, these

registers may be

used as general

-purpose registers.

 In order to enable the ADC to meet its specified accuracy, it is necessary to
provide a certain time delay between selecting specific analog input and
measurement itself. This time is called 'acquisition time' and mainly depends on
the source impedance. There is an equation used to calculate this time accurately,
which in the worst case amounts to approximately 20µS. So, if you want the
conversion to be accurate, don’t forget this important detail.

ADC Clock Period

The time needed to complete a one-bit conversion is defined as TAD. It is required
to be at least 1.6 µs. One full 10-bit A/D conversion is slightly longer than
expected and amounts to 11 TAD periods. Since both clock frequency and source
of A/D conversion are specified by software, it is necessary to select one of the
available combinations of bits ADCS1 and ADCS0 before the voltage
measurement on some of the analog inputs starts. These bits are stored in the
ADCON0 register.

Any change in the system clock frequency will affect the ADC clock

frequency, which may adversely affect the ADC result. Device frequency

characteristics are shown in the table above. The values in the shaded cells

are outside of the range recommended.

How to use the A/D Converter?

In order to enable the A/D converter to run without problems as well as to

avoid unexpected results, it is necessary to consider the following:

 A/D converter does not differ between digital and analog signals. In

order to avoid errors in measurement or chip damage, pins should

be configured as analog inputs before the process of conversion

starts. Bits used for this purpose are stored in the TRIS and ANSEL

(ANSELH) registers;

 When reading the port with analog inputs, the state of the

corresponding bits will be read as a logic zero (0); and

 Roughly speaking, voltage measurement in the converter is based on
comparing input voltage with internal scale which has 1024 marks

(2
10

= 1024). The lowest scale mark stands for the Vref- voltage,
whilst its highest mark stands for the Vref+ voltage. Figure below
shows selectable voltage references as well as their minimum and
maximum values.

Lec-10

ADCON0 Register

ADCS1, ADCS0 - A/D Conversion Clock Select bits select clock frequency

used for internal synchronization of A/D converter. It also affects duration

of conversion.

ADCS1 ADCS2 Clock

0 0 Fosc/2

0 1 Fosc/8

1 0 Fosc/32

1 1 RC *

* Clock is generated by internal oscillator which is built in the converter.

CHS3-CHS0 - Analog Channel Select bits select a pin or an analog channel for

A/D conversion, i.e. voltage measurement:

GO/DONE - A/D Conversion Status
bit determines current status of
conversion:

• 1 - A/D conversion is in progress.

• 0 - A/D conversion is complete. This

bit is automatically cleared by

hardware when the A/D conversion is

complete.

ADON - A/D On bit enables A/D
converter.

• 1 - A/D converter is enabled.

• 0 - A/D converter is disabled.

 CHS3 CHS2 CHS1 CHS0 Channel Pin

0

0

0

0

0

RA0/AN0

0

0

0

1

1

RA1/AN1

0

0

1

0

2

RA2/AN2

0

0

1

1

3

RA3/AN3

0

1

0

0

4

RA5/AN4

0

1

0

1

5

RE0/AN5

0

1

1

0

6

RE1/AN6

0

1

1

1

7

RE2/AN7

1

0

0

0

8

RB2/AN8

1

0

0

1

9

RB3/AN9

1

0

1

0

10

RB1/AN10

1

0

1

1

11

RB4/AN11

1

1

0

0

12

RB0/AN12

1

1

0

1

13

RB5/AN13

1

1

1

0

CVref

1

1

1

1

Vref = 0.6V

Let's do it in mikroC...

/* This example code reads analog value from channel 2 and displays it on

PORTB and PORTC as 10-bit binary number.*/

#include

<built_in.h>

unsigned int

adc_rd; void

main()

{

ANSEL = 0x04; // Configure AN2 as analog pin

TRISA = 0xFF; // PORTA is configured as input

ANSELH = 0; // Configure all other AN pins as

digital I/O TRISC = 0x3F; // Pins RC7 and RC6 are

configured as outputs TRISB = 0; // PORTB is

configured as an output

do

{

temp_res = ADC_Read(2); // Get 10-bit result of AD conversion

PORTB = temp_res; // Send lower 8 bits to PORTB

PORTC = temp_res >> 2; // Send 2 most significant bits to RC7, RC6

} while(1); // Remain in the loop

}

ADFM - A/D Result Format Select bit

• 1 - Conversion result is right justified. Six most significant bits

of the ADRESH are not used.

• 0 - Conversion result is left justified. Six least significant bits

of the ADRESL are not used.

VCFG1 - Voltage Reference bit selects negative voltage reference

source needed for the operation of A/D converter.

• 1 - Negative voltage reference is applied to the Vref- pin.
• 0 - Power supply voltage Vss is used as negative voltage reference

source.

VCFG0 - Voltage Reference bit selects positive voltage reference

source needed for the operation of A/D converter.

• 1 - Positive voltage reference is applied to the Vref+ pin.

• 0 - Power supply voltage Vdd is used as positive voltage reference

source.

In Short

In order to measure voltage on an input pin by the A/D converter, the

following should be done:

Step 1 - Port configuration:

• Write a logic one (1) to a bit of the TRIS register, thus

configuring the appropriate pin as an input.

• Write a logic one (1) to a bit of the ANSEL register, thus

configuring the appropriate pin as an analog input.

Step 2 - ADC module configuration:

• Configure the voltage reference in the ADCON1 register.

• Select the ADC conversion clock in the ADCON0 register.

• Select one of input channels CH0-CH13 of the ADCON0 register.

• Select data format using the ADFM bit of the ADCON1 register.

• Enable A/D converter by setting the ADON bit of the ADCON0

register.

Step 3 - ADC interrupt configuration (optionally):

• Clear the ADIF bit.

• Set the ADIE, PEIE and GIE bits.

Step 4 - Wait for the required acquisition time to pass (approximately

20µS). Step 5 - Start conversion by setting the GO/DONE bit of the

ADCON0 register. Step 6 - Wait for ADC conversion to complete.

• It is necessary to check in the program loop whether the

GO/DONE pin is cleared or wait for an A/D interrupt (must be

previously enabled).

Step 7 - Read ADC results:

• Read the ADRESH and ADRESL registers.

EXAMPLE :

This example illustrates the use of an alphanumeric LCD display. The

function libraries simplify this program, which means that the effort made

to create software pays off in the end. A message written in two lines

appears on the display:

mikroElekt

ronika LCD

example

Two seconds later, the message in the second line is changed and

displays voltage present on the A/D converter input (the RA2 pin). For

example:

mikroElekt

ronika

voltage:3.1

41V

In true device, the current temperature or some other measured value

can be displayed instead of voltage.

In order to make this example work properly, it is necessary to tick

off the following libraries in the Library Manager prior to compiling:

 ADC

 LCD

/*Header**************************************

****************/

// LCD module connections

sbit LCD_RS at RB4_bit;

sbit LCD_EN at RB5_bit;

sbit LCD_D4 at RB0_bit;

sbit LCD_D5 at RB1_bit;

sbit LCD_D6 at RB2_bit;

sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;

sbit LCD_EN_Direction at TRISB5_bit;

sbit LCD_D4_Direction at TRISB0_bit;

sbit LCD_D5_Direction at TRISB1_bit;

sbit LCD_D6_Direction at TRISB2_bit;

sbit LCD_D7_Direction at TRISB3_bit;

// End LCD module connections

unsigned char ch; //

unsigned int adc_rd; // Declare variables

char *text; //

long tlong; //

void main()

{

INTCON = 0; // All interrupts disabled

ANSEL = 0x04; // Pin RA2 is configured as an analog input

TRISA = 0x04;

ANSELH = 0; // Rest of pins are configured as digital
Lcd_Init(); // LCD display

initialization Lcd_Cmd(_LCD_CURSOR_OFF); // LCD

command (cursor off) Lcd_Cmd(_LCD_CLEAR); // LCD

command (clear LCD)

text = "mikroElektronika"; // Define the first message

Lcd_Out(1,1,text); // Write the first message in the first line

text = "LCD example"; // Define the second message

Lcd_Out(2,1,text); // Define the first message

ADCON1 = 0x82; // A/D voltage reference is VCC

TRISA = 0xFF; // All port A pins are configured as inputs

Delay_ms(2000);

text = "voltage:"; // Define the third message

while (1)

{

adc_rd = ADC_Read(2); // A/D conversion. Pin RA2 is an input.
Lcd_Out(2,1,text); // Write result in the

second line tlong = (long)adc_rd * 5000; // Convert the

result in millivolts tlong = tlong / 1023; // 0..1023 -

> 0-5000mV

ch = tlong / 1000; // Extract volts (thousands of millivolts) from result

Lcd_Chr(2,9,48+ch); // Write result in ASCII format

Lcd_Chr_CP('.');

ch = (tlong / 100) % 10; // Extract hundreds of millivolts

Lcd_Chr_CP(48+ch); // Write result in ASCII format

ch = (tlong / 10) % 10; // Extract tens of millivolts

Lcd_Chr_CP(48+ch); // Write result in ASCII format

ch = tlong % 10; // Extract digits for millivolts

Lcd_Chr_CP(48+ch); // Write result in ASCII format
Lcd_Chr

_CP('V');

Delay_m

s(1);

}

}

