

Lectures in :

Compilers

Principles & Techniques

By

Uni.Al-Anbar,Computers College
Dr. Esam T. Yassen

Adapted By
Dr.Sameeh Abdulghafour Jasim

Uni. of Al-MAARIF, Col. of
Sciences

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 1

Introduction

 -: languages Programming

Interactions involving humans are most effectively carried out
through the medium of language . language permits the expression of
thoughts and ideas , and without it , communication as we know it
would be very difficult indeed .

In computer programming , programming language serves as
means of communication between the person with a problem and the
computer used to solve it . programming language is a set of symbols ,
words , and rules used to instruct the computer .
 A hierarchy of programming languages based on increasing
machine independence include the following :-

1- machine language : is the actual language in which the
computer carries out the instructions of program . otherwise , " it is
the lowest from of computer language , each instruction in
program is represented by numeric cod , and numeric of addresses
are used throughout the program to refer to memory location in the
computer memory .
2- Assembly languages : is a symbolic version of a machine
language ,each operation code is given a symbolic code such a
Add , SUB ,…. Moreover , memory location are given symbolic
name , such as PAY , RATE .
3-high – level language :Is a programming language where the
programming not require knowledge of the actual computing
machine to write a program in the language .H.L.L . offer a more
enriched set of language features such as control structures , nested
statements , block …
4- problem-oriented language : It provides for the expression of
problems in a specific application . Examples of such language
are SQL for Database application and COGO for civil engineering
applications .

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 2

Advantages of H.L.L over L.L.L include the following :

1- H.L.L are easier to learn then L.L.L
2- A programmer is not required to know how to convert data

from external from to internal within memory .
3- Most H.L.L offer a programmer a variety of control structures

which are not available in L.L.L
4- Programs written in H.L.L are usually more easily debugged

than L.L.L. equivalents.
5- Most H.L.L offer more powerful data structure than L.L.L.
6- Finally ,High level languages are relatively machine-

independent. Consequently certain programs are portable

Translator: High- Level language programs must be translated
automatically to equivalent machine- language programs .
A translator input and then converts a " source program" into an object
or target program . the source program is written in a source language
and the object program belong to an object language .

Source Translator Object
 program program

1- If the source program is written in assembly language and the
target program in machine language .the translator is
called " Assembler "

2- If the source language is H.L.L. and the object language is L.L.L.
,then the translator is called " Compiler " .

3- If the source language is L.L.L. and the object language is H.L.L.,
then the translator is called "Decompiler"

Source Object Executing
 Compiler Result
program program computer

 compile Time run Time

(compilation Process)

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 3

- The time at which conversion of a source program to an object
program occurs is called " Compile time " .The object program is
executed at " Run time " ,note that the source program and data
are process at different time .

Another kind of translator ,called an " Interpreter " in which
processes an internal form of source program and data at the same
time . that is interpretation of the internal source from occurs at run
time and no object program is generated .

 Data

 Source Program Interpreter Result

 (Interpretive process)

Compiled programs usually run faster than interpreter ones
because the overhead of understanding and translating has already
been done .However ,Interpreters are frequent easier to write than
Compilers , and can more easily support interactive debugging of
program .

Remark :Some programming language implementations support
both interpretation and compilation.

A bad workman quarrels his
tools

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 4

Compilation concepts

What is compiler?

 A compiler is a program that translates a computer
program(source program) written in H.L.L (such as Pascal,C++)
into an equivalent program (target program) written in L.L.L.

Source program compiler target program

 Error messages

Model of Compiler:

 The task of constructing a compiler for a particular source
language is complex. The complexity of the compilation process
depend on the source language.A compiler must perform two
major tasks:

1. Analysis :deals with the decomposition of the source program
into its basic parts.

2. Synthesis:builds their equivalent object program using these
basic parts.

 To perform these tasks, compiler operates in phases each of
which transforms the source program from one representation to
another. A typical decomposition of a compiler is shown in the
following figure.

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 5

Source program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generation

Code optimization

Code generation

Error Handler Symbol Table

Target program

Compiler phases

1. Lexical Analyzer: whose purpose is to separate the incoming

source code into small pieces (tokens) , each representing a
single atomic unit of language, for instance "keywords",
"Constant "," Variable name" and "Operators".

2. Syntax Analyzer : whose purpose is to combine the tokens into
well formed expressions (statements) and program and it check
the syntax error

3. Semantic Analyzer: whose function is to determine the
meaning of the source program.

4. Intermediate Code Generator: at this point an internal form
of a program is usually created.For example:

 Y=(a+b)*(c+b)

(+,a,b,t1)
(+,c,d,t2)
(*,t1,t2,t3)

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 6

5.Code Optimizer :Its purpose is to produce a more efficient

object program (Run faster or take less space or both)
6.Code Generator: Finally, the transformed intermediate

representation is translated into the target language.

 The grouping of phases : the phases of compiler are collection
into :

1. Front-End :It consists of those phases that depend on the
source language and are largely independent of the target
machine ,those include : (lexical analysis ,syntax analysis ,
semantic analysis, and intermediate code generation)

2. Back-End : Includes those phases of compiler that depend on
the target machine and not depend on the source language .
these include:(code optimization phase and code
generation phase)

The grouping of Compiler Phases

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 7

Symbol–Table Management: An essential function of a compiler
is to record the identifiers used in the source program and collect
information about various attributes of each identifier .These
attributes may provide information about the storage allocated for
an identifier , its type and in case of procedure , the number and
types of its arguments and so on .
Symbol-Table is a data structure containing a record for each
identifier , with fields for the attributes of the identifier.

Error Detection and Reporting
Each phase can encounter errors. However ,after defection an

error a phase must somehow deal with that error, so the
compilation can proceed, allowing further errors in the source
program to be detected .A compiler that stops where it finds the
first error is not as helpful as it could be.
The syntax and semantic analysis phases usually handle a large
fraction of the error detectable by the compiler .

• Types of Errors

 Lexical errors: The lexical phase can detect errors where the
characters remaining in the input do not form any token of the
language.
 Syntax errors: The syntax analysis phase can detect errors
Errors where the token stream violates the structure rules (syntax)
of the language .
 Semantic errors: During semantic analysis the compiler tries to
detect constructs that have the right syntactic structure but no
meaning to the operation involved, e.g. to add two identifiers, one
of which is the name of an array, and the other the name of a
procedure .

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 8

Where errors show themselves

 Compile-time errors
 Many errors are detected by the compiler, the compiler will
generate an error message - Most compiler errors have a file name ,
line number, and Type of error. This tells you where the error was
detected .

File name (fname.java)

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 9

 Runtime Errors

 Runtime errors occur while the program is running, although the

compilation is successful. The causes of Runtime Errors are [5]:

1) Errors that only become apparent during the course of execution of the

program

2) External Factors – e.g.

 Out of memory

 Hard disk full

 Insufficient i/o privileges

 etc.

3) Internal Factors – e.g.

 Arithmetic errors

 Attempts to read beyond the end of a file

 Attempt to open a non-existent file

 Attempts to read beyond the end of an array

 etc.

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 10

A Language- Processing System :-

In addition to a compiler ,several other programs may be required
to create an executable target program.

(Language- Processing System)

Preprocessing : During this stage , comments ,macros and
directives are processed :

• Comments are removed from the source file.
• Macros :If the language supports macros ,the macros are

replaced with the equivalent text,Example:

 # define pi 3.14

When the preprocessor encounter the word(pi) it would replace (pi)
with (3.14)

Source program

Loader / Link editor

Assembler

Compiler

Preprocessor

Machine code

Assembly program

Machine program

Library

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 11

Actions Speak Louder than Words

• Directives : The preprocessor also handles directives. In 'C'
language , including statement looks like:

 # include<"file">
 this line is replaced by the actual file.

Loader - Link Editor : Is program that performs two functions:
1. Loading :taking relocatable machine code and placed the

altered instructions and data in memory at the proper
locations.

2. Link-Editing :Allows us to make a single program from
several files . these files may have been result of different
compilers and one or more may be library files.

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 12

Lexical Analyzer
 The analysis of source program during compilation is often
complex . The construction of compiler can often be made easier
if the analysis of source program is separated into two parts , with
one part identifying the low – level language constructs , such as
variable names , keyword , labels , and operations , and the
second part determine the syntactic organization of the program .

Lexical Analyzer : the job of the lexical analyzer , or scanner , is
to read the source program ,one character at a time and produce as
output a stream of tokens . the tokens produced by the scanner
serve as input the next phase , parser . Thus , the lexical analyzers
job is the translate the source program into a form more
conductive the recognition by the parser .

Tokens : are used to represent low – level program units such as:-

- Identifiers , such as sum , value , and X .
- Numeric literals , such as 123 and 1.35e02 .
- Operators , such as +,*,&&, < = , and % .
- Keywords , such as if , else and returns.
- Many other language symbols .

 There are many ways we could represent the tokens of a
programming language . one possibility is to use a 2- duple of the
form < token – class, value > .

For example :-

- The identifiers sum and value may be represented as :

 < ident , “ sum “ >
 < ident , “ value” >

- The numeric literals 123 and 1.35E02 may be represented

as :

 < numericliteal , “ 123” >
 < numericliteral , “ 1.35E02” >
- The operators > = and + may be represented as :

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 13

 < relop , “ >= “ >
 < addop , “ + “ >

- The scanner may take the expression x = 2+f(3) , and
produce the following stream of tokens :

 < ident , “ x “ > < lparent , “ (“ >
 < assign – op , “ = “ > < numlit , “ 3 “ >
 < numlit , “ 2 “ > < rporent, “) “ >
 < addop , “ + “ > < semicolon , “ ; “ >
 < ident ,“ f ”>

Interaction of Scanner with Parser :

 Using only parser can become costly in terms of time and
memory requirements .The complexity and time can be reduced
by using a scanner .
 The separation of scanner and parser can have other
advantages, scanning characters is typically slow in compilers
and separating it from parsing particular emphasis can be given to
making the process efficient .
Therefore, The scanner usually interacts with the parser in one of
two ways :-

1- The scanner may process the source program in separate
pass before parsing begins . Thus the tokens are stored in
file or large table .

2- The second way involves an interaction between the
parser and scanner , the scanner called by the parser
whenever the next token in the source program is required .

PARSER

SCANNER

SYMBOL
Table

Source
program

Token

Get next

Token

Interaction of Scanner with Parser

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 14

 The latter approach is the preferred method of operation ,
since an internal form of the complete source program dose not
need to be constructed and stored in memory before parsing can
begin .
Note : The lexical analyzer may also perform certain secondary
tasks at the user interface : such task is stripping out from source
program comments and white space in the form of bank , tab and
new line characters.

Lexical Errors : the lexical phase can detect errors where the
characters remaining in the input do not form any token of the
language for example if the string “ fi “ is encountered in ‘ C ‘
program :-
 fi (A = = f(x)) ...

A lexical analyzer can not tell whether “ fi “ is misspelling of the
keyword “ if “ or an undeclared function identifier since “ fi “ is a
valid identifier , the lexical must return the token for an identifier
and let some other phase of compiler handle any error. The
possible error – recovery actions are :

1. Deleting an extraneous character .
2. Inserting a missing character .
3. Replacing an incorrect character by a correct char .
4. Transposing two adjacent characters .

 Finally , the scanner breaks the source program into tokens .
the type of token is usually represented in the form of unique
internal representation number or constant. For example, a
variable name may be represented by 1 ,a constant by 2 , a label
by 3 and so on .
 The scanner then returns the internal type of token and some
time the location in the table where the tokens are stored . Not all
tokens may be associated with location , while variable name and
constant are stored in table , operators , for example , may not be .

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 15

By their Fruit Ye shall know them

Example : Suppose that the value of tokens are :

 Variable name ____ 1
 Constant ______ 2
 Label _______ 3
 Keyword ______4
 Add operator _____ 5
 Assignment ____ 6

and the program is :
 Sum : A = a+b ;
 Goto Done ;

The output is :

Token Internal represent Location
Sum 3 1
: 11 0
A 1 2
= 6 0
A 1 2
+ 5 0
B 1 3
; 12 0
Goto 4 0
Done 3 4
; 12 0

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 16

Symbol Table (ST)
 A symbol table is a data structure containing a record for
each identifier, with fields for attributes of the identifier.The
data structure allows us to find the record for each identifier
quickly and to store or retrieve data from that record quickly.
 When an identifier in source program is detected by the
lexical analyzer, the identifier is entered into ST. however, the
attributes of an identifier can not be determined during lexical
analysis, the remaining phases enter information about identifier
into ST and then use this information in various ways.

Symbol Table Contents :-

 A symbol table is most often conceptualized as series of
rows, each row containing a list of attributes values that are
associated with a particular variable. The kinds of attributes
appearing in ST are dependent to some degree on the nature of
language for which compiler is written. For example, a language
may be typeless, and therefore the type attribute need not appear
in ST .The following list of attribute are not necessary for all
compilers, however, each should be considered for a particular
compiler:-

1- Variable Name: A variable's name most always reside in
the ST. major problem in ST organization can be the
variability in the length of identifier names. For languages
such as BASIC with its one – and two – character names
and FORTRAN with names up to six characters in length,
this problem is minimal and can usually be handled by
storing the complete identifier in a fixed – size maximum
length fields. While there are many ways of handling the
storage of variable names, two popular approaches will be
outlined, one which facilitates quick table access and
another which supports the efficient storage of variable
names. The provide quick access, yet sufficiently large,
maximum variable name length. A length of sixteen or
greater is very likely adequate (ملائ م), the complete
identifier can then be stored in a fixed – length fields in

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 17

ST, in this approach, table access is fast but the storage of
short variable names is inefficient.

A second approach is to place a string Descriptor in the
name filed of the table. The descriptor contains (position and
length) subfields. The pointer subfield indicates the position
of the first character of the name in a general string area, and
the length subfield describes the number of characters in the
name. therefore, this approach results in slow table access,
but the savings in storage can be considerable.

2- Object Time Address:- The relative location for values of
variable at run time.

3- Type:- This fields is stored in ST when compiling
language having either implicit or explicit data type. For
typeless language such as "BASIC" this attribute is
excluded. " FORTRAN" provides an example of what
mean by implicit data typing. Variables which are not
declared to be particular type are assigned default types
implicitly (variables with names starting with I, J, K, L, M,
or N are integer, all other variable are real).

4- Dimension of array or Number of parameters for a
procedure.

5- Source line number at which the variable is declared.

6- Source line number at which the variable is referenced.

7- Link filed for listing in alphabetical order.

Operation on ST:-

 The two operations that are most commonly performed on
ST are: Insertion & Lookup (Retrieval) .For language in
which explicit declaration of all variables is mandatory
 an insertion is required when processing a ,(إجب اري)
declaration. If ST is Ordered, then insertion may also involve
a lookup operation to find allocations at which the variable's
attributes are to be placed. In such a situation an insertion is

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 18

at least as expensive as retrieval. If the ST is not ordered, the
insertion is simplified but the retrieval is expensive.
Retrieval operations are performed for all references to
variables which don’t involve declaration statements.
 The retrieved information is used for semantic checking and
code generation. Retrieval operations for variables which
have not been previously declared are detected at this stage
and appropriate error messages can be emitted. Some
recovery from such semantic errors can be achieved by
posting a warning message and incorporation (ین شئ) the
nondeclared variable in ST.
When a programming language permits implicit declarations
of variable reference must be treated as an initial reference,
since there is no way of knowing a priori of the variable's
attributes have been entered in ST. Hence any variable
reference generates a lookup operation followed by an
insertion if the variable's name is not found in ST.
For block – structured languages, two additional operations
are required: Set & Reset.
The Set operation is invoked when the beginning of a block is
recognized during compilation. The complementary
operation, the Reset operation is applied when the end of
block is encountered. Upon block entry, the set operation
establishes a new subtable (within the ST) in which the
attributes for the variables declared in the new block can be
stored. Because an new subtable is established for each block,
the duplicated variable- name problem can be resolve.
Upon block exit the reset operation removes the subtable
entries for the variables of the completed block.

ST Organizations:-

 The primary measure which is used to determine the
complexity of a ST operation is the average length of search.
This measure is the average number of comparisons required
to Retrieve a ST record in a particular table organization, the

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 19

Constant Dropping Wears Away a

Stone

name of variable for which an insertion or lookup operation is
to be performed will be referred to as the search argument.

1- Unordered ST: The simplest method of organization ST,
is to add the attribute entries to the table in the order in
which the variable are declared. In an insertion operation
no comparisons are required.

2- Ordered ST : In this and following organization, we
described ST organization in which the table position of a
variable's set of attributes is based on the variable's name.
An insertion operation must be accompanied by lookup
procedure which determines where in ST the variables
attribute should be placed. The insertion of new of
attributes may generate some additional overhead
primarily because other sets of attributes may have to be
moved in order to a chive the insertion.

3- Tree – structured ST :The time to performed an insertion
operation can be reduced by using a tree – structured type
of storage organization.

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 20

Syntactic Analyzer (Parser)
 Every programming language has rules that prescribe the
syntactic structure of well formed programs. The syntax of
programming language constructs can be described by context
free grammars. In syntax analysis we are concerned with
groping tokens into larger syntactic classes such as expression ,
statements , and procedure. The syntax analyzer (parser) outputs
a syntax tree, in which its leaves are the tokens and every non-
leaf node represents a syntactic class type. For example:-
Consider the following grammars:-

 Then the parse tree for -(id+id) is:-

 E

 - E

 (E)

 E + E

 id id

Syntax Error Handling :-

 Often much of the error detection and recovery in a
compiler is central around the parser. One reason of this is that
many errors are syntactic in nature. Errors where the token
stream violates the structure of the language are determined by
parser, such as an arithmetic expression with unbalanced
parentheses.

E E+E E*E (E) -E id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 21

 Derivations :-
 This derivational of view gives a precise description of the
top-down construction of parse tree. The central idea here is that
a production is treated as rewriting rule in which the
nonterminal on the left is replaced by the string on the right side
of the production. For example, consider the following
grammar:

 E E+E
 E E*E
 E (E)
 E -E
 E id
The derivation of the input string id + id* id is:

Left-most derivation Right-most derivation

E E
E+E E+E
id +E E+E*E
id+E*E E+E*id
id+id*E E+id*id
id+id*id id+id*id

Note:- parse tree may by viewed as a graphical representation
for a derivation :
 E

 E + E

 id E * E

 id id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 22

Ambiguity :-
 A grammar that produce more that one parse tree for same
sentence is said to be Ambiguous. In the another way, by
produced more that one left-most derivation or more that one
Right-most derivation for the same sentence.

 E

 E + E

 id E * E

 id id

 (1)

 E

 E * E

 E + E id

 id id

 (2)
 two parse tree for id+id*id

 E E
 E+E E*E
 id+E E+E*E
 id+E*E id+E*E
 id*id*E id+id*E
 id+id*id id+id*id
 (1) (2)

Two left-most derivations for id+id*id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 23

Sometimes am ambiguous grammar can be rewritten to
eliminate the ambiguity. Such as:

E E+E E E+T T
E E*E E (E)
E (E) E -E
E -E T T*F F
E id F id

 E

 E + T

 T T * F

 F F id

 id id

Left-Recursion :-
 A grammar is left-recursion if has a nonterminal A such
that there is a derivation A Aα for some string α . Top-
down parser cannot handle left-recursion grammars, so a
transformation that eliminates left-recursion is needed:

 A → Aα ß

 A → ß A'
 A' → αA' ε
OR:

parse tree for id+id*id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 24

A→Aα1 Aα2 … Aαm … ß1 ß2 … ßn

A→ ß1A' ß2 A' … ßn A'
 A'→ α1 A' α2 A' … αmA' ε .

Example:
 E→ E+T T

 T→ T*F F

 F→ (E) id

 E→ T E'

 E' → +T E' ∊

 T→ FT'

 T'→ *F T' ∊

 F→ (E) id

Left-Factoring :-
 The basic idea is that when is not clear which of two
alternative production to use to expand a nonterminal A . We
may be able to rewrite the A-productions to defer the decision
until we have seen enough of the input to make the right choice.

A→ α ß1 α ß2 where α ≠ ∊

A→ α A'

A'→ß1 ß2

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 25

Easy Come , Easy Go

OR :-

A→ α ß1 α ß2 .. α ßn γ where α ≠ ∊

A→ α A' γ

A'→ ß1 ß2 .. ßn

Example:

 S→ iEtS iEtSeS a

 E→b

 S → iEtSS' a

 S' → eS ∊

 E→ b

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 26

Top-Down Parsing :-
 Top-down parsing can be viewed as an attempt to

find a leftmost derivation for an input string. Equivalently, A top
down parser, such as LL(1) parsing, move from the goal symbol
to a string of terminal symbols. in the terminology of trees, this
is moving from the root of the tree to a set of the leaves in the
syntax tree for a program. in using full backup we are willing to
attempt to create a syntax tree by following branches until the
correct set of terminals is reached. in the worst possible case,
that of trying to parse a string which is not in the language, all
possible combinations are attempted before the failure to parse
is recognized. the nature of top down parsing technique is
characterized by:
1-Recursive-Descent Parsing : It is a general form of Top-
Down Parsing that may involve " Backtracking ",that is ,making
repeated scans of the input.

 Example: consider the grammar

 Input : cad
Then the implementation of Recursive-Descent Parsing is:

2-Predictive parsing : In many cases, by carefully writing a
grammar , eliminating left-recursion from it and left-factoring
the resulting grammar, we can obtain agrammar that can be
parsed by recursive-descent parser that needs no
"Backtracking",i.e.,a Predictive parser.

S cAd

A ab a

 S S S

 c A d c A d c A d

 a b a

 - a - - b - - c -

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 27

2.1. Transition Diagrams for Predictive parsers
 It is useful plan or flowchart for a predictive parser. There
is one diagram for each nonterminal, the labels of edges are
tokens and nonterminals.for example:

E→ E+T T

T→ T*F F // Original grammar

F→ (E) id

Eliminate left-recursion and left factoring

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

Transition Diagrams

E :

E' :

T :

T' :

F :

0 1 2

3 4 5 6

13 12 11 10

17 16 15 14

7 8 9

T E'

+ T E'

ε

F T'

ε

T' * F

E)

id

(

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 28

First & Follow :

• First : To compute First(X) for all grammar symbols
apply the following rules until no more terminal or ε
can be added to any First set :

1. If x is terminal, then FIRST(x) is {x}.
2. If x є is a production ,then add є to FIRST(x).
3. If x is nonterminal and x y1y2 … yk is a production,

then place a in FIRST(x) if for some i ,a is in
FIRST(yi),and є is in all of FIRST(y1)… FIRST(yi-1).

• Follow :To compute Follow(A) for all nonterminals
apply the following rules until nothing can be added to
any Follow set.

1. Place $ in FOLLOW(S),where S is the start symbol.
2. If there are a production A αBß, then everything in

FIRST(ß)except for є is placed in FOLLOW(B).
3. If there are a production A αB ,or a production

A αBß where FIRST(ß) contains є, then everything in
FOLLOW(A) is in FOLLOW(B).

Example : suppose the following grammar

Nonterminals First Follow
E (, id) , $
E' + , ∊) , $
T (, id + ,) , $
T' * , ∊ + ,) , $
F (, id * , + ,) , $

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 29

2.2. Nonrecursive Predictive Parsing :-The nonrecursive
parser in following figure lookup the production to be
applied in a parsing table.

• Construction of Predictive Parsing Table :
1. For each production A α of the grammar, do

steps 2 and 3 .
2. For each terminal a in First(α),add A α to

M[A, a].
3. If ε is in First(α) ,add A α to M[A,b] for

each b in Follow(A).
4. Make each undefined entry of M be error.

• Predictive Parsing Program :The parser is
controlled by a program that behaves as follows:

 The program consider X- the symbol on top of the
stack- and a – the current input symbol-. These two
symbols determine the action of the parser. There are
three possibilities :

Output

Input

Stack

 Model of a Nonrecursive Predictive Parsing

Predictive Parsing
Program

Parsing Table
M

a + b $

X

Y

Z

$

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 30

1. If X = a = $, the parser halt, and successful
completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and
advances the input pointer to the next input
symbol.

3. If X is nonterminal , the program consults entry
M[X,a] of the parsing table.If M[X,a]=
{ X UVW }the parser replaces X on top of
stack by WVU (with U on top).

Example:

Input symbol Nonterminals
id + * () $

E

E'

T

T'

F

TE'

FT'

id

+TE'

 є

*FT'

TE'

FT'

(E)

є

є

є

є

E→ E+T T

T→ T*F F // Original grammar

F→ (E) id
Eliminate left-recursion and left factoring

E→ T E'

E' → +T E' ∊

T→ FT'

T'→ *F T' ∊

F→ (E) id

Predictive Parsing Table M

University of Al-MAARIF, Col. of Sciences

Esam & Sameeh

 Compilers
Principle ,Techniques, and Tools

With My Best Wishes 31

Everything Comes to him who Waits

stack Input output

$E
$E'T
$E'T'F
$E'T'id
$E'T'
$E'
$E'T+
$E'T
$E'T'F
$E'T'id
$E'T'
$E'T'F*
$E'T'F
$E'T'id
$E'T'
$E'
$

id+id*id$
id+id*id$
id+id*id$
id+id*id$
 +id*id$
 +id*id$
 +id*id$
 id*id$
 id*id$
 id*id$
 *id$
 *id$
 id$
 id$
 $
 $
 $

E TE'
T FT'
F id

T' є
E' +TE'

T FT'
F id

T' *FT'

F id
T' є
E' є
Accept

LL(1)Grammar :A grammar whose parsing table has no
multiply-defined entries is said to be LL(1).

Example :- (H.W)

Implement Predictive Parsing Program

S iEtSS' a

S' eS ε

E b

University of Al-MAARIF, Col. of Sciences

 Esam & Sameeh

	titel.doc
	L1
	L2
	L3
	L4
	L5
	ß
	ß
	ß
	ß
	ß
	ß
	ß
	ß

	L6
	L7
	L8
	L9
	L10
	L11
	L12
	L13
	L14
	ref.doc

