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Chapter one 

1- Random Variables 

A random variable, usually written X, is a variable whose possible values are numerical 

outcomes of a random phenomenon. There are two types of random variables, discrete 

and continuous. All random variables have a cumulative distribution function. It is a 

function giving the probability that the random variable X is less than or equal to x, for 

every value x. 

1-1 Discrete Random Variables 

A discrete random variable is one which may take on only a countable number of distinct 

values such as 0,1,2,3,4,........ If a random variable can take only a finite number of 

distinct values, then it must be discrete. Examples of discrete random variables include 

the number of children in a family, the number of defective light bulbs in a box of ten. 

The probability distribution of a discrete random variable is a list of probabilities 

associated with each of its possible values. It is also sometimes called the probability 

function or the probability mass function. 

When the sample space Ω has a finite number of equally likely outcomes, so that the 

discrete uniform probability law applies. Then, the probability of any event x is given 

by: 

𝑃(𝐴) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 Ω 
 

This distribution may also be described by the probability histogram. Suppose a random 

variable X may take k different values, with the probability that X =  𝑥𝑖 defined to be 

P(X =  𝑥𝑖) =𝑃𝑖. The probabilities 𝑃𝑖 must satisfy the following:  

1-       0 < 𝑃𝑖 < 1 for each i  
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2-   𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 = 1  or,   

∑ 𝑃𝑖

𝑘

𝑖=1

= 1 

 

Example 

Suppose a variable X can take the values 1, 2, 3, or 4. The probabilities associated 

with each outcome are described by the following table:  

 Outcome  1 2 3 4 

 Probability 0.1 0.3 0.4 0.2 

 

 

 

 

 

 

 

 

Figure 1: probability distribution 

 

The cumulative distribution function for the above probability distribution is 

calculated as follows:  

The probability that X is less than or equal to 1 is 0.1,  

the probability that X is less than or equal to 2 is 0.1+0.3 = 0.4,  

the probability that X is less than or equal to 3 is 0.1+0.3+0.4 = 0.8, and  

the probability that X is less than or equal to 4 is 0.1+0.3+0.4+0.2 = 1. 
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H.W:  Having a text of (ABCAABDCAA). Calculate the probability of each letter, 

plot the probability distribution and the cumulative distribution.   

 

 

 

 

 

 

 

Figure 2: cumulative distribution 

 

1-2 Continuous Random Variables 

A continuous random variable is one which takes an infinite number of possible values. 

Continuous random variables are usually measurements. Examples include height, 

weight and the amount of sugar in an orange. A continuous random variable is not 

defined at specific values. Instead, it is defined over an interval of values, and is 

represented by the area under a curve. The curve, which represents a function p(x), 

must satisfy the following:  

1: The curve has no negative values (p(x) > 0 for all x)  

2: The total area under the curve is equal to 1. 

A curve meeting these requirements is known as a density curve. If any interval of 

numbers of equal width has an equal probability, then the curve describing the 

distribution is a rectangle, with constant height across the interval and 0 height 

elsewhere, these curves are known as uniform distributions. 
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Figure 3: Uniform distribution 

Another type of distribution is the normal distribution having a bell-shaped density 

curve described by its mean 𝜇 and standard deviation 𝜎. The height of a normal 

density curve at a given point x is given by: 

ℎ =
1

𝜎√2𝜋
𝑒

−0.5(
𝑥−𝜇

𝜎
)

2

 

 

Figure 4: The Standard normal curve 

2- Joint Probability: 

Joint probability is the probability of event Y occurring at the same time event X 

occurs. Its notation is 𝑃(𝑋 ∩ 𝑌)𝑜𝑟 𝑃(𝑋, 𝑌), which reads; the joint probability of 

X and Y.  

𝑃(𝑋, 𝑌) = 𝑃(𝑋) × 𝑃(𝑌) 
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If X and Y are discrete random variables, then 𝑓(𝑥, 𝑦) must satisfy: 

                                            0 ≤ 𝑓(𝑥, 𝑦) ≤ 1 and,   

∑ ∑ 𝑓(𝑥, 𝑦) = 1

𝑦𝑥

 

If X and Y are continuous random variables, then 𝑓(𝑥, 𝑦) must satisfy: 

𝑓(𝑥, 𝑦) ≥ 0    and, 

∫ ∫ 𝑓(𝑥, 𝑦) = 1
∞

−∞

∞

−∞

 

Example: 

For discrete random variable, if the probability of rolling a four on one die is 

𝑃(𝑋) and if the probability of rolling a four on second die is 𝑃(𝑌). Find 𝑃(𝑋, 𝑌). 

Solution: 

 We have 𝑃(𝑋) = 𝑃(𝑌) = 1/6 

𝑃(𝑋, 𝑌) = 𝑃(𝑋) × 𝑃(𝑌) =
1

6
×

1

6
=

1

36
= 0.0277 = 2.8% 

3- Conditional Probabilities: 

It is happened when there are dependent events. We have to use the symbol "|" to 

mean "given": 

- P(B|A) means "Event B given Event A has occurred". 

- P(B|A) is also called the "Conditional Probability" of B given A has occurred . 

- And we write it as 

𝑃(𝐴 | 𝐵) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐵
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Or 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

Where 𝑃(𝐵) > 0 

Example: A box contains 5 green pencils and 7 yellow pencils. Two pencils are chosen 

at random from the box without replacement. What is the probability they are different 

colors? 

Solution:  Using a tree diagram: 

 

4- Bayes’ Theorem 

Bayes’ theorem: an equation that allows us to manipulate conditional probabilities. 

For two events, A and B, Bayes’ theorem lets us to go from p(B|A) to p(A|B). 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
        𝑃(𝐵) ≠ 0 

𝑃(𝐵 | 𝐴) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
               𝑃(𝐴) ≠ 0 

𝑃(𝐴 ∩ 𝐵) =  𝑃(𝐴 | 𝐵) × 𝑃(𝐵) = 𝑃(𝐵| 𝐴) × 𝑃(𝐴) 



 

Prof. Dr. Mahmood                                                      6 January 2018          7                       
 

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴) ×
𝑃(𝐴)

𝑃(𝐵)
          𝑃(𝐵) ≠ 0 

Example: 

If 𝑃(𝑋 = 0) = 0.2, 𝑃(𝑋 = 1) = 0.3, 𝑃(𝑋 = 2) = 0.5, 𝑃(𝑌 = 0) =

0.4 𝑎𝑛𝑑 𝑃(𝑌 = 1) = 0.6. Determine 𝑃(𝑋 = 0 |𝑌 = 0), 𝑃(𝑋 = 1 |𝑌 = 0)  

5- Independence of Two Variables: 

The concept of independent random variables is very similar to independent events. 

If two events A and B are independent, we have P(A,B)=P(A)P(B)=P(A∩B). For 

example, let’s say you wanted to know the average weight of a bag of sugar so you 

randomly sample 50 bags from various grocery stores. You wouldn’t expect the 

weight of one bag to affect another, so the variables are independent. 

6- Venn's Diagram: 

A Venn diagram is a diagram that shows all possible logical relations between a 

finite collections of different sets. These diagrams depict elements as points in the 

plane, and sets as regions inside closed curves. A Venn diagram consists of multiple 

overlapping closed curves, usually circles, each representing a set. The points inside 

a curve labelled S represent elements of the set S, while points outside the boundary 

represent elements not in the set S. Fig. 5 shows the set 𝐴 = {1, 2, 3}, 𝐵 =

{4, 5} 𝑎𝑛𝑑 𝑈 = {1, 2, 3, 4, 5, 6}. 

 

 

 

 

Figure 5: An example of Venn's Diagrams 

 

U 

           4  

5          B 

2     3      

1     A 

6 



 

Prof. Dr. Mahmood                                                      6 January 2018          8                       
 

Example: 

From the adjoining Venn diagram of Fig. 6, find the following sets: 

A, B, C, X, A', B', C-A, B-C, A ∪ B, A ∩ B 

     (𝐵 ∪ 𝐶)′…. 

Solution: 

𝐴 = {1,3, 4, 5}, 𝐵 = {2, 4, 5, 6}, 𝐶 = {1, 5, 6, 7, 10} 

𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

𝐴′ = {2, 6, 7, 8, 9, 10},                                                       Figure 6:Venn's Diagram 

       𝐵′ = {1, 3, 7, 8, 9, 10}, 

(𝐶 − 𝐴) = {3, 4, 6, 7, 10},                                                 

  (𝐵 − 𝐶) = {1, 2, 4, 7, 10},        

 (𝐴 ∪ 𝐵) = {1, 2, 3, 4, 5, 6},  

(𝐴 ∩ 𝐵) = {4, 5}, 

 (𝐵 ∪ 𝐶)′ = {3, 8, 9}…….. 

7- Model of information transmission system  

Transmitting a message from a transmitter to a receiver can be sketched as in Fig. 7: 

The components of information system as described by Shannon are: 

1. An information source is a device which randomly delivers symbols from an 

alphabet. As an example, a PC (Personal Computer) connected to internet is an 

information source which produces binary digits from the binary alphabet {0, 1}. 

2. A source encoder allows one to represent the data source more compactly by 

eliminating redundancy: it aims to reduce the data rate. 
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3. A channel encoder adds redundancy to protect the transmitted signal against 

transmission errors. 

 

 

Figure 7: Shannon paradigm 

4. A channel is a system which links a transmitter to a receiver. It includes signaling 

equipment and pair of copper wires or coaxial cable or optical fiber, among other 

possibilities.  

5. The rest of blocks is the receiver end, each block has inverse processing to the 

corresponding transmitted end. 

 

8- Self- information: 

In information theory, self-information is a measure of the information 

content associated with the outcome of a random variable. It is expressed in a unit of 

information, for example bits, nats, or hartleys, depending on the base of the logarithm 

used in its calculation. 
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A bit is the basic unit of information in computing and digital communications. A bit 

can have only one of two values, and may therefore be physically implemented with a 

two-state device. These values are most commonly represented as 0 and 1. 

A nat is the natural unit of information, sometimes also nit or nepit, is a unit 

of information or entropy, based on natural logarithms and powers of e, rather than the 

powers of 2 and base 2 logarithms which define the bit. This unit is also known by its 

unit symbol, the nat.  

The hartley (symbol Hart) is a unit of information defined by International 

Standard IEC 80000-13 of the International Electrotechnical Commission. One hartley 

is the information content of an event if the probability of that event occurring is 1/10. It 

is therefore equal to the information contained in one decimal digit (or dit). 

1 Hart ≈ 3.322 Sh ≈ 2.303 nat. 

The amount of self-information contained in a probabilistic event depends only on 

the probability of that event: the smaller its probability, the larger the self-information 

associated with receiving the information that the event indeed occurred as shown in 

Fig.8. 

i- Information is zero if 𝑃(𝑥𝑖) = 1 (certain event) 

ii- Information increase as 𝑃(𝑥𝑖) decrease to zero 

iii- Information is a +ve quantity 

The log function satisfies all previous three points hence: 

𝐼(𝑥𝑖) = log𝑎

1

𝑃(𝑥𝑖)
= −log𝑎𝑃(𝑥𝑖) 

Where 𝐼(𝑥𝑖) is self information of (𝑥𝑖) and if: 

i- If “a” =2 , then 𝐼(𝑥𝑖) has the unit of bits 

ii- If “a”= e = 2.71828, then 𝐼(𝑥𝑖) has the unit of nats 

iii- If “a”= 10, then 𝐼(𝑥𝑖) has the unit of hartly 

Recall that log𝑎𝑥 =
𝑙𝑛𝑥

𝑙𝑛𝑎
 

http://en.wikipedia.org/wiki/IEC_80000-13
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Decimal_digit
http://en.wikipedia.org/wiki/Ban_(unit)
http://en.wikipedia.org/wiki/Shannon_(unit)
http://en.wikipedia.org/wiki/Nat_(unit)
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Example 1:  

A fair die is thrown, find the amount of information gained if you are told that 4 will 

appear. 

Solution: 

𝑃(1) = 𝑃(2) = ⋯ … … . = 𝑃(6) =
1

6
 

𝐼(4) = −log2 (
1

6
) =

ln (
1
6

)

𝑙𝑛2
= 2.5849  𝑏𝑖𝑡𝑠 

 

Example 2: 

A biased coin has P(Head)=0.3. Find the amount of information gained if you are told 

that a tail will appear. 

Solution: 

𝑃(𝑡𝑎𝑖𝑙) = 1 − 𝑃(𝐻𝑒𝑎𝑑) = 1 − 0.3 = 0.7 

𝐼(𝑡𝑎𝑖𝑙) = −log2(0.7) = −
𝑙𝑛0.7

𝑙𝑛2
= 0.5145   𝑏𝑖𝑡𝑠 

HW 

A communication system source emits the following information with their 

corresponding probabilities as follows: A=1/2, B=1/4, C=1/8. Calculate the information 

conveyed by each source outputs. 
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Figure 8: Relation between probability and self-information 

 

9- Average information (entropy): 

In information theory, entropy is the average amount of information contained in 

each message received. Here, message stands for an event, sample or character 

drawn from a distribution or data stream. Entropy thus characterizes our uncertainty 

about our source of information. 

9-1 Source Entropy: 

If the source produces not equiprobable messages then 𝐼(𝑥𝑖), 𝑖 = 1, 2, … … . . , 𝑛 are 

different. Then the statistical average of 𝐼(𝑥𝑖) over i will give the average amount of 

uncertainty associated with source X. This average is called source entropy and 

denoted by 𝐻(𝑋), given by: 

𝐻(𝑋) = ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

𝐼(𝑥𝑖) 

∴    𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖) 

Example: 

Find the entropy of the source producing the following messages: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

P(xi)

I(x
i) 

b
its
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𝑃𝑥1 = 0.25, 𝑃𝑥2 = 0.1,   𝑃𝑥3 = 0.15,   𝑎𝑛𝑑 𝑃𝑥4 = 0.5 

 

Solution: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖)

= −
[0.25𝑙𝑛0.25 + 0.1𝑙𝑛0.1 + 0.15𝑙𝑛0.15 + 0.5𝑙𝑛0.5]

𝑙𝑛2
 

𝐻(𝑋) = 1.7427 
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

9-2 Binary Source entropy: 

In information theory, the binary entropy function, denoted or H(X) or Hb(X), is 

defined as the entropy of a Bernoulli process with probability p of one of two values. 

Mathematically, the Bernoulli trial is modelled as a random variable X that can take on 

only two values: 0 and 1: 

𝑃(0𝑇) + 𝑃(1𝑇) = 1 → 𝑃(1𝑇) = 1 − 𝑃(0𝑇) 

We have: 

                                 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖) 

𝐻𝑏(𝑋) = − ∑ 𝑃(𝑥𝑖)

2

𝑖=1

log𝑎 𝑃(𝑥𝑖) 

Then: 

𝐻𝑏(𝑋) = −[𝑃(0𝑇) log2 𝑃(0𝑇) + (1 − 𝑃(0𝑇)) log2(1 − 𝑃(0𝑇))] 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝑃(0𝑇) = 0.2, 𝑡ℎ𝑒𝑛 𝑃(1𝑇) = 1 − 0.2 = 0.8, 𝑎𝑛𝑑 𝑝𝑢𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, If  

𝐻𝑏(𝑋) = −[0.2 log2(0.2) + 0.8 log2(0.8)] = 0.7 

9-3 Maximum Source Entropy: 

For binary source, if  𝑃(0𝑇) = 𝑃(1𝑇) = 0.5, then the entropy is: 

𝐻𝑏(𝑋) = −[0.5 log2(0.5) + 0.5 log2(0.5)] = − log2 (
1

2
) = log2(2) = 1 𝑏𝑖𝑡 
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Note that 𝐻𝑏(𝑋)is maximum equal to 1(bit) if:  𝑃(0𝑇) = 𝑃(1𝑇) = 0.5, the entropy of 

binary source or any source having only two value is distributed as shown in Fig.9 

 

Figure 10: Entropy of binary source distribution 

 

For any non-binary source, if all messages are equiprobable, then 𝑃(𝑥𝑖) = 1/𝑛 so that: 

𝐻(𝑋) = 𝐻(𝑋)𝑚𝑎𝑥 = −[
1

𝑛
log𝑎 (

1

𝑛
)] × 𝑛 = −log𝑎 (

1

𝑛
) = log𝑎𝑛  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙, which 

is the maximum value of source entropy. Also, 𝐻(𝑋) = 0 if one of the message has the 

probability of a certain event or p(x) =1. 

 

9-4 Source Entropy Rate: 

It is the average rate of amount of information produced per second. 

𝑅(𝑋) = 𝐻(𝑋) × 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑠   =  
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐
= 𝑏𝑝𝑠 

The unit of H(X) is bits/symbol and the rate of producing the symbols is symbol/sec, so 

that the unit of R(X) is bits/sec. 

Sometimes 

𝑅(𝑋) =
𝐻(𝑋)

𝜏̅
, 



 

Prof. Dr. Mahmood                                                      6 January 2018          15                       
 

Where  

𝜏̅ = ∑ 𝜏𝑖𝑃(𝑥𝑖)

𝑛

𝑖=1

 

𝜏̅ is the average time duration of symbols, 𝜏𝑖 is the time duration of the symbol 𝑥𝑖. 

 

Example 1: 

A source produces dots ‘.’ And dashes ‘-‘ with P(dot)=0.65. If the time duration of dot 

is 200ms and that for a dash is 800ms. Find the average source entropy rate. 

Solution: 

𝑃(𝑑𝑎𝑠ℎ) = 1 − 𝑃(𝑑𝑜𝑡) = 1 − 0.65 = 0.35 

𝐻(𝑋) = −[0.65log2(0.65) + 0.35log2(0.35)] = 0.934 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝜏̅ = 0.2 × 0.65 + 0.8 × 0.35 = 0.41 𝑠𝑒𝑐 

𝑅(𝑋) =
𝐻(𝑋)

𝜏̅
=

0.34

0.41
= 2.278 𝑏𝑝𝑠 

Example 2: 

A discrete source emits one of five symbols once every millisecond. The symbol 

probabilities are 1/2, 1/4, 1/8, 1/16 and 1/16 respectively. Calculate the information rate. 

 

Solution: 

H = ∑ Pi log2

1

pi

5

i=1

 

H =
1

2
log2 2 +

1

4
log2 4 +

1

8
log2 8 +

1

16
log2 16 +

1

16
log2 16 

 

𝐻=0.5+0.5+0.375+0.25+0.25 = 1.875 bit/symbol 

R =
H

τ
=

1.875

10−3
= 1.875 kbps 
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HW: 

       A source produces dots and dashes; the probability of the dot is twice the probability 

of the dash. The duration of the dot is 10msec and the duration of the dash is set to 

three times the duration of the dot. Calculate the source entropy rate.  

 

10- Mutual information for noisy channel: 

Consider the set of symbols 𝑥1, 𝑥2, … . , 𝑥𝑛, the 

transmitter 𝑇𝑥 my produce. The receiver 𝑅𝑥 may receive 

𝑦1, 𝑦2 … … … . 𝑦𝑚. Theoretically, if the noise and 

jamming is neglected, then the set X=set Y. However and 

due to noise and jamming, there will be a conditional 

probability 𝑃(𝑦𝑗 ∣ 𝑥𝑖): 

1- 𝑃(𝑥𝑖)  to be what is so called the a priori probability 

of the symbol 𝑥𝑖, which is the prob of selecting 𝑥𝑖 for transmission. 

2- 𝑃(𝑦𝑗 ∣ 𝑥𝑖) to be what is called the aposteriori probability of the symbol 𝑥𝑖 after 

the reception of 𝑦𝑗. 

The amount of information that 𝑦𝑗 provides about 𝑥𝑖 is called the mutual 

information between 𝑥𝑖 and 𝑦𝑖 . This is given by: 

𝐼(𝑥𝑖 , 𝑦𝑗) = log2 (
𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑜𝑟𝑖 𝑝𝑟𝑜𝑏

𝑎𝑝𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏
) = log2 (

𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 )

𝑃(𝑥𝑖)
) 

 

Properties of 𝑰(𝒙𝒊, 𝒚𝒋): 

1- It is symmetric, 𝐼(𝑥𝑖 , 𝑦𝑗) = 𝐼(𝑦𝑗 , 𝑥𝑖). 

2- 𝐼(𝑥𝑖 , 𝑦𝑗) > 0 if aposteriori probability > a priori probability, 𝑦𝑗 provides +ve 

information about 𝑥𝑖. 
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3- 𝐼(𝑥𝑖 , 𝑦𝑗) = 0 if aposteriori probability = a priori probability, which is the case of 

statistical independence when 𝑦𝑗 provides no information about 𝑥𝑖. 

4- 𝐼(𝑥𝑖 , 𝑦𝑗) < 0 if aposteriori probability < a priori probability, 𝑦𝑗 provides -ve 

information about 𝑥𝑖, or 𝑦𝑗  adds ambiguity. 

Also  𝐼(𝑥𝑖 , 𝑦𝑗) = log2 (
𝑃( 𝑥𝑖∣∣𝑦𝑗 )

𝑃(𝑦𝑗)
) 

 

Example:  

Show that I(X, Y) is zero for extremely noisy channel. 

Solution: 

 For extremely noisy channel, then 𝑦𝑗gives no information about 𝑥𝑖 the receiver can’t 

decide anything about 𝑥𝑖 as if we transmit a deterministic signal 𝑥𝑖 but the receiver 

receives noise like signal 𝑦𝑗 that is completely has no correlation with 𝑥𝑖. Then 𝑥𝑖 and 

𝑦𝑗 are statistically independent so that 𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 ) = 𝑃(𝑥𝑖)𝑎𝑛𝑑 𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 ) =

𝑃(𝑥𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, 𝑡ℎ𝑒𝑛: 

𝐼(𝑥𝑖 , 𝑦𝑗) = log21 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 & 𝑗, 𝑡ℎ𝑒𝑛 𝐼(𝑋, 𝑌) = 0 

 

10.1 Joint entropy: 

In information theory, joint entropy is a measure of the uncertainty associated with a 

set of variables. 

𝑯(𝑿, 𝒀) = 𝑯(𝑿𝒀) = − ∑ ∑ 𝑷(𝒙𝒊, 𝒚𝒋)

𝒏

𝒊=𝟏

𝒎

𝒋=𝟏

𝐥𝐨𝐠𝟐𝑷(𝒙𝒊, 𝒚𝒋)       𝒃𝒊𝒕𝒔/𝒔𝒚𝒎𝒃𝒐𝒍    

10.2 Conditional entropy: 

In information theory, the conditional entropy quantifies the amount of information 

needed to describe the outcome of a random variable Y given that the value of another 

random variable X is known.  
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𝐻(𝑌 ∣ 𝑋) = − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖)       𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

10.3 Marginal Entropies: 

Marginal entropies is a term usually used to denote both source entropy H(X) defined 

as before and the receiver entropy H(Y) given by: 

  

𝐻(𝑌) = − ∑ 𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗)             
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

 

10.4 Transinformation (average mutual information): 

It is the statistical average of all pair 𝐼(𝑥𝑖 , 𝑦𝑗) , 𝑖 = 1, 2, … . . , 𝑛, 𝑗 = 1, 2, … . . , 𝑚. 

This is denoted by 𝐼(𝑋, 𝑌) and is given by: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝐼(𝑥𝑖 , 𝑦𝑗)𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (
𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 )

𝑃(𝑦𝑗)
)

𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

or 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (
𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 )

𝑃(𝑥𝑖)
)  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

10.5 Relationship between joint, conditional and transinformation: 

 

𝐻( 𝑌 ∣ 𝑋 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋) 

𝐻( 𝑋 ∣ 𝑌 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) 

Where, the 𝐻( 𝑋 ∣ 𝑌 ) is the losses entropy. 

Also we have: 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌) 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋) 
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Example: 

The joint probability of a system is given by: 

𝑃(𝑋, 𝑌) =

𝑥1

𝑥2

𝑥3

[
0.5           0.25
0           0.125

0.0625    0.0625
] 

Find: 

1- Marginal entropies.       

2-  Joint entropy 

3- Conditional entropies.    

4- The transinformation.      

1- 𝑃(𝑋) = [
𝑥1 𝑥2 𝑥3

0.75 0.125 0.125
]        𝑃(𝑌) = [

𝑦1 𝑦2

0.5625 0.4375
] 

𝐻(𝑋) = −[0.75 ln(0.75) + 2 × 0.125 ln(0.125)]/𝑙𝑛2

= 1.06127 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

𝐻(𝑌) = −[0.5625 ln(0.5625) + 0.4375 ln(0.4375)]/𝑙𝑛2

= 0.9887 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

2-  

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖 , 𝑦𝑗) 

𝐻(𝑋, 𝑌)

= −
[0.5ln(0.5) + 0.25 ln(0.25) + 0.125 ln(0.125) + 2 × 0.0625 ln(0.0625)]

𝑙𝑛2

= 1.875            𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

3- 𝐻( 𝑌 ∣ 𝑋 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋) = 1.875 − 1.06127 = 0.813  
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

𝐻( 𝑋 ∣ 𝑌 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) = 1.875 − 0.9887 = 0.886 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

4- 𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻( 𝑋 ∣ 𝑌 ) = 1.06127 − 0.8863 = 0.17497 𝑏𝑖𝑡𝑠/

𝑠𝑦𝑚𝑏𝑜𝑙. 

 


