Computer Science Dept.

Department Computer Science :ng\
Subject Name: Microprocessors - (1) - 3Ll (wi
Year of Study: 2023-2024) jall Aau)

Term: Second Term Ll Al Jaadl
Email ali.sadoon@uoa.edu.ig Email
Instructor Name: Ali Saadoon Ahmed) and

mailto:ali.sadoon@uoa.edu.iq

OF COMPRS
TR
Q
) I

| [
| =
&
O

X

\\

« What are logic gates

Let’s do an example

Types of Logic Gates!
Number System

Decimal Number System
Binary Number System

Why Binary?

Octal Number System
Hexadecimal Number System
Relationship between Hexadecimal, Octal,
Decimal, and Binary

Number Conversions

WHAT ARE LOGIC GATES?

Logic gates are the switches that turn ON or OFF depending
on what the user is doing!

o

gi They are the building blocks for how computers work.

WHAT ARE LOGIC GATES?

* Logic gates turn ON when a certain condition is true, and OFF when the
condition Is false

 They check whether or not the information they get follows a certain rule
 They either spit out the answer true (ON) or false (OFF)
* Remember:

- True=ON =1

- False = OFF=0

LET’S DO AN EXAMPLE

e |et’s say a certain logic gate needs to determine if two numbers are equal

* We learned before that computers only think of things in terms of ON and
OFF, which to themisland O

* Reminder: Input refers to the information you give the logic gate, and
output refers to what it spits out!

* Let’s try this example, keeping this rule in mind!

Logic
{DN} GHTE

IDN}
[OFF} Gate

TYPES OF LOGIC
GATES!

Ba

AND

Output

OR

0

Output

XOR

Output

—|o|l—|lo|w

0
0
1

-

NAND

——|o|lo|®

—|o|—=|o|w

[[y

Output

NOR

—|=|olo|x

—|o|l—|o|w

oflm|r

1

Output

) O

XNOR

Output

o=

l—i—oca}

—|o|l—|lo|wm

1
1
0

o

—l—lo|o|®

—|o|—|o|w

o

'—'—OD;D‘

ol B=1 Il =

HlOo|O

TYPES OF LOGIC GATES!

3 Input OR Gate

TRUTH TABLE

INPUTS OQUTPUT
OR Gate = % L &
0 0 0)
W 4 \ Z=W+X+Y 0 (0] 1 1
X 3 \ 0 1 0 1
Y 2 } 0 1 1 1
/ 1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

TYPES OF LOGIC GATES!

3 Input AND Gate
TRUTH TABLE

INPUTS OUTPUT
AND Gate W X R <
0 0 0 0
W _____ 4 \ 0 0 1 0
X 3 o eI 0 1 0 0
Y 2 / 0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

DECIMAL NUMBER SYSTEM

* |t consist of ten digiti.e., 0,1, 2, 3,4,5, 6, 7, 8,9 with the base 10.

« Each number can be used individually, or they can be grouped to form a
numeric value as 85,48,35,456 etc.

* The Binary Number System consist of only two digits— 0 and 1.
» Since this system use two digits, it has the base 2.

* All digital computer use this number system and convert the data input
from the decimal format into its binary equivalent.

OCTAL NUMBER SYSTEMS

* In the Octal Number System, it consist of 8 digitsi.e., 0,1, 2, 3,4,5,6, 7
with a base 8.

 The sequence of octal number goesas 0, 1, 2,3, 4, 5,6, 7, 10, 11, 12, 13,
14, 15, 16, 17, 20, 21, 22,as go on.

e See each successive number after 7 I1s a combination of two or more
unigue symbols of octal system.

10

* The Hexadecimal system use base 16.
* |t has 16 possible digit symbol.

* |t use the digit 0 through 9 plus the letters A, B, C, D, E, and F as the 16
digit symbols.

11

RELATIONSHIP BETWEEN HEXADECIMAL,
OCTAL, DECIMAL, AND BINARY

Hexadeci EII‘IEI"_'{
mal

0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
§ 5 5 0110
7 7 7 0111
2 10 g 1000
9 11 9 1001
A 12 10 1010
5 13 11 1011
C 14 12 1100
D 15 13 1101
= 16 14 1110
F 17 15 111 .

* The method of converting Decimal to binary is repeated-division method.

For conversion follow the rules:
1. Divide the given decimal number with the base 2.
2. Write down the remainder and divide the quotient by 2.

3. Repeat step 2 till the quotient is zero.

13

DECIMAL-TO-BINARY CONVERSIONS

Reading the remainders

mm from the bottom to top,

100 4 LSB theresultis

2 50 0

= = ﬁwe 200,, = 11001000,
2 12 1 in

2 6 0 this

2 3 0

order
2 1 1

0 1 MSB

14

* To convert a binary number, follow the steps:

1. Multiply each binary number with 2 having the power O for last

position, starting from the right digit.
2. Increase the power one by one, with base as

3. Sum up all the products to get decimal number.

15

110001001,=1X28 +1X27+0X 2° +
0X2°+0X2*+1X23+
X 2=+ 0X2V1 X 2"
=256+128+0+0+0+8+0+0+1
= 393

ThUS, 1100010012 — 39310

16

DECIMAL-TO-OCTAL

* The method of converting Decimal to Octal is repeated-division

method. For conversion follow the rules:
1. Divide the given decimal number with the base 8,
2. Write down the remainder and divide the quotient by 8,

3. Repeat step 2 till the quotient is zero.

17

DECIMAL-TO-OCTAL

201 + 8 = b2.625
U.625 *# 8§ = 5

0.875 # § =7
Theretfore, (7/6b)sz equals (501)10

18

* To convert a octal number follow the steps:

1. Multiply each Octal number with 8 having the power O for last
position, starting from the right digit.

2. Increase the power one by one, with base as 8.

3. Sum up all the products to get decimal number.

19

OCTAL-TO-DECIMAL CONVERSION

& % S WX 7 % R oW A R | 7 2T 4 A T & 2T 4

372¢ =3X82+7X81+2Xx8°
=3X64+7X8+2X1
= 192 + 56 + 2
=250,4

ThUS, 3728 - 25010

So, an octal number can be easily converted to its
decimal equivalent by multiplying each octal digit by
its position weight.

20

OCTAL-TO-BINARY CONVERSION

* The conversion from octal to binary is performed by converting each
octal digit to its 3-bit binary equivalent.

We convert 54314 to binary using 3 bits for each
octal digit as follows:

5 = 3 1
101 100 011 001
Thus, 543153 =101100011001,

21

Converting from binary integers to octal integers is
simply the reverse of the foregoing process. Firstly
you have to do is:

1. Group the binary integer into 3-bits starting at
the Least Significant Bit(LSB).

2. If unable to form group then, add one or two Os.
3. Each group Is converted to its octal equivalent.
It illustrated below for binary number 11010110

ThUS, 110101102 —_ 3268

22

DECIMAL-TO-HEXADECIMAL CONVERSION

* The method of converting Decimal to Hexadecimal Is repeated-
division method. For conversion follow the rules:

1. Divide the given decimal number with the base 16.
2. Write down the remainder and divide the quotient by 16.
3. Repeat step 2 till the quotient is zero.

23

DECIMAL-TO-HEXADECIMAL CONVERSION

Conuért the number 921 DECIMAL to HEXADECIMAL

DIVISION RESULT REMAINDER (in HEX)
921/16 S7 9

97 /16 3 9

3/16 0 3

ANSWER 399

Conve'rt the number 188 DECIMAL to HEXADECIMAL

REMAINDER
DIVISION RESULT (in HEX)
188 /16 11 C (12 decimal)
11716 0 B (11 decimal)

ANSWER BC 24

HEXADECIMAL-TO-DECIMAL CONVERSION

* To convert a Hexadecimal number, follow the steps:

1. Multiply each hexadecimal number with 16 having the power O for

last position, starting from the right digit.
2. Increase the power one by one, with base as 16.

3. Sum up all the products to get decimal number.

25

2AF;¢ =2 X16*+ 10X 16 + 15 X 16°
=512 + 160 + 15
— 68710

ThUS, 2AF16 — 68710

26

Converting from binary integers to hexadecimal integers
is simple. Firstly you have to do is:

1. Group the binary integer into 4-bits starting at the
Least Significant Bit(LSB).

2. If unable to form group then, add one or two Os.
3. Each group Is converted to its Hexadecimal

equivalent.
It iIIustrEted_b.alow for binary number 1010111010
01 1011 1010
A \V N
2 B A

Thus, 1010111010, = 2BAq¢

27

The conversion from Hexadecimal to binary is
performed by converting each Hexadecimal digit to
its 4-bit binary equivalent.

This i1s illustrated below:

B A

1001 1111 0010

Thus, 9F2,, = 100111110010,

28

Ali Saadoon Ahmed

29

Computer Science Dept.

<

Department

Computer Science

Subject Name:

Microprocessors - (2)

. 3alall ea.aj

Year of Study:

Term:

Emaill

2023-2024

ol)

Second Term

il Al Jaadl

ali.sadoon@uoa.edu.iq

Emall

Instructor Name:

Ali Saadoon Ahmed

Ali Saadoon Ahmed

Al-Maaref University College

Microprocessors

mailto:ali.sadoon@uoa.edu.iq

* What is a Computer Architecture?
* Important Words:

« Computer element
OUTLINE P .
« Measures of capacity and speed
« Computer level steps

WHAT ISACOMPUTER ARCHITECTURE?

v Computer Architecture: Computer architecture is a science or a set of
rules stating how computer software and hardware are joined together
and interact to make a computer work. It not only determines how the
computer works but also of which technologies the computer is capable.

’

-
-

Ragisters]
P 0l

~
R 1 TYYY
F5

'

-

''''''''

v Computer Architecture and Organization : The way of hardware are
connected together to form a computer.

IMPORTANT WORDS;

NE A< NE FOS]
EXE Data el gl / Calaylat [nstructions
A oAl 3 I Secondary Memory A 4l 3 SIA Maim Memory (M.M)
ASal) Bas g Control Unit (CU) 4 Syl Aallad) 3aa g Central Processing Unit (CPU)
Gliale Peripherals Shiadl s cleadl3aa Arithmetic Logic Unit (ALU)
SRR Cycle =) AV s JAaY1 5 jeal Input/Output device (I/O)
alls System 4 gic addressable
23 5 location Ol s address

SUB-SYSTEM:;

1. Central Processing Unit (CPU):

Also simply called as the microprocessor acts as the
brain coordinating all activities within a computer.

2. The Memory:
The program instructions and data are primarily stored.
3. The Input/output (1/0) Devices:

Allow the computer to input information for processing
and then output the results. 1/0 Devices are also known
as computer peripherals.

THE COMPUTER CONSISTS OF THREE MAIN

Central Processing Unit

|/ -\\I
Program Counter (j
. AN

-
—y

Main
Memory

Input/Output
System

COMPUTER ELEMENT

= Stores both program and data(Permanent,
temporary)

2- Control Unit

= Directs the operations of the other units by
providing timing and control signals.

3- ALU

= Performs arithmetic and logical operations
such as addition, subtraction, multiplication
and division.

1 1
1
Functions of Control Unit

6

COMPUTER ELEMENT

= An input device gets data from users

Mouse

= Examples are keyboards, mice, webcams,
microphones, and secondary storage devices (hard

disks, floppy disks, CD—-ROMs etc) . \E

Joystick
Keyboard

5- Output
= An output device sends data to users. &m ‘ i
: _ _ _ N
= Typical output devices are monitors, printers, modems, Micrephone B
and secondary storage devices. . @) -

=

Headphone

7

MEMORY SUBSYSTEM

Memory also called RAM(Random Access Memory) consists of many
memory cells(Storage Unites) of a fixed size.

¢ There are two important things in RAM:
1- Memory Width(W)

= How many bits is each memory cell, Typically one byte(=8bits).

2- Address width(N):

= How many bits used to represent each address, determines the

maximum memory size=address space.

MEASURES OF CAPACITY AND SPEED

* Kilo- (K) = 1 thousand = 10*3 and 2"10

* Mega- (M) = 1 million = 106 and 2”20

* Giga- (G) =1 billion =10"9 and 2730

* Tera- (T) =1 trillion = 1012 and 2”40

* Peta - (P) = 1 quadrillion = 10715 and 2750

1MHz = 1,000,000Hz
1GHz = 1000 MHz
— Processor speeds are measured in MHz or GHz.

“* Byte = a unit of storage
1KB = 2710 = 1024 Bytes
1MB = 2720 = 1,048,576 Bytes
— Main memory (RAM) is measured in MB
--Disk storage is measured in GB for small systems, TB for large systems.

10

MEASURES OF TIME AND SPACE

* Millie- (m) = 1 thousandth = 10 ~-3

* Micro- (u) = 1 millionth = 10" -6

* Nano- (n) = 1 billionth = 10" -9

* Pico- (p) = 1 trillionth = 10 ~-12

* Femto- (f) = 1 quadrillionth = 10" -15

11

Level 6: The User Level:
- Program execution and user interface level.
- The level with which we are most familiar.

Level 5: High-Level Language Level:

— The level with which we interact when we write
programs in languages such as C, Pascal and Java.

Level 4: Assembly Language Level:

- Acts upon assembly language produced from Level 5, as
well as instructions programmed directly at this level.

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

COMPUTER LEVEL STEPS

User

Executable Programs

High Level Language

C++, Java

Assembly Language Assembly Code
System Software Operating System
Machine Instruction Set Architecture
Control Microcode
Digital Logic Circuits , Gates

12

Level 3: System Software Level:
» Controls executing processes on the system.
» Protects system resources.

« Assembly language instructions often pass through
Level 3 without modification.

Level 2: Machine Level:

» Also known as the Instruction Set Architecture (ISA)
Level.

» Consists of instructions that are particular to the
architecture of the machine.

« Programs written in machine language need no
compilers, interpreters, or assemblers.

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

COMPUTER LEVEL STEPS

User

Executable Programs

High Level Language C++, Java
Assembly Language Assembly Code
System Software Operating System
Machine Instruction Set Architecture
Control Microcode
Digital Logic Circuits , Gates

13

Level 1: Control Level:

« A control unit decodes, executes instructions and
moves data through the system.

» Control units can be micro programmed or hardwired.

« A micro program is a program written in a low level
language that is implemented by the hardware.

« Hardwired control units consist of hardware that directly
executes machine instructions.

Level O: Digital Logic Level:
» This level is where we find digital circuits (the chips).
« Digital circuits consist of gates and wires.

» These components implement the mathematical logic of all
other levels.

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

COMPUTER LEVEL STEPS

User Executable Programs
High Level Language C++, Java
Assembly Language Assembly Code
System Software Operating System
Machine Instruction Set Architecture
Control Microcode
Digital Logic Circuits , Gates

14

By:
All Saadoon Ahmed

15

Computer Science Dept.

Department Computer Science :f‘“ﬂ\
Subject Name: Microprocessors - (3) - 3alall ?‘“‘i
Year of Study: 2023-2024 A Hall 43l

Term: Second Term Ll Al Jaadll
Email ali.sadoon@uoa.edu.iq Emall
Instructor Name: Asst. Lect. Ali Saadoon Ahmed e i) e.uj

Asst. Lect. Ali Saadoon Ahmed Al-Maaref University College Microprocessors

mailto:ali.sadoon@uoa.edu.iq

* Microcomputers and Microprocessors

 Evolution of Intel 8086 Family
Microprocessors

* Pipelining and Registers
* Introduction to Assembly Programming

MICROCOMPUTERS AND MICROPROCESSORS

There are three major parts of a Computer System.

1. Central Processing Unit (CPU): Also simply called as the microprocessor acts as

the brain coordinating all activities within a computer.

2. The Memory: The program instructions and data are primarily stored.

++8085 has A Max. memory capacity of 64 KB, while 8086 has Max. memory 1 MB.

3. The Input/output (1/0) Devices: Allow the computer to input information for
processing and then output the results. 1/0 Devices are also known as computer

peripherals.

The CPU is connected to memory and 1/O devices through a strip of wires called a bus. The bus inside a

computer carries information from place to place. In every computer there are three types of busses:

1. Address Bus: The address bus is used to identify the memory location or I/O device the processor

Intends to communicate with. The width of the Address Bus rages from 20 bits (8086) to 36 bits for

(Pentium 11). J \ /

Adaress | ocation 0
Address bus with
bus N lines [-
Number
/O) ¢
ports CPU of locations
P Data bus Data bus 2!\
(TS G LA
t Read
Write | | Read 1
Control bus Write
Control bus

Fig. 1.2.3 : The three types of buses and their utility

2. Data Bus: Data bus is used by the CPU to get data from User to send data to the memory or the 1/0

devices. The width of a microprocessor is used to classify the microprocessor. The size of data bus of

Intel microprocessors vary between 8-bit (8085) to 64-bit (Pentium).

3. Control Bus. How can we tell if the address on the bus is memory address or an 1/O device address?

This where the control bus comes in. Each time the processor outputs an address it also activates one of

the four control bus signals: Memory Read, Memory Write, 1/0 Read and 1/0 Write.

*»+The address and control bus contains output lines only, therefore it is unidirectional, but the data bus

IS bidirectional

Address

/O
ports

bus

: Data bus ::

Read

CrPU

Address

bus with

N lines :
:: Data bus :’:

Number

of locations
N

2

Write

Control bus

|

Head

)

Write

Control bus

<+ ocation O

Memory

There two types of memory used in microcomputers:

« RAM (Random Access Memory/ Read-Write memory): is used by the computer for

the temporary storage of the programs that is running. Data is lost when the computer

Is turned off. So known as volatile memory.

« ROM (Read Only Memory): the information in ROM Is permanent and not lost

when the power is turned off. Therefore, it is called nonvolatile memory.

* Note that RAM is sometimes referred as primary storage, where magnetic /optical

disks are called secondary storage.

Address Bus

! | | !
RAM ROM Printer Disk MMonitor Kevboard
CPU "‘]"‘ ‘l Il #[; Ij. ll
Data Bus
Read/
Write Control Bus

Internal organisation of a microcomputer

MICROCOMPUTERS AND MICROPROCESSORS

* Inside the CPU:

A program stored in the memory provides instructions to the CPU to perform a
specific action. This action can be a simple addition. It is function of the CPU to

fetch the program instructions from the memory and execute them.

1. The CPU contains a number of registers to store information inside the CPU
temporarily. Registers inside the CPU can be 8-bit, 16-bit, 32-bit or even 64-bit
depending on the CPU.

2. The CPU also contains Arithmetic and Logic Unit (ALU). The ALU performs
arithmetic (add, subtract, multiply, divide) and logic (AND, OR, NOT) functions.

8

e Inside the CPU:

3. The CPU contains a program counter also known as the Instruction Pointer to point the

address of the next instruction to be executed.

4. Instruction Decoder is a kind of dictionary which is used to interpret the meaning of the
Instruction fetched into the CPU. Appropriate control signals are generated according to the

meaning of the instruction.

MICROCOMPUTERS AND MICROPROCESSORS

Instruction Pointer

I Bus

Flags

Instruction Register

Instruction Decoder
Timing and control
signals are generated

Internal Register A

Busses Register B

Register C

Register D

Address

Control
Bus

Data
Bus

BEmaraaor

| s

Instruction poster
(1P 1

]
[Lez2 35 f--—

Imsirweriesn ||l¢:1\|wr

i

L INC AKX

Insiruction decoder |

Arithinenic
lagic unin

Aocurmulame
26+ | = X7

-

—

Laencrl-purposs
ICEiskers

fa

Ioternal das bus

B Atlitress
System address bus 3 selecion

decoder

Sysrem control hus

B3 Lr da

e

Laocatiom 1)

{

Hystenm
emory

Y
g

Memany r:ad,— —‘ Mmooy wrine
; ¥ : A [T Lliac g7
L) write POrread LA wrine - L A7) pead 13 werite

Syaten it bus

"

. 1)

L

Wiclers maowninar

Floppy diske drive

Central processimg

unik (CEL

Selevmaidecndar

il

11

EVOLUTION OF INTEL 80X86 FAMILY MICROPROCESSORS

Processor Year Transistors | Clock Rate External Internal Add. Bus
Intro. (MHz.) Data Bus Data Bus

4004 1971 2.250 0.108 4 8 12
8008 1972 3.500 0.200 8 8 14
8080 1974 6.000 3 8 3 16
8085 1976 6.000 6 8 3 16
8086 1978 29.000 10 16 16 20
8088 1979 29.000 10 8 16 20
80286 1982 134.000 12.5 16 16 25
80386DX 1985 275.000 33 32 32 32
30386SX 1988 275,000 33 16 32 24
Pentium C 1993 3.100.000 66 -200 64 32 32
Pentium MMX 1997 4,500.000 300 64 32 32
Pentium Pro 1995 5.500.000 200 64 32 36
Pentium II 1997 7.500.000 233-450 64 32 36
Pentium IIT 1999 9.500.000 550-733 64 32 36
Itanium 2001 30,000,000 800-... 128 64 64

PIPELINING AND REGISTERS

J EsT 2001
W& NI Y

* Pipelining

* In the 8085 microprocessor, the CPU could either fetch or execute at a
given time. CPU had to fetch an instruction from the memory, then
execute It, then fetch again and execute it and so on..

* Pipelining is the simplest form to allow the CPU to fetch and execute at
the same time. Note that the fetch and execute times can be different.

nonpipelined fetch 1| execl fetch 2 | exec2
(e.g.. 8085)

pipelined fetch 1 | exec 1
(e.g. 80806)

fetch 2 | exec 2

fetch3 | exec 3

13

PIPELINING AND REGISTERS

E .
] *{&’

. Registers of 8086 Microprocessor

* In the CPU, registers are used store information temporarily. The
Information can be one or two bytes of data, or the address of data.

* In 8088/8086 general-purpose registers can be accessed as either16-bit or
8-bit registers. All other registers can be accessed as full 16-bit registers.

AX
16-bit register

AH AL
8-bit reg. | 8-bit reqg.

8-bit register:

D7 [D6 |D5S [D4 [D3 (D2 | D1 [DO

16-bit register:
D15 |Di4 | D13 | D12 |Di11 |D10 |D9 |D8 (D7 (D6 |DS (D4 (D3 |[D2 | D1 | DO 14

NP PIPELINING AND REGISTERS

e, N ; Esr 2001

Different registers are used for different
functions. Registers will be explained later
within the context of instructions and their ===leor s

Category | Bits | Register Names

applications. General |16 | AX, BX, CX, DX
.] 8 AH, AL, BH, BL, CH, CL, DH, DL
* The first letter of each general register [Pomwer [16 | SP (stack pointer). BP(base pointer)

" " " Index 16 SI (source index), DI(destination index)
Ind Icates Its use. Segment 16 CS (code segment), DS(data segment)
° . SS (stack segment), ES(extra segment)
AX 1S used for the AccumUIator' Instruction | 16 [IP (instruction pointer)
« BX is used for Base Addressing Hag 16 | FR (flag repister)
Register.
« CX 1s used for Counter Loop
Operations.

« DX Is used to point out data in 1/O
operations. :

« Low / High level languages:

« Assembly Language is a low-level language. Deals directly with the internal structure of
CPU. Assembler translates Assembly language program into machine code.

* In high-level languages, Pascal, Basic, C; the programmer does not have to be concerned
with internal details of the CPU. Compilers translate the program into machine code.

MOV mstruction

MOV destination, source: copy source operand to destination

. PN "y
M '

mnemeonic operands

16

Example: (16-bit)
MOV CX,468FH '‘move 468FH into CX (now CH =46 , CL=8F)

MOV AX,CX ;move/copy the contents of CX into AX (now AX=CX=468FH)
MOV BX,AX ;now BX=AX=468FH

MOV DX,BX ;now DX=BX=468FH

MOV DIAX .now DI=AX=468FH

MOV SI,DI .now SI=DI=468FH

MOV DS,SI ;now DS=S|=468FH

MOV BP,DS ;now BP=DS=468FH

17

» Important points:
e Values cannot be loaded directly mnto (CS,DS.SS and ES)
MOV AX,1234H ; load 1234H into AX

MOV SS AX ‘load the value in AX into SS

e Sizes of the values:
MOV BX,2H : BX=0002H, BL:02H, BH:00H
MOV AL,123H ; lllegal (larger than 1 byte)

MOV AX,3AFF21H ;illegal (larger than 2 bytes)

18

INTRODUCTION TO PROGRAM SEGMENTS

« Assembly Language Program consists of three segments:
« Code Segment : contains the program code (instructions)

« Data Segment : used to store data (information) to be processed by the
program

 Stack Segment: used to store information temporarily.

19

Computer Science Dept.

By:
Asst. Lect. Ali Saadoon Ahmed

20

Department

Computer Science

Subject Name:

Microprocessors - (4)

: 3alall (—;.uj

Year of Study:

2023-2024

Term:

Second Term

Emaill

ali.sadoon@uoa.edu.iq

Emaill

Instructor Name:

Ali Saadoon Ahmed

:wjﬂ\ e.ui

mailto:ali.sadoon@uoa.edu.iq

OUTLINE

» Register Organization

» Introduction to Assembly Programming

» Data Transfer Instructions In 8086 Microprocessor
» Arithmetic instruction

» Segment Addressing.

» Logical address and Physical address:

e Register Organization

The 8086 has a powerful set of registers. It includes general purpose registers, segment
registers, pointers and index registers, and flag register. The register organization of 8086.
The registers shown are accessible to programmer. As shown in the Fig, all the registers of

8086 are 16-bit registers.

AX
BX
CX

DX

(a) General purpose registers

15

87

0

AH

AL

BH

BL

CH

CL

DH

DL

CS

DS

ES

SS

{b) Segment registers

F

(c) Flag register

BP

Sl

DI

P

(d) Pointer and
index registers

Each personal computer has a microprocessor that manages the computer's
arithmetical, logical, and control activities.

- edit bockmarks assembler emulator ma help
O = e . H | = > 2 ? i
nnn ut

< EMUB086 - MICROPROCESSOR EMULATOR

Data Transfer Instructions In 8086
Microprocessor

¢ Data transfer instructions are the instructions that transfer data in the microprocessor. They are also called copy
instructions.

Types of Data transfer instructions :
1. Move instructions:

These instructions are used to move data from one memory location to another or between a memory location and a
register.

MOV instruction

MOV destination, source; copy source operand to destination

%(_J

MOV instruction

Example: (8-bit)
MOV

MOV
MOV
MOV

Example: (16-bit)
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV

CL,55H
DL,CL
BH,DL
AH,BH

CX,468FH
AX,CX
BX,AX
DX,BX
DI,AX
SI,Dl
DS,SI
BP,DS

Data Transfer Instructions In 8086 Microprocessor

;move 55H into register CL

;move/copy the contents of CL into DL (now DL=CL=55H)

;move/copy the contents of DL into BH (now DL=BH=55H)
;move/copy the contents of BH into AH (now AH=BH=55H)

;move 468FH into CX (now CH =46, CL=8F)

;move/copy the contents of CX into AX (now AX=CX=468FH)
;now BX=AX=468FH

;now DX=BX=468FH

;now DI=AX=468FH

;now SI=DI=468FH

;now DS=SI1=468FH

;now BP=DS=468FH

Data Transfer Instructions In 8086 Microprocessor

mov REG, memory

mov memory, REG

mov REG, REG

mov memory, immediate
mov REG, immediate
mov SREG, memory
mov memory, SREG
mov REG, SREG

mov SREG, REG

Note:

REG: AX, BX, CX, DX, AH, AL, BH, BL, CH, CL, DH, DL, DI, SI, BP, SP.
Immediate: 5, 24, 3FH, 1000101B, etc

MEMORY: [BX], [SI] +BX, [DI] +BX, etc...

The MOV instruction cannot:

1- Set the value of the CS and IP registers.

2- Copy value of one segment register to another segment register (should copy

to general register first).

3- Copy immediate value to segment register (should copy to general register first).

Data Transfer Instructions In 8086 Microprocessor

Procedure:

Write a program in 8086 trainer to perform the following tasks by using MOV instruction:

MOV AX, 1000H
MOV DS, AX
MOV AX, 1234H
MOV BX, 200H
MOYV [200H], AX
MOV CX, [200H]
MOV AX, 5566H
MOV [BX+2], AX
MOV DX, [BX+2]
MOYV SI, 0030H
MOYV DI, 0040H
MOV AX, 0ABCDH
MOYV [BX+SI], AH
MOV [BX+DI], AL
MOV AL, [BX+SI]
MOV AH, [BX+DI]
End the program
Run the program and write the result of each register and memory being used.

e XCHG INSTRUCTION

used to exchange (swap) data between two general-purpose registers or between a general-purpose register and a storage

location in memory.

The forms of the XCHG instruction and its allowed operands are shown in Figures below:

Mnemonic Meaning Format Operation Flags affected
XCHG € xchange XCHGD,S (D) = (S) None
(a)
Destination Source
Accumulator Reg16
Memory Register
Register Register
Register Memory

(b)

Arithmetic instruction

The instruction set of the 8086 microprocessor contains a variety of arithmetic instructions.
They iInclude instructions for the addition, subtraction, multiplication, and division

operations. These operations can be performed on numbers expressed in a variety of numeric
data formats.

Addition instruction: ADD, INC, DEC

ADD instruction: The ADD instruction is used to add the contents of a source operand to the contents of the
destination operand. The result is put into the location of the destination operand. In general, the result of executing
ADD is expressed as:

ADD Destination, Source

10

Arithmetic instruction

Addition instruction

Ex: Assume that AX and BX registers contain 1100H and OABCH, respectively. What is the result
of executing the instruction?

ADD AX, BX

The content of the source (BX) will be added to the content of the destination (AX) to give OABC+ 1100 = 1BBC in the
destination AX. The process of executing this instruction is shown in the following figures.

After execution of ADD instruction
ADD instruction before execution
Aidess Memory Instruction
Address | Memory Instruction content
content 11100 03 ADD AX, BX
- __—— 11100 03 ADD AX, BX 11101 c3
e 11101 c3 > 11102 XX Next instruction
ca j 11102 XX Next instruction 1100 CS
1100 1200 DS
1200 gg ss
ES 2 12000 XX
1200 X 12001 XX
12001 XX 1BBC AX
1100 AX
0ABC BX OABC BX
cX X%
DX DX
spP SP
BP BP
Sl SI
DI DI
11

EsT 200
SN s

INC Instruction

It increments the byte or word by one.

« The INC instruction adds 1 to any register or
memory location, except a segment register.

+ The operand can be a register or memory location.

Example:
INC AX; adds 1 to AX register
INC DX; adds 1 to DX register

DEC instruction

Example:

DEC AX; SUB 1 to AX register
DEC DX; SUB 1 to DX register

Arithmetic instruction

12

Arithmetic instruction

SUB Instruction:

The subtract (SUB) instruction is used to subtract the value of a source operand from a destination operand. The

result of this operation in general is given as
(Destination) - (Source) — (D)

* Immediate Subtraction
Immediate subtraction is employed whenever constant or known data are subtracted.
Example:
MOV CH, 22H

SUB CH, 44H
The subtraction is stored in the CH register.

s Memory-to-Register Subtraction
Moves memory data to be subtracted to a register.
Example:
MOV DI, OFFSET NUMB
MOV AL, 0
SUB AL, [DlI]
SUB AL, [DI+1] 13

Arithmetic instruction

SUB Instruction:

Assembly Language Operation

SUB CL,BL CL=CL-BL
SUB AX,SP AX = AX — SP
SUB ECX,EBP ECX = ECX — EBP
SUB DH,6FH DH = DH — 6FH

emulator: noname.com_ -] LS

=
. D ? ®

| nstructions Ml || D e o debug view extemol vl devices vituslarve hep iz .
1@ v | o« [™ e =

F Load reload | stepback | singlestep | i__run __i| stepdelay ms: 0 ate.txt |

The 8086 multiply instructions have the general forms MUL SOURCE : I:F':_“l CMLIEN M TD
| e Lﬁmqnm—j

F4151: FF 255 RES INI ©B28h
F4152: CD 285
Faiti: 2@ 032 SPA

8-Bit Multiplication ”‘hh PR — L

F4157: @8 9660 NULL ADD [BX + SI1.

7

4 cs [Fue F4158: 08 900 NULL ADD BH, BH
- 1 F4159: 0@ 900 NULL DEC BP
P je15 F4i5A: @8 008 NULL & SBB CL, BH |

F4158: 09 900 NULL ADD [BX + SI11. AL
. 85 |e7e0 F415C: @@ 999 NULL ADD [BX + SI1. AL
F415D: 0@ 900 NULL ADD [BX + SI1. AL
MOV AL, 5H ; a byte is moved to AL TR aen WMo R
y y gp F415F: 88 900 NULL ADD [BX + SI1. AL

F4160: FF 255 RES ADD BH, BH

sl

MOV BL, 10H ; immediate data must be in BL register o

DS

MUL BL -

B

=
~
=
=}

F4i61i: FF 255 RES DEC BP ia
F4162: CD 2@5 = ADD BH, CL
F4163: 1A @26 ADD [BX + SI1. AL -
Faiea: CF 267 & ADD [BX + $I11, AL
F4165: @8 608 NULL
cen | s eset | s ‘dbg‘ tk‘ﬂgﬂ
|

Arithmetic instruction

Instructions MUL.:

16-Bit Multiplication

Example-Assembly Language Program

The following statements multiply the 16-bit value 2000H by 0100H. The Carry flag is set
because the upper part of the product (located in DX) is not equal to zero:

MOV AX, 2000H ; a word is moved to AX m - o x
MOV BX, 0100H ; immediate data must be in BX register gy ® emeton nonamecom. -0 <

O
ned file math debug view externa! virtual devices virtual drive help help)
MUL BX gy s o | a T 2 I e =
a Load reload__J' step back single step | |1 n. step delay ms: 0 ate.txt |
| % |
ﬂ Liﬂlﬂﬁ&n_[_. . FLO0:0154 Fu80: 0154
GIN PYRITRITE F4i58: FF 255 RES «| [BIOS DI -]
g —— | |JP4151: FF 255 RES INT 828h
9)ex let (oo : CD 285 =
1 == - 20 032 SPA + -
] oo |09 g ADD [BX + SI1, AL
1 T155: OO ADD [BX + SI1. AL
I s Dx |00 |20 : @@ 060 NULL ADD [BX + SI1. AL
,) F4157: 8@ 000 NULL ADD [BX + SI1, AL
L cs |me F4158: @@ 0600 NULL ADD BH, BH
| 1 F4159: @@ 900 NULL DEC BP
| P |e154 F415A: @8 008 NULL SBB CL, BH
g5 F415B: @@ 900 NULL || aDD [BX + $I1. AL =
0700 F415C: @@ 9600 NULL ADD [BX + SI1. AL
F415D: @@ 9680 NULL ADD [BX + SI1. AL
sP [FFFA F415E: @0 000 NULL ADD [BX + SI1. AL
BP |_ F415F: @@ 900 NULL ADD [BX + SI1. AL
| 0600 F4168: FF 255 RES ADD BH, BH
| 51 |nnnn F4161: FF 255 RES DEC BP
[F4162: CD 285 = ADD BH, CL
DI |umm F4163: 1A 026 » ADD [BX + SI1. AL
F4164: CF 2087 = ADD [BX + SI1. AL
ps |e700 F4165: 0@ 000 NULL = ---
|n?nn
| =2 screenl sourcel reset | aux | vars | debug| stack | flags
| T

Arithmetic instruction

Instructions DIV:

Q: Write an assembly language program to compute C=(5/9)*(F-32)

MOV AX,05
MOV BX,09
DIV BX

MOV BX,0FH
MOV CX, 32H
SUB BX,CX
MUL BX

RET

16

Arithmetic instruction

Instructions DIV:

Q: Write an assembly language program to compute C=(5/9)*(F-32)

MOV AX,05
- & ine v U v
M OV BX] 09 18086 - assembler and microprocessor emulator 4.08 - o X Shapes Arrange Quick LZ Shape Outline Gt Replace Dictate Add-ins Designer

dit bookmarks sssembler emulator math asc es help g v Styles~ £ Shape Effects > [Select~ v
D IV BX n;.:" aaﬁ‘es v SEE h m%:i‘,e Em:ate (altm mnarm, Dpﬁm th al:ut B 17 118 119 Drazvnmg 211220123 1 24 rN25 zaEdmZi 28 z:umzu :dd-"::
MOV BX,OFH E%E EE :gg z‘@ original source code - o X
i MOU A¥ ,85 s
MOV CX, 32H MOU BX,BFH 52 MOU BX .B9
SUB BX CX MOU C¥, 3ZH [DIV BX
SUB BR,CX 6 MOU BY ,8FH
! E%% BX 95 MOU CX¥., 32H
. SUB BY,CH
MUL BX 97 MUL BY
n2 RET

R E I ® emulator: noname.bin_ —] X

file

h debug view extemal virtual devices virtual drive help

& |) ql » »

Load reload step back single step run

registers 9100:FFB8 0100:FF 00

_

step delay ms: 0

H L
w [ia o T IR B
%) N + -

Bx |FF DD 1@F@2 936 NULL ADD [BX + SI1. AL
10F@3: 0@ 900 NULL ADD [BYX + SI1, AL
cx |08 |32 10F@4 988 NULL ADD [BX + SI1. AL
L | 10F@5 90 NULL ADD [BYX + SI1, AL
Dx |08 |66 18F@6 000 NULL ADD [BX + SI1, AL
10F@7: 0@ 900 NULL ADD [BYX + SI1, AL
s |e1ee 10F@8 906 NULL ADD [BX + SI1, AL
1@F@%: 9@ 990 NULL ADD [BX + SI1, AL

P |FFee 10F0A 008 NULL c ADD [BX + SI1, AL =
1@F@B: 9@ 990 NULL ADD [BX + SI1, AL
55 |e1088 1@FAC: 8@ @@A NULL ADD [BX + SI1. AL
1@FAD: 9@ @990 NULL ADD [BX + SI1, AL
SP |oeee 1@F@E: 8@ @30 NULL ADD [BX + SI1. AL
[6606 1@FAF: 9@ @90 NULL ADD [BX + SI1. AL
37 | CIIO 1@F10: @@ 908 NULL ADD [BX + SI1, AL
LI TTT] 1@F11: 9@ 990 NULL ADD [BX + SI1. AL
i 10F12: @@ 008 NULL ADD [BX + SI1, AL

| v[1 o [eese 1@F13: 9@ 990 NULL ADD [BX + SI1, AL]

SEGMENT ADDRESSING

A segment Is an area of memory that includes up to 64K bytes and begins
on an address evenly divisible by 16. The segment size of 64K bytes came
because the 8085 microprocessor could address a maximum of 64k Bytes
of physical memory since it had only 16 pins for the address lines
(2°16=64K).

Whereas In the 8085 there was only 64K bytes of memory for all code,
data and stack information. For this reason, the 8086/88 microprocessor
can only handle a maximum of 64K bytes of code and 64K bytes of data
and 64K bytes of stack at any given time.

BH

DH

Flags

MPU 8086

MPU 8086

19

* The BIU contains a dedicated Adder which iIs used to generate the 20 bits
physical address that is out put on the address bus.

 This address Is formed by adding the 16-bit shifting segment address
with the offset address.

Physical address (PA) = Shifted Segment register + Offset

Segment*10H

20

« Segment address: It Is located with one of the segment register and
defines the beginning address of any 64 KB memory segment.

« Offset address: Is a location within a 64 KB segment range, therefore, an
offset address can range from 0000 — FFFF.

 Logical address: consists of a segment value and offset address.
Sometimes the segment and offset Is written as (segment: offset).

21

* The different combination used in 8086 MP for Segment: offset address

shown In table below

Logical address Segment Offset Purpose
CS:IP CS IP Instruction address
SS:SP or SS:BP SS SP or BP Stack address
DS:BX., DS:DI or DS:SI DS BX, DI or SI Data address
ES:DI ES DI String destination address

22

Assume IP = 20A0,, and CS=B200,,.
a) What s the location of the start and end of the block?

b) What physical address 1s formed?

The addressing 1s diagramed:

64 kB
block
a) The start of the block 1z at B2000, .

it ends at B2000,; + FFFF,, = C1FFF,;

b) The phvsical address 1s
B2000,+ 20A0,,= B40A0,

(CIFFRg

J BA0AD ¢

B20015

B2000;5

|2 oA U|Cout¢utsofIP

po= 2

oy

Bl2[o{ofng

!

- “imphied
Contents of C'S

23

LOGICAL ADDRESS AND PHYSICAL ADDRESS:

» Examplel:

If CS=24F6h and IP=634Ah, show:

a- The Logical address and the offset address.

b- calculate the physical address.

c- calculate the lower range and upper range of the code segment.

* Sol:

a- 24F6:634A, the offset Is 634A

b- PA= 24F60+634A —— PA=2B2AA

c- The lower range 24F60+0000=24F60

The upper range of the code segment Is 24F60+FFFF=34F5F

24

LOGICAL ADDRESS AND PHYSICAL ADDRESS:

* Example2:

If DS = 7FA2h and the offset is 438Eh, show:
a- The logical address, and calculate :
b- The physical address.

c- The lower range and upper range of the code segment.

* Sol:

a- TFA2:438E

b- PA= 7TFA20+438E=83DAE

c- The lower range 7FA20+0000=7FA20

The upper range of the code segment Is 7TFA20+FFFF=8FA1F

25

By:
Ali Saadoon Ahmed

26

	Slide 1
	Slide 2: Outline
	Slide 3: What are logic gates?
	Slide 4: What are logic gates?
	Slide 5: Let’s do an example
	Slide 6: Types of Logic Gates!
	Slide 7: Types of Logic Gates!
	Slide 8: Types of Logic Gates!
	Slide 9: Decimal Number System
	Slide 10: Octal Number Systems
	Slide 11: Hexadecimal Number System
	Slide 12: Relationship between Hexadecimal, Octal, Decimal, and Binary
	Slide 13: Decimal-to-Binary Conversions
	Slide 14: Decimal-to-Binary Conversions
	Slide 15: Binary-to-Decimal Conversion
	Slide 16: Binary-to-Decimal Conversion
	Slide 17: Decimal-to-Octal
	Slide 18
	Slide 19: Octal-to-Decimal Conversion
	Slide 20: Octal-to-Decimal Conversion
	Slide 21: Octal-to-Binary Conversion
	Slide 22: Binary-to-Octal Conversion
	Slide 23: Decimal-to-Hexadecimal Conversion
	Slide 24: Decimal-to-Hexadecimal Conversion
	Slide 25: Hexadecimal-to-Decimal Conversion
	Slide 26: Hexadecimal-to-Decimal Conversion
	Slide 27: Binary-to-Hexadecimal Conversion
	Slide 28: Hexadecimal-to-Binary Conversion
	Slide 29
	Slide 1
	Slide 2: Outline
	Slide 3: What is a Computer Architecture?
	Slide 4: Important Words:
	Slide 5: The Computer consists of three Main sub-system:
	Slide 6: Computer element
	Slide 7: Computer element
	Slide 8: Memory subsystem
	Slide 9: Measures of capacity and speed
	Slide 10: Processor speeds & Memory Size
	Slide 11: Measures of time and space
	Slide 12: Computer level steps
	Slide 13: Computer level steps
	Slide 14: Computer level steps
	Slide 15
	Slide 1
	Slide 2: Outline
	Slide 3: Microcomputers and Microprocessors
	Slide 4: Microcomputers and Microprocessors
	Slide 5: Microcomputers and Microprocessors
	Slide 6: Microcomputers and Microprocessors
	Slide 7: Microcomputers and Microprocessors
	Slide 8: Microcomputers and Microprocessors
	Slide 9: Microcomputers and Microprocessors
	Slide 10: Microcomputers and Microprocessors
	Slide 11: Microcomputers and Microprocessors
	Slide 12: EVOLUTION OF INTEL 80X86 FAMILY MICROPROCESSORS
	Slide 13
	Slide 14: Pipelining and Registers
	Slide 15: Pipelining and Registers
	Slide 16: Introduction to Assembly Programming
	Slide 17: Introduction to Assembly Programming
	Slide 18: Introduction to Assembly Programming
	Slide 19: Introduction to Program Segments
	Slide 20
	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4: Assembly Programming
	Slide 5: Data Transfer Instructions In 8086 Microprocessor
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

