

Advanced Lab. Techniques Theoretical Lecture No.2

Advanced Bacterial Diagnosis:

Prepared By

Akram Jassam Mohammed

Biotechnology Specialist

2024 - 2025

VITEK and BACT/ALERT Systems

In the modern of medical microbiology, rapid and accurate bacterial diagnosis is crucial for effective patient care.

Automated Microbial Identification

The VITEK system is a state-of-the-art tool used in clinical microbiology labs for rapid identification of bacteria and yeast species.

Antimicrobial Susceptibility Testing

Beyond identification, VITEK performs AST to determine the effectiveness of various antibiotics against the isolated pathogens.

Advanced Technology

Utilizing biochemical reactions and sophisticated optical systems, VITEK provides quick and reliable results for a wide range of microorganisms.

Clinical Impact

The speed and accuracy of VITEK contribute significantly to timely patient treatment and help combat antimicrobial resistance.

Figure (1) shows Vitek device

VITEK System: Principle and Process

Sample Preparation

A suspension of the bacterial sample is prepared from a pure culture, ensuring a standardized concentration for accurate results.

Check up for turbidity

Gram Positive Bacteria (GP) = (0.50 - 0.63)

Gram Negative Bacteria (GN) = (0.50 - 0.63)

Yeast = (1.80 - 2.20)

Figure (2) shows densicheck attached with vitek device

Card Inoculation

The suspension is inoculated into a VITEK card containing multiple wells with different biochemical substrates.

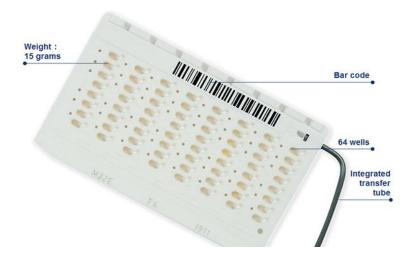


Figure (3) shows card of vitek (GN or GP)

Incubation and Monitoring

The card is incubated in the VITEK instrument, which continuously monitors the metabolic reactions occurring in each well.

Data Analysis

The system's optical sensors detect color changes or turbidity in the wells, creating a unique biochemical profile for the organism.

Identification and AST

The biochemical profile is compared against the VITEK database for species identification, while growth patterns in antibiotic-containing wells determine susceptibility.

Advantages of the VITEK System

Speed

VITEK provides fast results, often within hours. This helps doctors make decisions and start treatment quickly.

Automation

VITEK is automated, which means less work for lab staff and fewer mistakes. This makes the lab more efficient.

Comprehensive Database

VITEK's database covers many different types of bacteria and fungi, including rare ones. This helps ensure accurate identification.

Challenges of the VITEK System

Cost Considerations

The VITEK system can be expensive to buy and maintain, which may be a problem for some labs.

Database Limitations

The VITEK database doesn't include every microbe, so some rare ones might not be identified correctly.

Interpretation Complexities

VITEK results sometimes need extra checks, especially when there are multiple microbes or unusual strains.

The BACT/ALERT System: Introduction

Automated Blood Culture System

BACT/ALERT is designed primarily for detecting bacterial and fungal growth in blood cultures and other sterile body fluids.

Critical for Bloodstream Infections

The system plays a vital role in diagnosing severe conditions like bacteremia and fungemia, where rapid detection is crucial for patient outcomes.

Continuous Monitoring

BACT/ALERT provides real-time, continuous monitoring of culture bottles, allowing for early detection of microbial growth.

Versatility

While primarily used for blood cultures, the system can also be applied to other sterile body fluids, expanding its diagnostic capabilities.

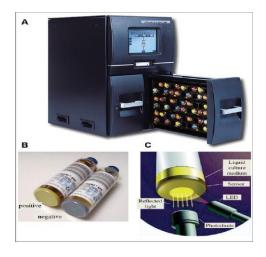


Figure (4) shows Bact/Alert device

BACT/ALERT: Principle and Process

Sample Collection

Blood or other sterile body fluid is collected and immediately inoculated into BACT/ALERT culture bottles under aseptic conditions.

Bottle Incubation

The inoculated bottles are placed into the BACT/ALERT instrument, which maintains optimal growth conditions for potential pathogens.

CO₂ Detection

As microorganisms grow, they produce CO₂. A sensor at the bottom of each bottle changes color in response to increasing CO₂ levels.

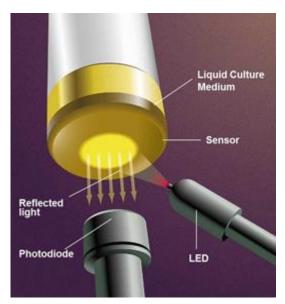


Figure (5) shows CO2 detection in culture tube

Continuous Monitoring

The system continuously checks the color of the sensor, detecting even slight changes that indicate microbial growth.

Alert and Follow-up

When growth is detected, the system flags the culture as positive, prompting immediate follow-up testing for identification and susceptibility.

Types of BACT/ALERT Culture Bottles

Aerobic Bottles

Designed for the growth and detection of aerobic and facultative anaerobic microorganisms that require oxygen for optimal growth.

Anaerobic Bottles

Specifically formulated to support the growth of strict anaerobic bacteria that cannot tolerate oxygen in their environment.

Pediatric Bottles

Optimized for smaller blood volumes typically obtained from pediatric patients, ensuring sensitivity with limited sample size.

Fungal Bottles

Specially designed media and extended incubation times to enhance the detection of slow-growing fungi and yeasts.

Figure (6) shows Bottoles contain culture media

Advantages of the BACT/ALERT System

Rapid Detection

BACT/ALERT can detect microbial growth within hours, allowing for early initiation of appropriate treatment. This speed is crucial in managing severe infections like sepsis, where every hour counts.

Versatility

While primarily used for blood cultures, BACT/ALERT can also be used for other sterile body fluids, making it a versatile tool in clinical microbiology. Its range of specialized bottles caters to different patient populations and suspected pathogens.

Challenges of the BACT/ALERT System

False Positives

Contamination during sample collection can lead to false-positive results, potentially resulting in unnecessary antibiotic treatment and extended hospital stays.

Cost Implications

The initial investment for BACT/ALERT equipment and ongoing expenses for culture bottles can be substantial, potentially limiting its adoption in resource-constrained settings.

Negative Culture Limitations

A negative result does not definitively rule out infection, especially for fastidious organisms or in cases of prior antibiotic administration, requiring clinical correlation.

Specimen Volume Sensitivity

The system's performance can be affected by insufficient blood volume, particularly challenging in pediatric patients or those with difficult venous access.

Comparison: VITEK vs BACT/ALERT

Feature	VITEK	BACT/ALERT
1- Primary Purpose	Identification and AST	Detection of growth
2-Main Application	Bacteria and yeast ID, AST	Blood cultures, sterile fluids
3-Time to Result	4-8 hours for AST	12-24 hours typically
4-Automation Level	Fully automated	Fully automated
5-Detection Method	Biochemical reactions	CO ₂ production
6-Database Reliance	High (for identification)	Low (detects growth only)