
Data Structure
Lecture 7: Queue

Prepared by

Dr. Mohammed Salah Al-Obiadi



Queue

In a stack, insertion and removal of the item was permitted only from one end.

Item inserted at last removed first from the stack.

How to ensure that the items are removed in the order they have inserted?? Solution 
is the Queue.

Queue is a data structure that can be considered as open from both the ends.

Queue follows the principle of FIFO (First In First Out).

Insertion is accomplished from one end known as rear.

Removal of the item is taking place on the other end known as front.



Queue



commonly 
implemented 
operations

1- Insert.

• During the INSERT operation 
we have to check the 
condition for OVERFLOW

2- Delete.

• During the DELETE operation 
we have to check the 
condition for UNDERFLOW.



Types of 
Queue

1- Linear Queue

2- Circular Queue

3- D - Queue (Double ended queue)

4- Priority Queue.



Linear Queue
• A linear queue is a linear data structure that serves the request first, 

which has been arrived first.

• Overflow: insert an element with a filled QUEUE.

• Condition for OVERFLOW

• Rear = size -1

• UNDERFLOW: delete an element from an empty QUEUE.

• Condition for UNDERFLOW

• Front = -1 (for the QUEUE starts with 0)

• CONDITION FOR EMPTY QUEUE

• Front = -1 and Rear = -1



Example: insert



Example: Delete



Algorithm For Insert Operation

• Insert(queue[size], front, rear, no)

• Step 1 : if (rear = size – 1) then :

• write : “overflow”

• return

• Step 2 : if (rear = -1) then :

• front := 0

• rear :=0

• else:

• rear :=rear+1

• Step 3: queue[rear] :=no

• Step 4: return



Algorithm For Delete Operation

• Delet(queue[size], front, rear)

• Step 1 : if (front = -1) then :
• write : “underflow”

• return

• Step 2 : write: queue[front]

• Step 3 : if (front ==rear ) then :
• front := -1

• rear :=-1

• else :
• front := front +1

• Step 4: return



Algorithm For Traverse Operation

• Traverse(queue[size], front, rear)

• Step 1 : if (front = -1) then :
• write : “ queue is empty ”

• return

• Step 2 : set i:=0

• Step 3 : repeat for i = front to rear
• write : queue[i]

• Step 4: return



Algorithm For Update Operation

• Update(queue[size], no, front, rear)

• Step-1 : if (rear = - 1) then :

• write : “stack is empty”

• return

• Step-2 : set i: =0

• Step-3 : repeat for i = front to rear

• if (no = queue[i]) then:

• queue[i] = new no

• return

• if i=rear then:

• write : “update not completed”

• Step-4 : return



Applications of Queue

1- Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., a print queue).

2- Simulation of real-world queues such as lines at a ticket counter or any other first come first-served scenarios.

3- Multiprogramming.

4- Asynchronous data transfer (file IO, pipes, sockets).

5- Waiting times of customers at call center.

6- Determining number of cashiers to have at a supermarket.


