Data Structure
Lecture 6: Stack

Prepared by
Dr. Mohammed Salah Al-Obiadi

\>

-
*)

43

STACK -
— ‘

\—4

* Follows the principle of LIFO (Last in First Out).

e Stack is a linear data structure.

* Any data structure use the LIFO principle, it can
be called as STACK.

Operations Performed
With STACK

1- PUSH: which
adds an element to
the collection.

1
|2
2- POP: which 1

removes the most empty push push push bop
recently added stack

element.

Overflow
conditions

* During the PUSH (add) operation,
we have to check the condition
for overflow

e Condition for OVERFLOW

* Top = size —1 (for the STACK starts
with 0)

* Example of stack of size 6.

* Now the stack has 6 items so
we can’t add any item.

Item 6: We can’t add
ltem 6 because Stack

.

is full

itemS «—— Top
Item 4
ltem 3
Item 2
ltem 1

ltem O

Underflow
conditions

e During the POP (delete)
operation, we have to check the
condition for underflow.

e Condition for
* Top =-1 (for the STACK starts with 0)

* Example of stack of size 6.

* Now the stackis empty and
Top=-1, so we can’t remove

any item.

Stack is empty.
There is nothing to

delete

9

T

«~— Top

EXAMPLES

STACK]5]

0 1 2 3 4
STACK)
PUSH(5)

5

0 1 2 3 4
PUSH(25)

5 25

0 1 2 3 4
PUSH(53)

- 25 23

0 1 2 3 4
PUSH(78)

3 25 23 8

0 1 2 3 4
PUSH(99)

5 25 53 78 o9

0 1 2 3 4

top=—1{(CONDITION FOREMPTY

top=10

top =1

top =2

top=3

top=4

Can we do PUSH(76)?7?
No, because OVERFLOW (top = size —1 Condition for OVERFLOW)

POP

5 25 | 53 | 78
0 1 2 3 top=3
POP
5 25 | 53
0 1 2 3 top =2
POP
5 25
0 1 2 3 top=1
POP
5
0 1 2 3 top=10
POP
01 2 3 top=-1 Canwe do POP??
No, because the stack is underflow (top = —1 Condition for underflow)
POP

“UNDERFLOW™

(top= —1 Condition for UNDERFLOW)

Algorithm For Push Operation

PUSH(stack[size], no, top) [no is the number to insert] [top is the position of the stack]
step-1: if (top =size - 1) then :
write : “overflow”
return
step-2 : top : =top +1
stack[top] :=no
step-3 : return

Algorithm For POP Operation

pop(stack[size], top) [stack[size] is the stack] [top is the position of the stack]
Step-1:if (top =-1) then :
write : “underflow”

return
Step-2 : write : stack[top]
top :=top -1

Step-3 : return

Algorithm For Traverse Operation

Traverse(stack|[size], top)
Step-1:if (top =-1) then :
write : “stack 1s empty”
return
Step-2 :seti1:=0
Step-3 : repeat for 1 =top to 0 by -1
write : stack]i]
Step-4 : return

Algorithm For Update Operation

Can you do it?

Applications of STACK

'H\-‘ 1- Checking of the parenthesis of an expression
gzj'é 2- Reversing of a string

3- In Recursion

@ 4- Evaluation of Expression

