

INTRODUCTION

The logic gates (AND, OR, NAND, NOR, INVERT) used in **combinational logic**. we will deal with data storage circuitry that will **latch** on to (remember) a digital state (1 or 0).

This new type of digital circuitry is called sequential logic

because it is controlled by and used for controlling other circuitry in a specific sequence dictated by a control clock or enable/disable control signals.

The simplest form of data storage is the Set–Reset (*S*-*R*) flip-flop.

The types of logic circuit

1-Synchronous ...one of the inputs is clock ...no change in output without (CLK) pulses.

2- ASynchronous ... No clock pulses in inputs ...

output change dependent to inputs pulses.

S-R Flip-Flop

The *S*-*R* **flip-flop** is a data storage circuit that can be constructed using the basic gates Using a cross-coupling scheme with two NOR gates, we can form the flip-flop shown in Figure 1.

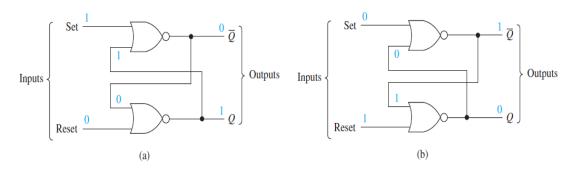
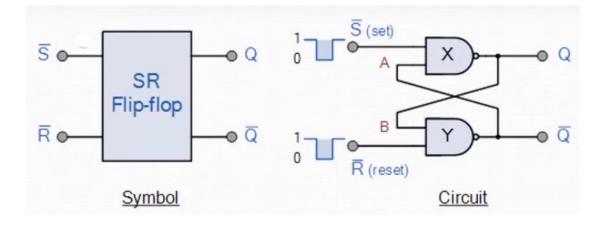
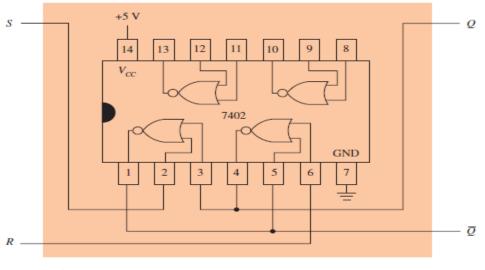



Figure 1 Cross-NOR S-R flip-flop: (a) Set condition; (b) Reset condition.

TABLE	1	Function Table for Figure 1 -1			
S	R	Q	$\overline{\mathcal{Q}}$	Comments	
(b) 0 (a) 1 (c) 0 1	0 0 1 1	<i>Q</i> 1 0 0	$\overline{\underline{\mathcal{Q}}}_{0}_{1}_{0}$	<i>Hold</i> condition (no change) Flip-flop Set Flip-flop Reset Not used	

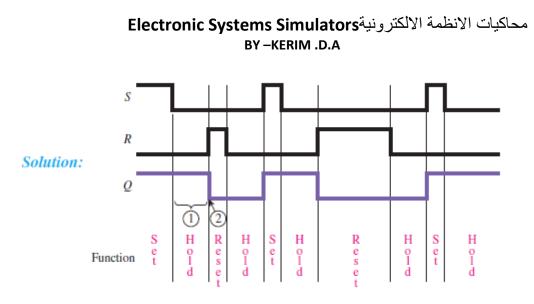
1-(case a)when S=1 , and R=0 .then Q=1,and \overline{Q} =0 If we change only(S=0), and still R=0 ,IT IS CALLED NO CHANGE (CASE b)

2-(case c) when S=0 , and R=1 .then Q=0,and \overline{Q} =1 If we change only(R=0), and still S=0 ,IT IS CALLED NO CHANGE (CASE b) Q=0,and \overline{Q} =1



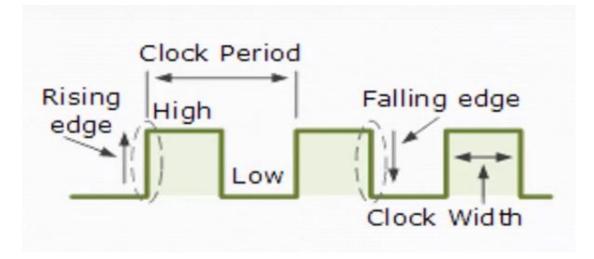
Figure–2 Cross-NAND S-R flip-flop.

State	S	R	Q	Q	Description
Set	1	0	0	1	Set Q » 1
	1	1	0	1	no change
Reset	0	1	1	0	Reset Q » 0
	1	1	1	0	no change
Invalid	0	0	1	1	Invalid Condition


S-R flip-flop connections using a 7402 TTL IC.

EXAMPLE-1

To the S-R flip-flop shown in Figure, we connect the S and R waveforms given in Figure. Sketch the Q output waveform that will result.

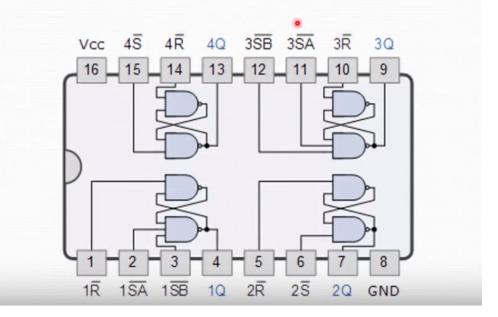


Notes:

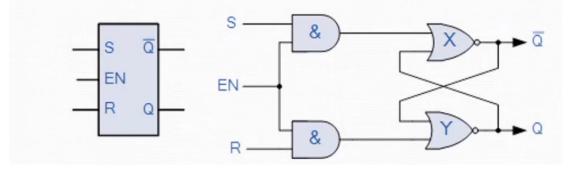
1. The flip-flop is latched (held) in the Set condition even after the HIGH is removed from the S input.

2. The flip-flop is considered transparent because the *Q* output responds immediately to input changes.





Electronic Systems Simulators محاكيات الانظمة الالكترونية By – KERIM .D.A


The 74LS279 is a Quad SR Bistable Latch I

IF enable(EN=1) IT will be ACTIVE

EN=0 not active

To read switching diagram

1-when **S**=0, **R**=0 ,**CIK**=0 ,...then **Q**=0

2- when **S**=1, **R**=0, **CIK**=1,...then **Q**=1....still to another clk pulls

3- when S=0, R=1,CIK=0,...then Q=1...for the same pulls clk in 2

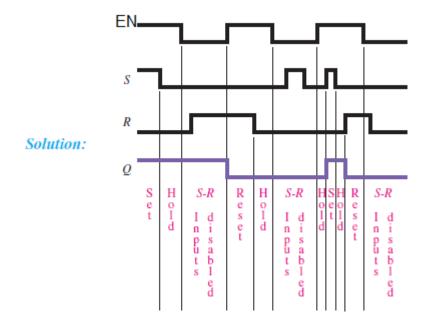
4-when the new **CLK** pulls come and when **S**=0, **R**=1

CIK=1,...then Q=O

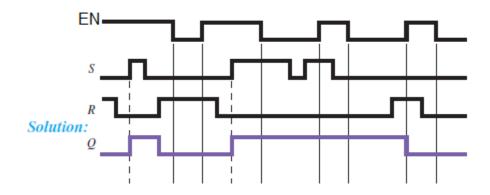
5- when the new **CLK** pulls come and when **S**=1, **R**=0

6- when the new **CLK** pulls come and continues then

When change S OR R changing Q...if S=1,R=0, Q=1 And if S=0,R=1,Q=0

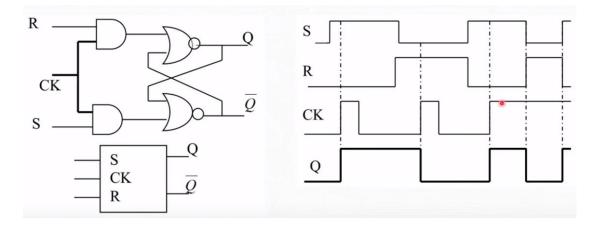

EXAMPLE -2

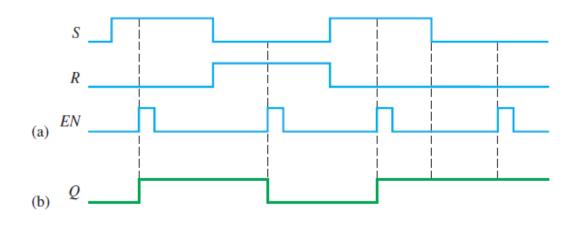
Feed the EN, S, and R inputs in Figure into the gated S-R flipflop sketch the output wave at Q, and list the flip-flop functions.



Electronic Systems Simulators محاكيات الانظمة الألكترونية BY – KERIM .D.A

EXAMPLE-3

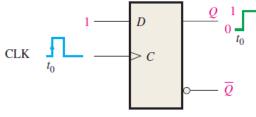

Feed the *EN*, *S*, and *R* inputs in Figure into the gated *S*-*R* flip-flop, and sketch the output wave at Q.



Electronic Systems Simulators محاكيات الانظمة الألكترونية BY – KERIM .D.A

EXAMPLE-4

Determine the Q output waveform if the inputs shown in Figure are applied to a gated S-R latch that is initially RESET.



D-FLIP-FLOP

D Flip-flop

Data Latch Delay flip-flop

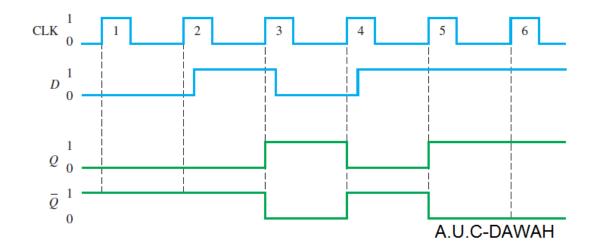
(a) *D* = 1 flip-flop SETS on positive clock edge. (If already SET, it remains SET.) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} D \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} Q \\ 0 \\ t_{0} \\ t_{0} \end{array} \begin{array}{c} 1 \\ 0 \\ t_{0} \\ t_{0} \end{array} \end{array}$

(b) D = 0 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

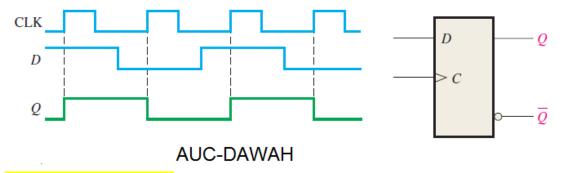
FIGURE Operation of a positive edge-triggered D flip-flop.

TABLE 1						
Truth table for a positive edge-triggered D flip-flop.						
Inputs		Ou				
D	CLK	Q	$\overline{\varrho}$	Comments		

 \uparrow = clock transition LOW to HIGH


EXAMPLE -5

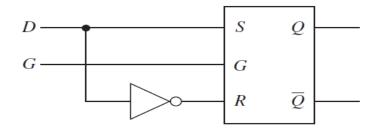
Determine the Q and \overline{Q} output waveforms of the flipflop for the D and CLK inputs in Figure Assume that the positive edge-triggered flip-flop is initially RESET.



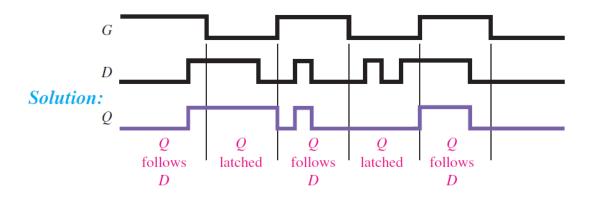
محاكيات الانظمة الالكترونيةElectronic Systems Simulators BY-KERIM .D.A

EXAMPLE-6

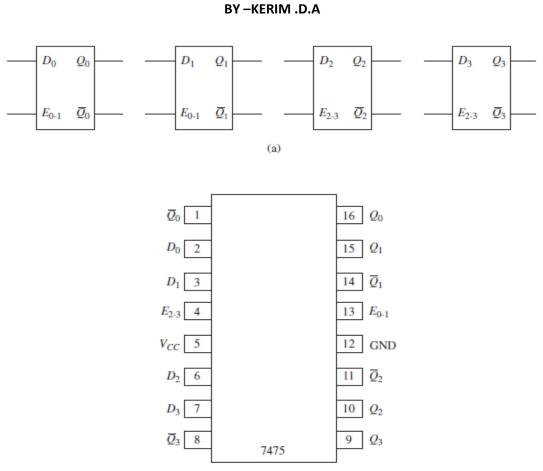
Given the waveforms in Figure for the *D* input and the clock, determine the Q output waveform if the flip-flop starts out RESET.


Gated D Flip-Flop

Another type of flip-flop is the D flip-flop (Data flip-flop). It can be formed from the gated S-R flip-flop by the addition of an inverter. This enables just a single input (D) to both Set and Reset the flip-flop In Figure, we see that S and R will be complements of each other, and S is connected to a single line labeled D (Data). The operation is such that Q will be the. same as D while G is HIGH, and Q will remain latched when G goes LOW. (Latched means that Q remains constant regardless of changes in D.)


محاكيات الانظمة الالكترونية Electronic Systems Simulators BY -KERIM .D.A

Gated D flip-flop.


EXAMPLE-7

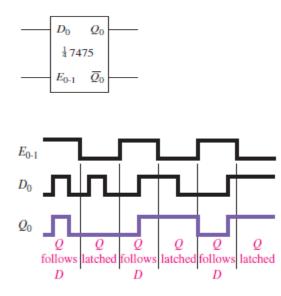
Sketch the output waveform at Q for the inputs at D and G of the gated *D* flip-flop in Figure.

(b)

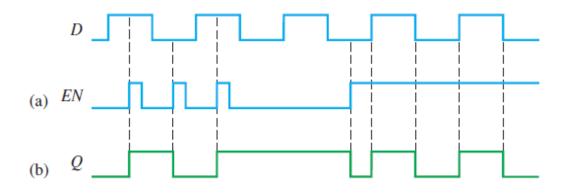
The 7475 quad bistable D latch: (a) logic symbol; (b) pin configuration.

TABLE Function Table for a 7475 ^a					
	Inputs		Outputs		
Operating Mode	E	D	Q	$\overline{\varrho}$	
Data enabled	Н	L	L	Н	
Data enabled	н	H	H	L	
Data latched	L	х	q	\overline{q}	

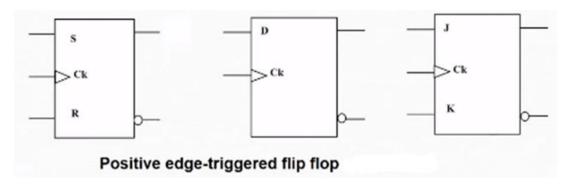
aq = state of Q before the HIGH-to-LOW edge of E; x = don't care.

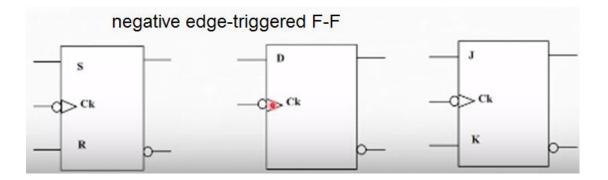

EXAMPLE-8

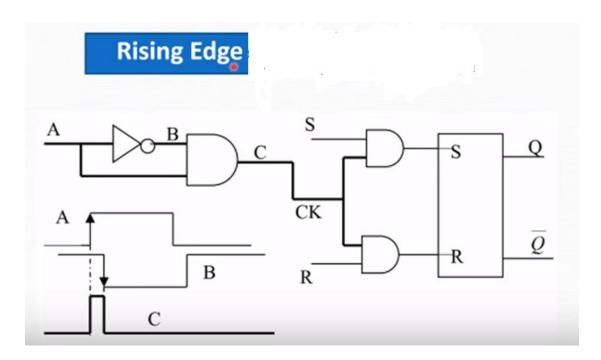
For the inputs at D_0 and E_0 –1 for the 7475 *D* latch shown in Figure sketch the output waveform at Q_0 in Figure



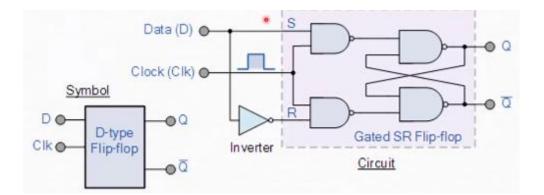
محاكيات الانظمة الالكترونية Electronic Systems Simulators BY -KERIM .D.A

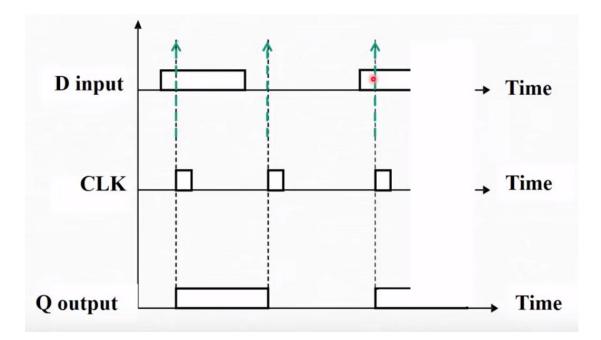

EXAMPLE-9-Determine the *Q* output waveform if the inputs shown in Figure are applied to a gated D latch, which is initially RESET.



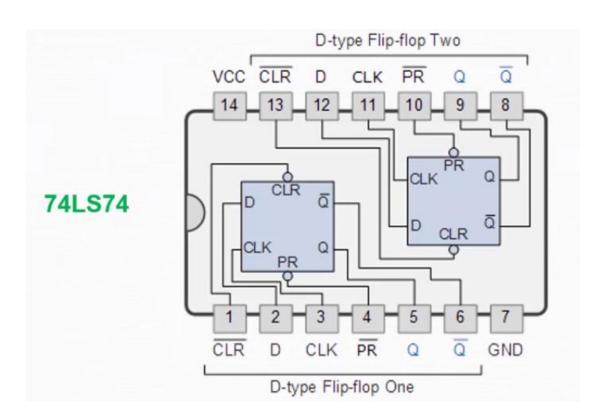


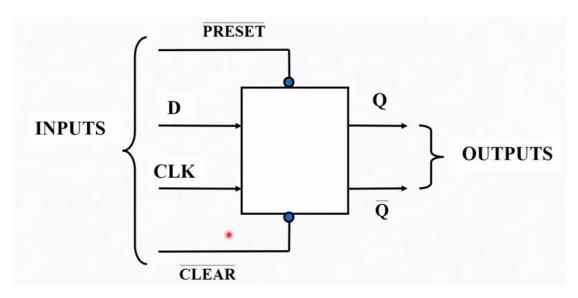
محاكيات الانظمة الالكترونيةElectronic Systems Simulators BY-KERIM .D.A



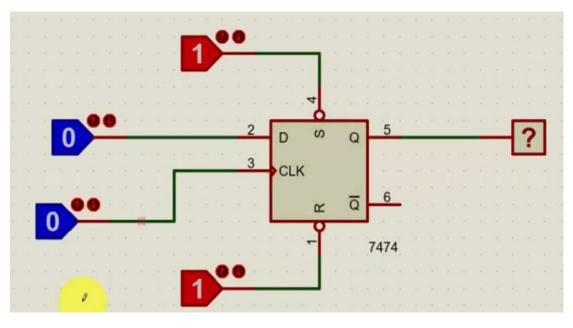


محاكيات الانظمة الالكترونيةElectronic Systems Simulators BY -KERIM .D.A


Clk	D	Q	Q	Description
↓»0	х	Q	ā	Memory no change
↑ » 1	0	0	1	Reset Q » 0
↑ » 1	1	1	0	Set Q » 1


74LS774 is a Dual D flip-flop 74LS174 HEX D flip-flop with direct clear input 74LS175 Quad D flip-flop with complementary outputs 74LS273 Octal D flip-flop containing eight D flip-flops with a clear input

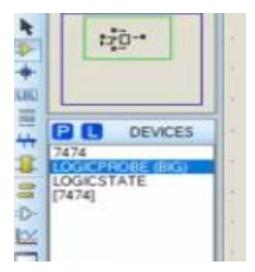
محاكيات الانظمة الالكترونية Electronic Systems Simulators BY-KERIM .D.A

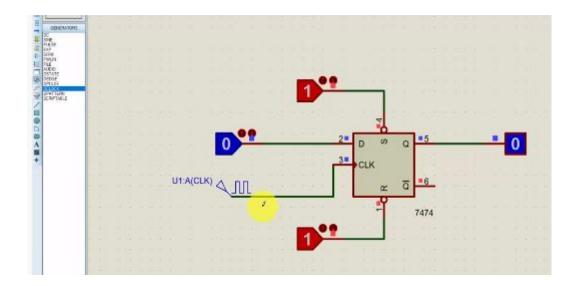


PRESET (PR) and **CLEAR** (CLR) *,* they are inputs no effect to clock in it .used to make the(F-F) in initial value

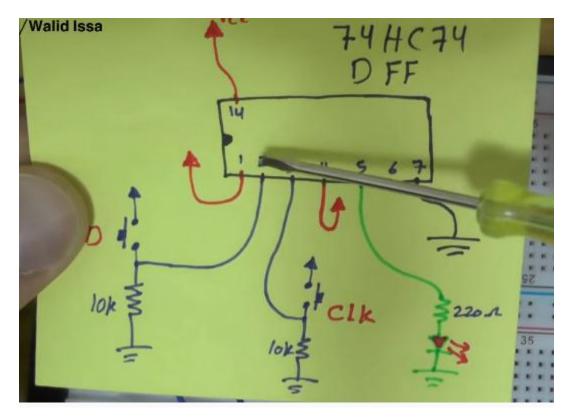
When PR=0, then Q=1

When CLR=0, then Q=0


PR=0 ,,, CLR=0...invalid condition



AUC -Department of Computer Techniques Engineering



محاكيات الانظمة الالكترونيةElectronic Systems Simulators BY – KERIM .D.A

