
Data Structure
Lecture 2:
Algorithms and
Complexity

Prepared by

Dr. Mohammed Salah Al-Obiadi

What is an Algorithm?

• Steps of preparing a frying egg.

1. Get the frying pan.

2. Get the oil.

a. Do we have oil?

i. If yes, put it in the pan.

ii. If no, do we want to buy oil?

a. If yes, then go out and buy.

b. If no, no egg today.

3. Turn on the stove, etc...

An algorithm is the step-by-step clear instructions to solve a given

problem.

Criteria for judging
Algorithms

• There are two main criteria for
judging Algorithms:

1. Correctness: does the
algorithm give solution to the
problem in a finite number of
steps?

2. Efficiency: how much
resources (in terms of memory
and time) does it take to
execute the program.

Complexity of
an Algorithm

1. Space Complexity of a program
is the amount of memory it needs
to run to completion.

2. Time complexity of a program is
the amount of computer time it
needs to run to completion. The
time complexity is of two types
such as

a) Compilation time

b) Runtime

Asymptotic
Notations:
Big-O Notation

• Big-O Notation [Upper Bounding Function]: The
O(g(n)) represents the upper bound computation a
program can cause to the computer. f(n) = O(g(n)) (
read as f of n is big oh of g of n)

• Example-1 Find upper bound for:

• f(n) = 3n + 8

• solution f(n) = O(n)

• f(n) = n2 + 1

• Solution f(n) = O(n2)

• f(n) = 16n3 + 45n2 +12n

• Solution f(n) = O(max(n3 , n2, n)) = O(n3)

• f(n) = n4 + 100n2 + 50

• Solution f(n) = O(max(n4 , n2)) = O(n4)

• f(n) = 410

• Solution f(n) = O(1)

Example a program of O(1):

• Problem: To find out the greater between two numbers

bool max_value (int a, int b) // function that accept two

numbers

{

if (a> b) // Compare the two numbers

return true; // if first is greater return true

else

return false. // otherwise return false

}

• This function does not have any loop and will not cost the computer a lot of
computations, so it’s f(n)=O(1) means a constant computations.

Example a program of O(n):
• Problem: Program to search a number from a list of numbers

bool search (int arr [], int number, int n)

{

bool found=false;

for (int i=0; i<n; i++)

{

if (arr[i] ==number)

{

found=true;

break;

} // end of if

} // end of for

return found;

} // end of function

• This function has a for loop that require n time implementations from the computer, so it’s f(n)=O(n).

Example a program of O(n2):

Problem: Write a program to sort the series of numbers using Bubble sort

void array (int arr [], int n)

{

int i, j;

for (i=0; i<n; i++) // start of outer loop

{

for (j=1; j<n-i; j++) // inner loop

{

if (arr [j+1] > arr[j]) // comparing the elements

{ // swapping if the adjacent is larger

temp=arr [j+1];

arr [j+1] =arr[j];

arr[j] =temp;

} // end of if

} //end of inner for loop

} // end of outer for loop

• This function has two for loops that require n x n time implementations from the computer, so it’s f(n)=O(n x n)=O(n2).

Time
Compexity

Chart

