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The rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is

not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n+ 1)/2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

1.1 Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.

1
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2 1 / The Foundations: Logic and Proofs

Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.
3. 1+ 1 = 2.
4. 2+ 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. ▲

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?
2. Read this carefully.
3. x + 1 = 2.
4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. ▲

We use letters to denote propositional variables (or statement variables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384 b.c.e.–322 b.c.e.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his father’s profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy, where for 20
years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E.,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored Alexander for five years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.
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1.1 Propositional Logic 3

conventional letters used for propositional variables are p, q, r, s, . . . . The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by
combining one or more propositions. New propositions, called compound propositions, are
formed from existing propositions using logical operators.

DEFINITION 1 Let p be a proposition. The negation of p, denoted by¬p (also denoted by p), is the statement

“It is not the case that p.”

The proposition ¬p is read “not p.” The truth value of the negation of p, ¬p, is the opposite
of the truth value of p.

EXAMPLE 3 Find the negation of the proposition

“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

▲

EXAMPLE 4 Find the negation of the proposition

“Vandana’s smartphone has at least 32GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32GB of memory.”

This negation can also be expressed as

“Vandana’s smartphone does not have at least 32GB of memory”

or even more simply as

“Vandana’s smartphone has less than 32GB of memory.”

▲
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TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

F T

Table 1 displays the truth table for the negation of a proposition p. This table has a row
for each of the two possible truth values of a proposition p. Each row shows the truth value of
¬p corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

DEFINITION 2 Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q, is the proposition
“p and q.” The conjunction p ∧ q is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of p ∧ q. This table has a row for each of the four possible
combinations of truth values of p and q. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of q.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositions p and q where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and q is the proposition “The processor in Rebecca’s
PC runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p ∧ q, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than 1
GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false. ▲

DEFINITION 3 Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is the proposition
“p or q.” The disjunction p ∨ q is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for p ∨ q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p ∧ q

T T T

T F F

F T F

F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p ∨ q

T T T

T F T

F T T

F F F
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The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using the exclusive or when we say

“Students who have taken calculus or computer science, but not both, can enroll in this
class.”

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,” the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6 What is the disjunction of the propositions p and q where p and q are the same propositions as
in Example 5?

Solution: The disjunction of p and q, p ∨ q, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. ▲

As was previously remarked, the use of the connective or in a disjunction corresponds
to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or
in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the
proposition “p or q (but not both)” is obtained. This proposition is true when p is true and q is
false, and when p is false and q is true. It is false when both p and q are false and when both
are true.

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s.Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding
curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to symbolic logic.
In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published The Laws of Thought,
his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.
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TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p ⊕ q

T T F

T F T

F T T

F F F

TABLE 5 The Truth Table for
the Conditional Statement
p → q.

p q p → q

T T T

T F F

F T T

F F T

DEFINITION 4 Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition
that is true when exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5 Let p and q be propositions. The conditional statement p→ q is the proposition “if p, then
q.” The conditional statement p→ q is false when p is true and q is false, and true otherwise.
In the conditional statement p→ q, p is called the hypothesis (or antecedent or premise)
and q is called the conclusion (or consequence).

The statement p→ q is called a conditional statement because p→ q asserts that q is true
on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p→ q is shown in Table 5. Note that the
statement p→ q is true when both p and q are true and when p is false (no matter what truth
value q has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to express p→ q. You will encounter most if not all of the
following ways to express this conditional statement:

“if p, then q” “p implies q”
“if p, q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“a necessary condition for p is q” “q follows from p”
“q unless ¬p”

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for office
is

“If I am elected, then I will lower taxes.”
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If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p

is true but q is false in p→ q.
Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statement p→ q, the two that seem to cause
the most confusion are “p only if q” and “q unless ¬p.” Consequently, we will provide some
guidance for clearing up this confusion.

To remember that “p only if q” expresses the same thing as “if p, then q,” note that “p only
if q” says that p cannot be true when q is not true. That is, the statement is false if p is true,
but q is false. When p is false, q may be either true or false, because the statement says nothing
about the truth value of q. Be careful not to use “q only if p” to express p→ q because this is
incorrect. To see this, note that the true values of “q only if p” and p→ q are different when
p and q have different truth values.

You might have trouble
understanding how
“unless” is used in
conditional statements
unless you read this
paragraph carefully.

To remember that “q unless ¬p” expresses the same conditional statement as “if p, then
q,” note that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the statement
“q unless ¬p” is false when p is true but q is false, but it is true otherwise. Consequently,
“q unless ¬p” and p→ q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

EXAMPLE 7 Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will
find a good job.” Express the statement p→ q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p→ q

represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.”

▲

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

“If it is sunny, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement
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“If Juan has a smartphone, then 2+ 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2+ 3 = 6”

is true if Juan does not have a smartphone, even though 2+ 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such as if p then S, where p is a
proposition and S is a program segment (one or more statements to be executed). When execution
of a program encounters such a statement, S is executed if p is true, but S is not executed if p

is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variable x after the statement

if 2+ 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The
statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2+ 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence,
x has the value 0+ 1 = 1 after this statement is encountered. ▲

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p→ q. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition q → p

is called the converse of p→ q. The contrapositive of p→ q is the proposition ¬q → ¬p.
The proposition ¬p→ ¬q is called the inverse of p→ q. We will see that of these three
conditional statements formed from p→ q, only the contrapositive always has the same truth
value as p→ q.

We first show that the contrapositive, ¬q → ¬p, of a conditional statement p→ q always
has the same truth value as p→ q. To see this, note that the contrapositive is false only when
¬p is false and ¬q is true, that is, only when p is true and q is false. We now show that neither
the converse, q → p, nor the inverse, ¬p→ ¬q, has the same truth value as p→ q for all
possible truth values of p and q. Note that when p is true and q is false, the original conditional
statement is false, but the converse and the inverse are both true.

Remember that the
contrapositive, but neither
the converse or inverse, of
a conditional statement is
equivalent to it.

When two compound propositions always have the same truth value we call them equiv-
alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.
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EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?”

Solution: Because “q whenever p” is one of the ways to express the conditional statement
p→ q, the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. ▲

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

DEFINITION 6 Let p and q be propositions. The biconditional statement p↔ q is the proposition “p if
and only if q.” The biconditional statement p↔ q is true when p and q have the same truth
values, and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p↔ q is shown in Table 6. Note that the statement p↔ q is true when both
the conditional statements p→ q and q → p are true and is false otherwise. That is why we use
the words “if and only if” to express this logical connective and why it is symbolically written
by combining the symbols→ and←. There are some other common ways to express p↔ q:

“p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.”

The last way of expressing the biconditional statement p↔ q uses the abbreviation “iff” for
“if and only if.” Note that p↔ q has exactly the same truth value as (p→ q) ∧ (q → p).

TABLE 6 The Truth Table for the
Biconditional p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T
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EXAMPLE 10 Let p be the statement “You can take the flight,” and let q be the statement “You buy a ticket.”
Then p↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). ▲

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and “You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p→ q and the biconditional statement p↔ q.

Truth Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, con-
ditional statements, and biconditional statements—as well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q).

Solution: Because this truth table involves two propositional variables p and q, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first
two columns are used for the truth values of p and q, respectively. In the third column we find
the truth value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth column. The
fifth column gives the truth value of p ∧ q. Finally, the truth value of (p ∨ ¬q)→ (p ∧ q) is
found in the last column. The resulting truth table is shown in Table 7. ▲

TABLE 7 The Truth Table of (p ∨ ¬ q) → (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F
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Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p ∨ q) ∧ (¬r) is the conjunction
of p ∨ q and ¬r . However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that¬p ∧ q is the conjunction
of¬p and q, namely, (¬p) ∧ q, not the negation of the conjunction of p and q, namely¬(p ∧ q).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so that p ∧ q ∨ r means (p ∧ q) ∨ r rather than p ∧ (q ∨ r). Because
this rule may be difficult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

∧ 2
∨ 3

→ 4
↔ 5 Finally, it is an accepted rule that the conditional and biconditional operators→ and ↔

have lower precedence than the conjunction and disjunction operators, ∧ and ∨. Consequently,
p ∨ q → r is the same as (p ∨ q)→ r . We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators, ¬, ∧, ∨,→, and↔.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to
represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A
variable is called a Boolean variable if its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Truth Value Bit

T 1

F 0

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators ∧, ∨, and⊕, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notation OR, AND, and
XOR for the operators ∨,∧, and ⊕, as is done in various programming languages.

JOHN WILDER TUKEY (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining
of the word bit, see the April 1984 issue of Annals of the History of Computing.
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TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

EXAMPLE 12 101010011 is a bit string of length nine. ▲

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
∨,∧, and⊕ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR ▲

Exercises

1. Which of these sentences are propositions? What are the
truth values of those that are propositions?
a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.
c) 2+ 3 = 5.
d) 5+ 7 = 10.
e) x + 2 = 11.
f ) Answer this question.

2. Which of these are propositions?What are the truth values
of those that are propositions?
a) Do not pass go.
b) What time is it?
c) There are no black flies in Maine.

d) 4+ x = 5.
e) The moon is made of green cheese.
f ) 2n ≥ 100.

3. What is the negation of each of these propositions?
a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
c) 2+ 1 = 3.
d) The summer in Maine is hot and sunny.

4. What is the negation of each of these propositions?
a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.
c) Abby sent more than 100 text messages every day.
d) 121 is a perfect square.
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5. What is the negation of each of these propositions?
a) Steve has more than 100 GB free disk space on his

laptop.
b) Zach blocks e-mails and texts from Jennifer.
c) 7 · 11 · 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that SmartphoneA has 256 MB RAM and 32 GB
ROM, and the resolution of its camera is 8 MP; Smart-
phone B has 288 MB RAM and 64 GB ROM, and the
resolution of its camera is 4 MP; and Smartphone C has
128 MB RAM and 32 GB ROM, and the resolution of
its camera is 5 MP. Determine the truth value of each of
these propositions.
a) Smartphone B has the most RAM of these three smart-

phones.
b) Smartphone C has more ROM or a higher resolution

camera than Smartphone B.
c) Smartphone B has more RAM, more ROM, and a

higher resolution camera than Smartphone A.
d) If Smartphone B has more RAM and more ROM than

Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

7. Suppose that during the most recent fiscal year, the an-
nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.
a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme

Computer had the largest annual revenue.
c) Acme Computer had the largest net profit or Quixote

Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then

Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only

if Acme Computer had the largest annual revenue.
8. Let p and q be the propositions

p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.

Express each of these propositions as an English sen-
tence.
a) ¬p b) p ∨ q c) p→ q
d) p ∧ q e) p↔ q f ) ¬p→ ¬q
g) ¬p ∧ ¬q h) ¬p ∨ (p ∧ q)

9. Let p and q be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.
a) ¬q b) p ∧ q c) ¬p ∨ q
d) p→ ¬q e) ¬q → p f ) ¬p→ ¬q
g) p↔ ¬q h) ¬p ∧ (p ∨ ¬q)

10. Let p and q be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.
a) ¬p b) p ∨ q

c) ¬p ∧ q d) q → p

e) ¬q → ¬p f ) ¬p→ ¬q

g) p↔ q h) ¬q ∨ (¬p ∧ q)

11. Let p and q be the propositions
p : It is below freezing.
q : It is snowing.

Write these propositions using p and q and logical con-
nectives (including negations).
a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f ) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient

for it to be snowing.
12. Let p, q, and r be the propositions

p :You have the flu.
q :You miss the final examination.
r :You pass the course.

Express each of these propositions as an English sen-
tence.
a) p→ q b) ¬q ↔ r

c) q → ¬r d) p ∨ q ∨ r

e) (p→ ¬r) ∨ (q → ¬r)

f ) (p ∧ q) ∨ (¬q ∧ r)

13. Let p and q be the propositions
p :You drive over 65 miles per hour.
q :You get a speeding ticket.

Write these propositions using p and q and logical con-
nectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get

a speeding ticket.
c) You will get a speeding ticket if you drive over

65 miles per hour.
d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting

a speeding ticket.
f ) You get a speeding ticket, but you do not drive over

65 miles per hour.
g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.
14. Let p, q, and r be the propositions

p :You get an A on the final exam.
q :You do every exercise in this book.
r :You get an A in this class.

Write these propositions using p, q, and r and logical
connectives (including negations).
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a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f ) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

15. Let p, q, and r be the propositions
p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, q, and r and logical
connectives (including negations).
a) Berries are ripe along the trail, but grizzly bears have

not been seen in the area.
b) Grizzly bears have not been seen in the area and hik-

ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f ) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

16. Determine whether these biconditionals are true or
false.
a) 2+ 2 = 4 if and only if 1+ 1 = 2.
b) 1+ 1 = 2 if and only if 2+ 3 = 4.
c) 1+ 1 = 3 if and only if monkeys can fly.
d) 0 > 1 if and only if 2 > 1.

17. Determine whether each of these conditional statements
is true or false.
a) If 1+ 1 = 2, then 2+ 2 = 5.
b) If 1+ 1 = 3, then 2+ 2 = 4.
c) If 1+ 1 = 3, then 2+ 2 = 5.
d) If monkeys can fly, then 1+ 1 = 3.

18. Determine whether each of these conditional statements
is true or false.
a) If 1+ 1 = 3, then unicorns exist.
b) If 1+ 1 = 3, then dogs can fly.
c) If 1+ 1 = 2, then dogs can fly.
d) If 2+ 2 = 4, then 1+ 2 = 3.

19. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Coffee or tea comes with dinner.
b) A password must have at least three digits or be at

least eight characters long.
c) The prerequisite for the course is a course in number

theory or a course in cryptography.
d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.
a) Experience with C++ or Java is required.
b) Lunch includes soup or salad.
c) To enter the country you need a passport or a voter

registration card.
d) Publish or perish.

21. For each of these sentences, state what the sentence means
if the logical connective or is an inclusive or (that is, a dis-
junction) versus an exclusive or. Which of these meanings
of or do you think is intended?
a) To take discrete mathematics, you must have taken

calculus or a course in computer science.
b) When you buy a new car fromAcme Motor Company,

you get $2000 back in cash or a 2% car loan.
c) Dinner for two includes two items from column A or

three items from column B.
d) School is closed if more than 2 feet of snow falls or if

the wind chill is below −100.
22. Write each of these statements in the form “if p, then q”

in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]
a) It is necessary to wash the boss’s car to get promoted.
b) Winds from the south imply a spring thaw.
c) A sufficient condition for the warranty to be good is

that you bought the computer less than a year ago.
d) Willy gets caught whenever he cheats.
e) You can access the website only if you pay a subscrip-

tion fee.
f ) Getting elected follows from knowing the right peo-

ple.
g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to
express conditional statements.]
a) It snows whenever the wind blows from the northeast.
b) The apple trees will bloom if it stays warm for a week.
c) That the Pistons win the championship implies that

they beat the Lakers.
d) It is necessary to walk 8 miles to get to the top of

Long’s Peak.
e) To get tenure as a professor, it is sufficient to be world-

famous.
f ) If you drive more than 400 miles, you will need to buy

gasoline.
g) Your guarantee is good only if you bought your CD

player less than 90 days ago.
h) Jan will go swimming unless the water is too cold.
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24. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]
a) I will remember to send you the address only if you

send me an e-mail message.
b) To be a citizen of this country, it is sufficient that you

were born in the United States.
c) If you keep your textbook, it will be a useful reference

in your future courses.
d) The Red Wings will win the Stanley Cup if their goalie

plays well.
e) That you get the job implies that you had the best

credentials.
f ) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your climb

too late.
25. Write each of these propositions in the form “p if and

only if q” in English.
a) If it is hot outside you buy an ice cream cone, and if

you buy an ice cream cone it is hot outside.
b) For you to win the contest it is necessary and sufficient

that you have the only winning ticket.
c) You get promoted only if you have connections, and

you have connections only if you get promoted.
d) If you watch television your mind will decay, and con-

versely.
e) The trains run late on exactly those days when I take

it.
26. Write each of these propositions in the form “p if and

only if q” in English.
a) For you to get an A in this course, it is necessary and

sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

27. State the converse, contrapositive, and inverse of each of
these conditional statements.
a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors

other than 1 and itself.
28. State the converse, contrapositive, and inverse of each of

these conditional statements.
a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until

noon.
29. How many rows appear in a truth table for each of these

compound propositions?
a) p→ ¬p

b) (p ∨ ¬r) ∧ (q ∨ ¬s)

c) q ∨ p ∨ ¬s ∨ ¬r ∨ ¬t ∨ u

d) (p ∧ r ∧ t)↔ (q ∧ t)

30. How many rows appear in a truth table for each of these
compound propositions?
a) (q → ¬p) ∨ (¬p→ ¬q)

b) (p ∨ ¬t) ∧ (p ∨ ¬s)

c) (p→ r) ∨ (¬s → ¬t) ∨ (¬u→ v)
d) (p ∧ r ∧ s) ∨ (q ∧ t) ∨ (r ∧ ¬t)

31. Construct a truth table for each of these compound propo-
sitions.
a) p ∧ ¬p b) p ∨ ¬p

c) (p ∨ ¬q)→ q d) (p ∨ q)→ (p ∧ q)

e) (p→ q)↔ (¬q → ¬p)

f ) (p→ q)→ (q → p)

32. Construct a truth table for each of these compound propo-
sitions.
a) p→ ¬p b) p↔ ¬p

c) p ⊕ (p ∨ q) d) (p ∧ q)→ (p ∨ q)

e) (q → ¬p)↔ (p↔ q)

f ) (p↔ q)⊕ (p↔ ¬q)

33. Construct a truth table for each of these compound propo-
sitions.
a) (p ∨ q)→ (p ⊕ q) b) (p ⊕ q)→ (p ∧ q)

c) (p ∨ q)⊕ (p ∧ q) d) (p↔ q)⊕ (¬p↔ q)

e) (p↔ q)⊕ (¬p↔ ¬r)

f ) (p ⊕ q)→ (p ⊕¬q)

34. Construct a truth table for each of these compound propo-
sitions.
a) p ⊕ p b) p ⊕¬p

c) p ⊕¬q d) ¬p ⊕¬q

e) (p ⊕ q) ∨ (p ⊕¬q) f ) (p ⊕ q) ∧ (p ⊕¬q)

35. Construct a truth table for each of these compound propo-
sitions.
a) p→ ¬q b) ¬p↔ q

c) (p→ q) ∨ (¬p→ q) d) (p→ q) ∧ (¬p→ q)

e) (p↔ q) ∨ (¬p↔ q)

f ) (¬p↔ ¬q)↔ (p↔ q)

36. Construct a truth table for each of these compound propo-
sitions.
a) (p ∨ q) ∨ r b) (p ∨ q) ∧ r

c) (p ∧ q) ∨ r d) (p ∧ q) ∧ r

e) (p ∨ q) ∧ ¬r f ) (p ∧ q) ∨ ¬r

37. Construct a truth table for each of these compound propo-
sitions.
a) p→ (¬q ∨ r)

b) ¬p→ (q → r)

c) (p→ q) ∨ (¬p→ r)

d) (p→ q) ∧ (¬p→ r)

e) (p↔ q) ∨ (¬q ↔ r)

f ) (¬p↔ ¬q)↔ (q ↔ r)

38. Construct a truth table for ((p→ q)→ r)→ s.

39. Construct a truth table for (p↔ q)↔ (r ↔ s).
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40. Explain, without using a truth table, why (p ∨ ¬q) ∧
(q ∨ ¬r) ∧ (r ∨ ¬p) is true when p, q, and r have the
same truth value and it is false otherwise.

41. Explain, without using a truth table, why (p ∨ q ∨ r) ∧
(¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r

is true and at least one is false, but is false when all three
variables have the same truth value.

42. What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?
a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

43. Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.
a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001, 10 0100 1000
d) 11 1111 1111, 00 0000 0000

44. Evaluate each of these expressions.
a) 1 1000 ∧ (0 1011 ∨ 1 1011)

b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive.A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45–47.
45. The truth value of the negation of a proposition in fuzzy

logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

46. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

47. The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

∗48. Is the assertion “This statement is false” a proposition?
∗49. The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”
a) What conclusions can you draw from these state-

ments?
b) Answer part (a) if the nth statement is “At least n of

the statements in this list are false.”
c) Answer part (b) assuming that the list contains 99

statements.
50. An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

1.2 Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
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often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of the
sentence. Moreover, once we have translated sentences from English into logical expressions
we can analyze these logical expressions to determine their truth values, we can manipulate
them, and we can use rules of inference (which are discussed in Section 1.6) to reason about
them.

To illustrate the process of translating an English sentence into a logical expression, consider
Examples 1 and 2.

EXAMPLE 1 How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you
are not a freshman.”

Solution: There are many ways to translate this sentence into a logical expression. Although it is
possible to represent the sentence by a single propositional variable, such as p, this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, c, and f represent “You can access the Internet from campus,”
“You are a computer science major,” and “You are a freshman,” respectively. Noting that “only
if” is one way a conditional statement can be expressed, this sentence can be represented as

a→ (c ∨ ¬f ). ▲

EXAMPLE 2 How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Solution: Let q, r , and s represent “You can ride the roller coaster,” “You are under 4 feet tall,”
and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r ∧ ¬s)→ ¬q.

Of course, there are other ways to represent the original sentence as a logical expression,
but the one we have used should meet our needs. ▲
System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essential
part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous specifications that can
be used as the basis for system development. Example 3 shows how compound propositions
can be used in this process.

EXAMPLE 3 Express the specification “The automated reply cannot be sent when the file system is full”
using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and
q denote “The file system is full.” Then ¬p represents “It is not the case that the automated
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reply can be sent,” which can also be expressed as “The automated reply cannot be sent.”
Consequently, our specification can be represented by the conditional statement q → ¬p. ▲

System specifications should be consistent, that is, they should not contain conflicting
requirements that could be used to derive a contradiction. When specifications are not consistent,
there would be no way to develop a system that satisfies all specifications.

EXAMPLE 4 Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: To determine whether these specifications are consistent, we first express them using
logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let q

denote “The diagnostic message is retransmitted.” The specifications can then be written as
p ∨ q, ¬p, and p→ q. An assignment of truth values that makes all three specifications true
must have p false to make ¬p true. Because we want p ∨ q to be true but p must be false,
q must be true. Because p→ q is true when p is false and q is true, we conclude that these
specifications are consistent, because they are all true when p is false and q is true. We could
come to the same conclusion by use of a truth table to examine the four possible assignments
of truth values to p and q. ▲

EXAMPLE 5 Do the system specifications in Example 4 remain consistent if the specification “The diagnostic
message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true
only in the case when p is false and q is true. However, this new specification is ¬q, which is
false when q is true. Consequently, these four specifications are inconsistent. ▲

Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of
two search terms, the connective OR is used to match one or both of two search terms, and the
connective NOT (sometimes written as AND NOT ) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

EXAMPLE 6 Web Page Searching Most Web search engines support Boolean searching techniques, which
usually can help find Web pages about particular subjects. For instance, using Boolean searching
to find Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that in Google, and many other search engines, the word “AND” is not needed, although it is
understood, because all search terms are included by default. These search engines also support
the use of quotation marks to search for specific phrases. So, it may be more effective to search
for pages matching “New Mexico” AND UNIVERSITIES.)
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Next, to find pages that deal with universities in New Mexico or Arizona, we can search
for pages matching (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Here
the AND operator takes precedence over the OR operator. Also, in Google, the terms used for
this search would be NEW MEXICO OR ARIZONA.) The results of this search will include
all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO
or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find
Web pages that deal with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will
include pages about universities in New Mexico, as well as universities in Mexico, it might be
better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results
of this search include pages that contain both the words MEXICO and UNIVERSITIES but
do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is
replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO
UNIVERSITIES -NEW.) ▲

Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer programs
designed to carry out logical reasoning often use well-known logic puzzles to illustrate their
capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on
the Web, as a recreational activity.

We will discuss two logic puzzles here. We begin with a puzzle originally posed by Raymond
Smullyan, a master of logic puzzles, who has published more than a dozen books containing
challenging puzzles that involve logical reasoning. In Section 1.3 we will also discuss the
extremely popular logic puzzle Sudoku.

EXAMPLE 7 In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,
knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter
two people A and B. What are A and B if A says “B is a knight” and B says “The two of us are
opposite types?”

Solution: Let p and q be the statements that A is a knight and B is a knight, respectively, so that
¬p and ¬q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is
a knight, then he is telling the truth when he says that B is a knight, so that q is true, and A and B

are the same type. However, if B is a knight, then B’s statement that A and B are of opposite
types, the statement (p ∧ ¬q) ∨ (¬p ∧ q), would have to be true, which it is not, because A

and B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is
false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that q is true, is a lie. This means that q is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B are
knaves. ▲

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 19–23. In
Exercises 24–31 we introduce related puzzles where we have three types of people, knights and
knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as the muddy children puzzle for the case of two children.
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EXAMPLE 8 A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.
However, while playing, both children get mud on their foreheads. When the children stop
playing, the father says “At least one of you has a muddy forehead,” and then asks the children
to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?”
The father asks this question twice. What will the children answer each time this question is
asked, assuming that a child can see whether his or her sibling has a muddy forehead, but cannot
see his or her own forehead? Assume that both children are honest and that the children answer
each question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that
the daughter has a muddy forehead. When the father says that at least one of the two children
has a muddy forehead, he is stating that the disjunction s ∨ d is true. Both children will answer
“No” the first time the question is asked because each sees mud on the other child’s forehead.
That is, the son knows that d is true, but does not know whether s is true, and the daughter
knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d

must be true. This follows because when the first question is asked, the son knows that s ∨ d is
true, but cannot determine whether s is true. Using this information, the daughter can conclude
that d must be true, for if d were false, the son could have reasoned that because s ∨ d is true,
then s must be true, and he would have answered “Yes” to the first question. The son can reason
in a similar way to determine that s must be true. It follows that both children answer “Yes” the
second time the question is asked. ▲

Logic Circuits

Propositional logic can be applied to the design of computer hardware. This was first observed
in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic
in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this
application here.

A logic circuit (or digital circuit) receives input signals p1, p2, . . . , pn, each a bit [either
0 (off) or 1 (on)], and produces output signals s1, s2, . . . , sn, each a bit. In this section we will

In Chapter 12 we design
some useful circuits.

restrict our attention to logic circuits with a single output signal; in general, digital circuits may
have multiple outputs.

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped out of high school. He wanted to study
what he was really interested in and not standard high school material. After jumping from one university to
the next, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid
his college expenses by performing magic tricks at parties and clubs. He obtained a Ph.D. in logic in 1959 at
Princeton, studying under Alonzo Church. After graduating from Princeton, he taught mathematics and logic at
Dartmouth College, Princeton University, Yeshiva University, and the City University of New York. He joined
the philosophy department at Indiana University in 1981 where he is now an emeritus professor.

Smullyan has written many books on recreational logic and mathematics, including Satan, Cantor, and
Infinity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles are
challenging, entertaining, and thought-provoking, he is considered to be a modern-day Lewis Carroll. Smullyan has also written
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He is particularly interested in self-reference and has worked on extending
some of Gödel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He is
also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist. Making telescopes is one
of his hobbies. He is also interested in optics and stereo photography. He states “I’ve never had a conflict between teaching and
research as some people do because when I’m teaching, I’m doing research.” Smullyan is the subject of a documentary short film
entitled This Film Needs No Title.
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FIGURE 1 Basic logic gates.
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¬q
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FIGURE 2 A combinatorial circuit.

Complicated digital circuits can be constructed from three basic circuits, called gates, shown
in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output ¬p. The
OR gate takes two input signals p and q, each a bit, and produces as output the signal p ∨ q.
Finally, the AND gate takes two input signals p and q, each a bit, and produces as output the
signal p ∧ q. We use combinations of these three basic gates to build more complicated circuits,
such as that shown in Figure 2.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 9 shows.

EXAMPLE 9 Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the AND
gate takes input of p and ¬q, the output of the inverter with input q, and produces p ∧ ¬q.
Next, we note that the OR gate takes input p ∧ ¬q and ¬r , the output of the inverter with
input r , and produces the final output (p ∧ ¬q) ∨ ¬r . ▲

Suppose that we have a formula for the output of a digital circuit in terms of negations,
disjunctions, and conjunctions. Then, we can systematically build a digital circuit with the
desired output, as illustrated in Example 10.

EXAMPLE 10 Build a digital circuit that produces the output (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)) when given input
bits p, q, and r .

Solution: To construct the desired circuit, we build separate circuits for p ∨ ¬r and for ¬p ∨
(q ∨ ¬r) and combine them using an AND gate. To construct a circuit for p ∨ ¬r , we use an
inverter to produce ¬r from the input r . Then, we use an OR gate to combine p and ¬r . To
build a circuit for¬p ∨ (q ∨ ¬r), we first use an inverter to obtain¬r . Then we use an OR gate
with inputs q and ¬r to obtain q ∨ ¬r . Finally, we use another inverter and an OR gate to get
¬p ∨ (q ∨ ¬r) from the inputs p and q ∨ ¬r .

To complete the construction, we employ a final AND gate, with inputs p ∨ ¬r and ¬p ∨
(q ∨ ¬r). The resulting circuit is displayed in Figure 3. ▲

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,
and with different notation.
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(p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r))
r

p p ∨ ¬r

¬r

r

q

q ∨ ¬r
¬p ∨ (q ∨ ¬r)

¬r

p
¬p

FIGURE 3 The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

Exercises

In Exercises 1–6, translate the given statement into proposi-
tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

2. You can see the movie only if you are over 18 years old
or you have the permission of a parent. Express your an-
swer in terms of m: “You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

3. You can graduate only if you have completed the require-
ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” r: “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

4. To use the wireless network in the airport you must pay
the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

5. You are eligible to be President of the U.S.A. only if you
are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

6. You can upgrade your operating system only if you have
a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of u: “You can upgrade your oper-
ating system,” b32: “You have a 32-bit processor,” b64:

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or
faster,” r1: “Your processor has at least 1 GB RAM,” r2:
“Your processor has at least 2 GB RAM,” h16: “You have
at least 16 GB free hard disk space,” and h32: “You have
at least 32 GB free hard disk space.”

7. Express these system specifications using the proposi-
tions p “The message is scanned for viruses” and q “The
message was sent from an unknown system” together
with logical connectives (including negations).
a) “The message is scanned for viruses whenever the

message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system
it is not scanned for viruses.”

8. Express these system specifications using the proposi-
tions p “The user enters a valid password,” q “Access is
granted,” and r “The user has paid the subscription fee”
and logical connectives (including negations).
a) “The user has paid the subscription fee, but does not

enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”
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10. Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

11. Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed, The router
does not support the new address space.”

12. Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If
the file system is not locked, then new messages will be
sent to the message buffer. New messages will not be sent
to the message buffer.”

13. What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

14. What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking inVirginia, but not in West
Virginia?

∗15. Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

16. An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.
a) Explain why the question “Are you a liar?” does not

work.
b) Find a question that the explorer can use to determine

whether the cannibal always lies or always tells the
truth.

17. When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?” The first
professor says: “I do not know.” The second professor
then says: “I do not know.” Finally, the third professor
says: “No, not everyone wants coffee.” The hostess comes
back and gives coffee to the professors who want it. How
did she figure out who wanted coffee?

18. When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends.You know that if Jasmine attends, she will

become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless Jas-
mine also does.Which combinations of these three friends
can you invite so as not to make someone unhappy?

Exercises 19–23 relate to inhabitants of the island of knights
and knaves created by Smullyan, where knights always tell
the truth and knaves always lie. You encounter two people,
A and B. Determine, if possible, what A and B are if they
address you in the ways described. If you cannot determine
what these two people are, can you draw any conclusions?

19. A says “At least one of us is a knave” and B says nothing.

20. A says “The two of us are both knights” and B says “A
is a knave.”

21. A says “I am a knave or B is a knight” and B says nothing.

22. Both A and B say “I am a knight.”

23. A says “We are both knaves” and B says nothing.
Exercises 24–31 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible
solutions or state that there are no solutions.

24. A says “C is the knave,” B says, “A is the knight,” and C

says “I am the spy.”

25. A says “I am the knight,” B says “I am the knave,” and
C says “B is the knight.”

26. A says “I am the knave,” B says “I am the knave,” and C

says “I am the knave.”

27. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

28. A says “I am the knight,” B says, “A is not the knave,”
and C says “B is not the knave.”

29. A says “I am the knight,” B says “I am the knight,” and
C says “I am the knight.”

30. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

31. A says “I am not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 32–38 are puzzles that can be solved by translating
statements into logical expressions and reasoning from these
expressions using truth tables.

32. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he
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saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if
a) one of the three men is guilty, the two innocent men

are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?
33. Steve would like to determine the relative salaries of three

coworkers using two facts. First, he knows that if Fred
is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then
Maggie is paid the most. Is it possible to determine the
relative salaries of Fred, Maggie, and Janice from what
Steve knows? If so, who is paid the most and who the
least? Explain your reasoning.

34. Five friends have access to a chat room. Is it possible to
determine who is chatting if the following information is
known? Either Kevin or Heather, or both, are chatting.
Either Randy or Vijay, but not both, are chatting. If Abby
is chatting, so is Randy. Vijay and Kevin are either both
chatting or neither is. If Heather is chatting, then so are
Abby and Kevin. Explain your reasoning.

35. A detective has interviewed four witnesses to a crime.
From the stories of the witnesses the detective has con-
cluded that if the butler is telling the truth then so is the
cook; the cook and the gardener cannot both be telling the
truth; the gardener and the handyman are not both lying;
and if the handyman is telling the truth then the cook is
lying. For each of the four witnesses, can the detective de-
termine whether that person is telling the truth or lying?
Explain your reasoning.

36. Four friends have been identified as suspects for an unau-
thorized access into a computer system. They have made
statements to the investigating authorities. Alice said
“Carlos did it.” John said “I did not do it.” Carlos said
“Diana did it.” Diana said “Carlos lied when he said that
I did it.”
a) If the authorities also know that exactly one of the

four suspects is telling the truth, who did it? Explain
your reasoning.

b) If the authorities also know that exactly one is lying,
who did it? Explain your reasoning.

37. Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

∗38. Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with
different nationalities and with different jobs live in con-
secutive houses on a street. These houses are painted dif-
ferent colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and

whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is
immediately to the right of the white one. The photogra-
pher breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

39. Freedonia has fifty senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the Free-
donian senators is honest and that, given any two Free-
donian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators
are honest and how many are corrupt? If so, what is the
answer?

40. Find the output of each of these combinatorial circuits.

q

p

p

q

pa)

b)

41. Find the output of each of these combinatorial circuits.

r

q

p

r

p

q

p

a)

b)

42. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p ∧ ¬r) ∨ (¬q ∧ r) from input bits p, q, and r .

43. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
((¬p ∨ ¬r) ∧ ¬q) ∨ (¬p ∧ (q ∨ r)) from input bits p,
q, and r .
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1.3 Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
as p ∧ q.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

DEFINITION 1 A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p ∨ ¬p and p ∧ ¬p, shown in Table 1. Because p ∨ ¬p is
always true, it is a tautology. Because p ∧ ¬p is always false, it is a contradiction. ▲

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

DEFINITION 2 The compound propositions p and q are called logically equivalent if p↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.

Remark: The symbol ≡ is not a logical connective, and p ≡ q is not a compound proposition
but rather is the statement that p↔ q is a tautology. The symbol⇔ is sometimes used instead
of ≡ to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and q are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

F T T F
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TABLE 2 De
Morgan’s Laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of ¬(p ∨ q) with ¬p ∧ ¬q. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions ¬(p ∨ q) and ¬p ∧ ¬q agree for all possible
combinations of the truth values of p and q, it follows that¬(p ∨ q)↔ (¬p ∧ ¬q) is a tautology
and that these compound propositions are logically equivalent. ▲

TABLE 3 Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

EXAMPLE 3 Show that p→ q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of ¬p ∨ q and p→ q agree, they are logically equivalent. ▲

TABLE 4 Truth Tables for ¬p ∨ q and
p → q.

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, q, and r . To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
q, and r , respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2n rows are required if a compound proposition involves n propositional
variables.
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TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive
law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are
logically equivalent. ▲

The identities in Table 6
are a special case of
Boolean algebra identities
found in Table 5 of
Section 12.1. See Table 1
in Section 2.2 for
analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws

p ∧ ¬p ≡ F
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TABLE 7 Logical Equivalences
Involving Conditional Statements.

p→ q ≡ ¬p ∨ q

p→ q ≡ ¬q → ¬p

p ∨ q ≡ ¬p→ q

p ∧ q ≡ ¬(p→ ¬q)

¬(p→ q) ≡ p ∧ ¬q

(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)

(p→ r) ∧ (q → r) ≡ (p ∨ q)→ r

(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)

(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p↔ q ≡ (p→ q) ∧ (q → p)

p↔ q ≡ ¬p↔ ¬q

p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p↔ q) ≡ p↔ ¬q

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression p ∨ q ∨ r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with q and then
the disjunction of p ∨ q with r , or if we first take the disjunction of q and r and then take the
disjunction of p with q ∨ r . Similarly, the expression p ∧ q ∧ r is well defined. By extending this
reasoning, it follows that p1 ∨ p2 ∨ · · · ∨ pn and p1 ∧ p2 ∧ · · · ∧ pn are well defined whenever
p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)

and

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn).

We will sometimes use the notation
∨n

j=1 pj for p1 ∨ p2 ∨ · · · ∨ pn and
∧n

j=1 pj for
p1 ∧ p2 ∧ · · · ∧ pn. Using this notation, the extended version of De Morgan’s laws can be
written concisely as ¬(∨n

j=1 pj

) ≡∧n
j=1¬pj and ¬(∧n

j=1 pj

) ≡∨n
j=1¬pj . (Methods for

proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De Morgan’s
laws, remember to change
the logical connective
after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
¬(p ∨ q) ≡ ¬p ∧ ¬q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence¬(p ∧ q) ≡
¬p ∨ ¬q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.
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EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p ∧ q. By the
first of De Morgan’s laws, ¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r ∨ s.
By the second of De Morgan’s laws, ¬(r ∨ s) is equivalent to ¬r ∧ ¬s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” ▲

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6–8, where we also use the
fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r

are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that ¬(p→ q) and p ∧ ¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound propositions
with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his

work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.
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logical equivalences, using one of the equivalences in Table 6 at a time, starting with¬(p→ q)

and ending with p ∧ ¬q. We have the following equivalences.

¬(p→ q) ≡ ¬(¬p ∨ q) by Example 3

≡ ¬(¬p) ∧ ¬q by the second De Morgan law

≡ p ∧ ¬q by the double negation law

▲

EXAMPLE 7 Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with¬(p ∨ (¬p ∧ q))

and ending with ¬p ∧ ¬q. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F

≡ (¬p ∧ ¬q) ∨ F by the commutative law for disjunction

≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent. ▲

EXAMPLE 8 Show that (p ∧ q)→ (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative
laws for disjunction

≡ T ∨ T by Example 1 and the commutative
law for disjunction

≡ T by the domination law

▲

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all

assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition

true, we have shown that it is satisfiable; such an assignment is called a solution of this particular
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satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (p ∨ ¬q) ∧ (q ∨ ¬r) ∧
(r ∨ ¬p), (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r), and (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) is true when the three variable p, q, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p, q, and r that makes it true. Similarly, note that
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable,
as there is at least one assignment of truth values for p, q, and r that makes it true.

Finally, note that for (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)

to be true, (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) and (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, q, and r makes (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) true. Hence, it is unsatisfiable. ▲

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female

mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.
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2 9 4
5 1

4
4 2

6 7
5
7 3 5

1 9
6

FIGURE 1 A 9 × 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9× 9 grid made up of nine 3× 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3× 3 blocks contains each of the nine possible numbers. Note that instead of using a 9× 9
grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n× n subgrids.
The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Da10], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.
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To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and j th column. There are 9× 9× 9 = 729 such propositions, as
i, j , and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6)

is false for j = 2, 3, . . . , 9.
Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,

we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3× 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j , and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3× 3 blocks contains every number to the exercises.

� For each cell with a given value, we assert p(i, j, n) when the cell in row i and column
j has the given value n.

� We assert that every row contains every number:

9∧

i=1

9∧

n=1

9∨

j=1

p(i, j, n)

� We assert that every column contains every number:

9∧

j=1

9∧

n=1

9∨

i=1

p(i, j, n)

It is tricky setting up the
two inner indices so that
all nine cells in each
square block are
examined.

� We assert that each of the nine 3× 3 blocks contains every number:

2∧

r=0

2∧

s=0

9∧

n=1

3∨

i=1

3∨

j=1

p(3r + i, 3s + j, n)

� To assert that no cell contains more than one number, we take the conjunction over all
values of n, n′, i, and j where each variable ranges from 1 to 9 and n �= n′ of p(i, j, n)→
¬p(i, j, n′).

We now explain how to construct the assertion that every row contains every number.
First, to assert that row i contains the number n, we form

∨9
j=1 p(i, j, n). To assert that

row i contains all n numbers, we form the conjunction of these disjunctions over all nine
possible values of n, giving us

∧9
n=1

∨9
j=1 p(i, j, n). Finally, to assert that every row contains

every number, we take the conjunction of
∧9

n=1
∨9

j=1 p(i, j, n) over all nine rows. This gives

us
∧9

i=1
∧9

n=1
∨9

j=1 p(i, j, n). (Exercises 65 and 66 ask for explanations of the assertions that
every column contains every number and that each of the nine 3× 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true.
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Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 21000 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences.
a) p ∧ T ≡ p b) p ∨ F ≡ p

c) p ∧ F ≡ F d) p ∨ T ≡ T
e) p ∨ p ≡ p f ) p ∧ p ≡ p

2. Show that ¬(¬p) and p are logically equivalent.

3. Use truth tables to verify the commutative laws
a) p ∨ q ≡ q ∨ p. b) p ∧ q ≡ q ∧ p.

4. Use truth tables to verify the associative laws
a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).
5. Use a truth table to verify the distributive law

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

6. Use a truth table to verify the first De Morgan law
¬(p ∧ q) ≡ ¬p ∨ ¬q.

7. Use De Morgan’s laws to find the negation of each of the
following statements.
a) Jan is rich and happy.
b) Carlos will bicycle or run tomorrow.

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.
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c) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the
following statements.
a) Kwame will take a job in industry or go to graduate

school.
b) Yoshiko knows Java and calculus.
c) James is young and strong.
d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-
tology by using truth tables.
a) (p ∧ q)→ p b) p→ (p ∨ q)
c) ¬p→ (p→ q) d) (p ∧ q)→ (p→ q)
e) ¬(p→ q)→ p f ) ¬(p→ q)→ ¬q

10. Show that each of these conditional statements is a tau-
tology by using truth tables.
a) [¬p ∧ (p ∨ q)] → q
b) [(p→ q) ∧ (q → r)] → (p→ r)
c) [p ∧ (p→ q)] → q
d) [(p ∨ q) ∧ (p→ r) ∧ (q → r)] → r

11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

13. Use truth tables to verify the absorption laws.
a) p ∨ (p ∧ q) ≡ p b) p ∧ (p ∨ q) ≡ p

14. Determine whether (¬p ∧ (p→ q))→ ¬q is a tautol-
ogy.

15. Determine whether (¬q ∧ (p→ q))→ ¬p is a tautol-
ogy.

Each of Exercises 16–28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).
16. Show that p↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically

equivalent.
17. Show that ¬(p↔ q) and p↔ ¬q are logically equiva-

lent.
18. Show that p→ q and¬q → ¬p are logically equivalent.
19. Show that¬p↔ q and p↔ ¬q are logically equivalent.
20. Show that¬(p ⊕ q) and p↔ q are logically equivalent.
21. Show that ¬(p↔ q) and ¬p↔ q are logically equiva-

lent.
22. Show that (p→ q) ∧ (p→ r) and p→ (q ∧ r) are log-

ically equivalent.
23. Show that (p→ r) ∧ (q → r) and (p ∨ q)→ r are log-

ically equivalent.
24. Show that (p→ q) ∨ (p→ r) and p→ (q ∨ r) are log-

ically equivalent.
25. Show that (p→ r) ∨ (q → r) and (p ∧ q)→ r are log-

ically equivalent.
26. Show that¬p→ (q → r) and q → (p ∨ r) are logically

equivalent.
27. Show that p↔ q and (p→ q) ∧ (q → p) are logically

equivalent.
28. Show that p↔ q and¬p↔ ¬q are logically equivalent.

29. Show that (p→ q) ∧ (q → r)→ (p→ r) is a tautol-
ogy.

30. Show that (p ∨ q) ∧ (¬p ∨ r)→ (q ∨ r) is a tautology.

31. Show that (p→ q)→ r and p→ (q → r) are not log-
ically equivalent.

32. Show that (p ∧ q)→ r and (p→ r) ∧ (q → r) are not
logically equivalent.

33. Show that (p→ q)→ (r → s) and (p→ r)→
(q → s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators ∨, ∧, and ¬ is the compound proposition
obtained by replacing each ∨ by ∧, each ∧ by ∨, each T
by F, and each F by T. The dual of s is denoted by s∗.
34. Find the dual of each of these compound propositions.

a) p ∨ ¬q b) p ∧ (q ∨ (r ∧ T))

c) (p ∧ ¬q) ∨ (q ∧ F)

35. Find the dual of each of these compound propositions.
a) p ∧ ¬q ∧ ¬r b) (p ∧ q ∧ r) ∨ s

c) (p ∨ F) ∧ (q ∨ T)

36. When does s∗ = s, where s is a compound proposition?

37. Show that (s∗)∗ = s when s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

∗∗39. Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators ∧,∨, and ¬?

40. Find a compound proposition involving the propositional
variables p, q, and r that is true when p and q are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, q, and r that is true when exactly two of p, q,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

42. Suppose that a truth table in n propositional variables is
specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-
tors.

43. Show that ¬, ∧, and ∨ form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]
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∗44. Show that ¬ and ∧ form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p ∨ q is logically equivalent to
¬(¬p ∧ ¬q).]

∗45. Show that ¬ and ∨ form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND q is true when either p

or q, or both, are false; and it is false when both p and q are
true. The proposition p NOR q is true when both p and q are
false, and it is false otherwise. The propositions p NAND q

and p NOR q are denoted by p | q and p ↓ q, respectively.
(The operators | and ↓ are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)
46. Construct a truth table for the logical operator NAND.
47. Show that p | q is logically equivalent to ¬(p ∧ q).
48. Construct a truth table for the logical operator NOR.
49. Show that p ↓ q is logically equivalent to ¬(p ∨ q).
50. In this exercise we will show that {↓} is a functionally

complete collection of logical operators.
a) Show that p ↓ p is logically equivalent to ¬p.
b) Show that (p ↓ q) ↓ (p ↓ q) is logically equivalent

to p ∨ q.
c) Conclude from parts (a) and (b), and Exercise 49, that
{↓} is a functionally complete collection of logical
operators.

∗51. Find a compound proposition logically equivalent to
p→ q using only the logical operator ↓.

52. Show that {|} is a functionally complete collection of log-
ical operators.

53. Show that p | q and q | p are equivalent.
54. Show that p | (q | r) and (p | q) | r are not equivalent,

so that the logical operator | is not associative.
∗55. How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and q?
56. Show that if p, q, and r are compound propositions such

that p and q are logically equivalent and q and r are log-
ically equivalent, then p and r are logically equivalent.

57. The following sentence is taken from the specification of
a telephone system: “If the directory database is opened,
then the monitor is put in a closed state, if the system is
not in its initial state.” This specification is hard to under-

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

58. How many of the disjunctions p ∨ ¬q, ¬p ∨ q, q ∨ r ,
q ∨ ¬r , and ¬q ∨ ¬r can be made simultaneously true
by an assignment of truth values to p, q, and r?

59. How many of the disjunctions p ∨ ¬q ∨ s, ¬p ∨
¬r ∨ s, ¬p ∨ ¬r ∨ ¬s, ¬p ∨ q ∨ ¬s, q ∨ r ∨ ¬s,
q ∨ ¬r ∨ ¬s,¬p ∨ ¬q ∨ ¬s, p ∨ r ∨ s, and p ∨ r ∨¬s

can be made simultaneously true by an assignment of
truth values to p, q, r , and s?

60. Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

61. Determine whether each of these compound propositions
is satisfiable.
a) (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

b) (p→ q) ∧ (p→ ¬q) ∧ (¬p→ q) ∧ (¬p→ ¬q)

c) (p↔ q) ∧ (¬p↔ q)

62. Determine whether each of these compound propositions
is satisfiable.
a) (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬s) ∧

(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ q ∨ ¬s)

b) (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨
¬s) ∧ (¬p ∨ ¬r ∨ ¬s) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨
¬r ∨ ¬s)

c) (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧
(¬p ∨ r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧
(¬p ∨ ¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s)

63. Show how the solution of a given 4× 4 Sudoku puzzle
can be found by solving a satisfiability problem.

64. Construct a compound proposition that asserts that ev-
ery cell of a 9× 9 Sudoku puzzle contains at least one
number.

65. Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9× 9 Sudoku puzzle contains every number.

∗66. Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3× 3 blocks of a 9× 9 Sudoku puzzle contains ev-
ery number.

1.4 Predicates and Quantifiers

Introduction

Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”
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No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot
use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason with
statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

Predicates

Statements involving variables, such as

“x > 3,” “x = y + 3,” “x + y = z,”

and

“computer x is under attack by an intruder,”

and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” by P(x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider
Examples 1 and 2.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,
P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. ▲
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EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x

is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of
computers under attack, we know that A(CS2) and A(MATH1) are true. ▲

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables
and Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y)

has a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is
the statement “1 = 2+ 3,” which is false. The statement Q(3, 0) is the proposition “3 = 0+ 3,”
which is true. ▲

CHARLES SANDERS PEIRCE (1839–1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a
metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His service
for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astronomical and
geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical
developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement.
Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he disagreed with the
direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879–1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications of this work on logic to artificial intelligence. Peirce believed that the study
of mathematics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring
from the Survey included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing,
and textbook writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject
poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William
James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000
pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started
to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring
a better appreciation of Peirce’s accomplishments to the world.
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EXAMPLE 4 Let A(c, n) denote the statement “Computer c is connected to network n,” where c is a variable
representing a computer and n is a variable representing a network. Suppose that the computer
MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the
values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1,
CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we
see that A(MATH1, CAMPUS2) is true. ▲

Similarly, we can let R(x, y, z) denote the statement ‘̀x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “1+ 2 = 3,” which is true. Also
note that R(0, 0, 1), which is the statement “0+ 0 = 1,” is false. ▲

In general, a statement involving the n variables x1, x2, . . . , xn can be denoted by

P(x1, x2, . . . , xn).

A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at the
n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x > 0 then x := x + 1.

When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P(x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. ▲

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce the
desired output when given valid input. (Note that unless the correctness of a computer program
is established, no amount of testing can show that it produces the desired output for all input
values, unless every input value is tested.) The statements that describe valid input are known
as preconditions and the conditions that the output should satisfy when the program has run
are known as postconditions. As Example 7 illustrates, we use predicates to describe both
preconditions and postconditions. We will study this process in greater detail in Section 5.5.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables x and y.

temp := x
x := y
y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correctness
of this program. Then explain how to use them to verify that for all valid input the program does
what is intended.
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Solution: For the precondition, we need to express that x and y have particular values before
we run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y)

is the statement “x = a and y = b,” where a and b are the values of x and y before we run the
program. Because we want to verify that the program swaps the values of x and y for all input
values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and
y = a.”

To verify that the program always does what it is supposed to do, suppose that the precon-
dition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp= a, and y = b. After the second
step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. ▲

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement
becomes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or
the universe of discourse), often just referred to as the domain. Such a statement is expressed
using universal quantification. The universal quantification of P(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification
of P(x) changes when we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of a statement is not defined.

DEFINITION 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation ∀xP (x) denotes the universal quantification of P(x). Here ∀ is called the
universal quantifier. We read ∀xP (x) as “for all xP (x)” or “for every xP (x).” An element
for which P(x) is false is called a counterexample of ∀xP (x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We
illustrate the use of the universal quantifier in Examples 8–13.
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TABLE 1 Quantifiers.

Statement When True? When False?

∀xP (x) P (x) is true for every x. There is an x for which P(x) is false.

∃xP (x) There is an x for which P(x) is true. P(x) is false for every x.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP (x),
where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

∀xP (x)

is true. ▲

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then ∀xP (x) is true for any propositional
function P(x) because there are no elements x in the domain for which P(x) is false.

Remember that the truth
value of ∀xP (x) depends
on the domain!

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: It is best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives, for example, “there is not any reason to avoid studying.”

A statement∀xP (x) is false, where P(x) is a propositional function, if and only if P(x) is not
always true when x is in the domain. One way to show that P(x) is not always true when x is in the
domain is to find a counterexample to the statement∀xP (x). Note that a single counterexample is
all we need to establish that∀xP (x) is false. Example 9 illustrates how counterexamples are used.

EXAMPLE 9 Let Q(x) be the statement “x < 2.” What is the truth value of the quantification ∀xQ(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement ∀xQ(x). Thus

∀xQ(x)

is false. ▲

EXAMPLE 10 Suppose that P(x) is “x2 > 0.” To show that the statement ∀xP (x) is false where the uni-
verse of discourse consists of all integers, we give a counterexample. We see that x = 0 is a
counterexample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0. ▲

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . ., xn—it follows that the
universal quantification ∀xP (x) is the same as the conjunction

P(x1) ∧ P(x2) ∧ · · · ∧ P(xn),

because this conjunction is true if and only if P(x1), P (x2), . . . , P (xn) are all true.
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EXAMPLE 11 What is the truth value of ∀xP (x), where P(x) is the statement “x2 < 10” and the domain
consists of the positive integers not exceeding 4?

Solution: The statement ∀xP (x) is the same as the conjunction

P(1) ∧ P(2) ∧ P(3) ∧ P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement
“42 < 10,” is false, it follows that ∀xP (x) is false. ▲

EXAMPLE 12 What does the statement ∀xN(x) mean if N(x) is “Computer x is connected to the network”
and the domain consists of all computers on campus?

Solution: The statement ∀xN(x) means that for every computer x on campus, that computer x

is connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.” ▲

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 13 shows.

EXAMPLE 13 What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain consists of all real num-
bers, is false. For example, ( 1

2 )2 �≥ 1
2 . Note that x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0.

Consequently, x2 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the
domain consists of all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, ∀x(x2 ≥ x) is true, because there
are no integers x with 0 < x < 1. ▲

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

DEFINITION 2 The existential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”

We use the notation ∃xP (x) for the existential quantification of P(x). Here ∃ is called the
existential quantifier.

A domain must always be specified when a statement ∃xP (x) is used. Furthermore, the
meaning of ∃xP (x) changes when the domain changes. Without specifying the domain, the
statement ∃xP (x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many other
ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification ∃xP (x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or

“For some xP (x).”
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The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 14–16.

EXAMPLE 14 Let P(x) denote the statement “x > 3.” What is the truth value of the quantification ∃xP (x),
where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is ∃xP (x), is true. ▲

Observe that the statement ∃xP (x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, ∃xP (x) is false if and only if P(x) is false for every element of
the domain. We illustrate this observation in Example 15.

EXAMPLE 15 Let Q(x) denote the statement “x = x + 1.” What is the truth value of the quantification∃xQ(x),
where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),
which is ∃xQ(x), is false. ▲

Remember that the truth
value of ∃xP (x) depends
on the domain! Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers

are nonempty. If the domain is empty, then ∃xQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, . . . , xn— the existential quan-
tification ∃xP (x) is the same as the disjunction

P(x1) ∨ P(x2) ∨ · · · ∨ P(xn),

because this disjunction is true if and only if at least one of P(x1), P (x2), . . . , P (xn) is true.

EXAMPLE 16 What is the truth value of ∃xP (x), where P(x) is the statement “x2 > 10” and the universe of
discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP (x) is the same as the disjunc-
tion

P(1) ∨ P(2) ∨ P(3) ∨ P(4).

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP (x) is true. ▲

It is sometimes helpful to think in terms of looping and searching when determining the
truth value of a quantification. Suppose that there are n objects in the domain for the variable x.
To determine whether ∀xP (x) is true, we can loop through all n values of x to see whether
P(x) is always true. If we encounter a value x for which P(x) is false, then we have shown that
∀xP (x) is false. Otherwise, ∀xP (x) is true. To see whether ∃xP (x) is true, we loop through
the n values of x searching for a value for which P(x) is true. If we find one, then ∃xP (x) is
true. If we never find such an x, then we have determined that ∃xP (x) is false. (Note that this
searching procedure does not apply if there are infinitely many values in the domain. However,
it is still a useful way of thinking about the truth values of quantifications.)
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THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P(x) is true.”
(Other phrases for uniqueness quantification include “there is exactly one” and “there is one and
only one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states
that there is a unique real number x such that x − 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x − 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

EXAMPLE 17 What do the statements ∀x < 0 (x2 > 0), ∀y �= 0 (y3 �= 0), and ∃z > 0 (z2 = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statement∀x < 0 (x2 > 0) states that for every real number x with x < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
as ∀x(x < 0→ x2 > 0).

The statement ∀y �= 0 (y3 �= 0) states that for every real number y with y �= 0, we have
y3 �= 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to ∀y(y �= 0→ y3 �= 0).

Finally, the statement ∃z > 0 (z2 = 2) states that there exists a real number z with z > 0
such that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is
equivalent to ∃z(z > 0 ∧ z2 = 2). ▲

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, ∀x < 0 (x2 > 0) is another way of expressing
∀x(x < 0→ x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, ∃z > 0 (z2 = 2) is another
way of expressing ∃z(z > 0 ∧ z2 = 2).

Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional
calculus. For example, ∀xP (x) ∨Q(x) is the disjunction of ∀xP (x) and Q(x). In other words,
it means (∀xP (x)) ∨Q(x) rather than ∀x(P (x) ∨Q(x)).

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.
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The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

EXAMPLE 18 In the statement ∃x(x + y = 1), the variable x is bound by the existential quantification ∃x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement ∃x(x + y = 1), x is bound, but y is free.

In the statement ∃x(P (x) ∧Q(x)) ∨ ∀xR(x), all variables are bound. The scope of the first
quantifier, ∃x, is the expression P(x) ∧Q(x) because ∃x is applied only to P(x) ∧Q(x), and
not to the rest of the statement. Similarly, the scope of the second quantifier, ∀x, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) ∧Q(x) and the universal
quantifier ∀x binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as ∃x(P (x) ∧Q(x)) ∨ ∀yR(y), because the scopes of
the two quantifiers do not overlap. The reader should be aware that in common usage, the same
letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. ▲

Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

DEFINITION 3 Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

EXAMPLE 19 Show that ∀x(P (x) ∧Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent (where the same
domain is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 50 and 51.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that ∀x(P (x) ∧Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent
by doing two things. First, we show that if ∀x(P (x) ∧Q(x)) is true, then ∀xP (x) ∧ ∀xQ(x)

is true. Second, we show that if ∀xP (x) ∧ ∀xQ(x) is true, then ∀x(P (x) ∧Q(x)) is true.
So, suppose that ∀x(P (x) ∧Q(x)) is true. This means that if a is in the domain, then

P(a) ∧Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is
true for every element in the domain, we can conclude that ∀xP (x) and ∀xQ(x) are both true.
This means that ∀xP (x) ∧ ∀xQ(x) is true.

Next, suppose that ∀xP (x) ∧ ∀xQ(x) is true. It follows that ∀xP (x) is true and ∀xQ(x) is
true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x)

are both true for all elements in the domain, there is no conflict using the same value of a here].
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It follows that for all a, P(a) ∧Q(a) is true. It follows that ∀x(P (x) ∧Q(x)) is true. We can
now conclude that

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x). ▲

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,

∀xP (x),

where P(x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

∃x ¬P(x).

This example illustrates the following logical equivalence:

¬∀xP (x) ≡ ∃x ¬P(x).

To show that ¬∀xP (x) and ∃xP (x) are logically equivalent no matter what the propositional
function P(x) is and what the domain is, first note that¬∀xP (x) is true if and only if ∀xP (x) is
false. Next, note that ∀xP (x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which ¬P(x) is
true. Finally, note that there is an element x in the domain for which ¬P(x) is true if and only
if ∃x ¬P(x) is true. Putting these steps together, we can conclude that ¬∀xP (x) is true if and
only if ∃x ¬P(x) is true. It follows that ¬∀xP (x) and ∃x ¬P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the propo-
sition “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

∃xQ(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement
is the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

∀x ¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x ¬Q(x).

To show that¬∃xQ(x) and ∀x ¬Q(x) are logically equivalent no matter what Q(x) is and what
the domain is, first note that ¬∃xQ(x) is true if and only if ∃xQ(x) is false. This is true if and
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TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

¬∃xP (x) ∀x¬P(x) For every x, P(x) is false. There is an x for which
P(x) is true.

¬∀xP (x) ∃x¬P(x) There is an x for which P(x) is true for every x.
P(x) is false.

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if ¬Q(x) is true for all x in the domain,
which holds if and only if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x)

is true if and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and ∀x ¬Q(x) are logically
equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s
laws for quantifiers. When the domain has n elements x1, x2, . . . , xn, it follows that ¬∀xP (x)

is the same as ¬(P (x1) ∧ P(x2) ∧ · · · ∧ P(xn)), which is equivalent to ¬P(x1) ∨ ¬P(x2) ∨
· · · ∨ ¬P(xn) by De Morgan’s laws, and this is the same as ∃x¬P(x). Similarly, ¬∃xP (x)

is the same as ¬(P (x1) ∨ P(x2) ∨ · · · ∨ P(xn)), which by De Morgan’s laws is equivalent to
¬P(x1) ∧ ¬P(x2) ∧ · · · ∧ ¬P(xn), and this is the same as ∀x¬P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

EXAMPLE 20 What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician”
is represented by ∃xH(x), where the domain consists of all politicians. The negation of this
statement is ¬∃xH(x), which is equivalent to ∀x¬H(x). This negation can be expressed as
“Every politician is dishonest.” (Note: In English, the statement “All politicians are not honest”
is ambiguous. In common usage, this statement often means “Not all politicians are honest.”
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheese-
burgers” is represented by ∀xC(x), where the domain consists of all Americans. The negation
of this statement is ¬∀xC(x), which is equivalent to ∃x¬C(x). This negation can be expressed
in several different ways, including “Some American does not eat cheeseburgers” and “There
is an American who does not eat cheeseburgers.” ▲

EXAMPLE 21 What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which is equivalent to
∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x). The negation of ∃x(x2 = 2) is the statement
¬∃x(x2 = 2), which is equivalent to ∀x¬(x2 = 2). This can be rewritten as ∀x(x2 �= 2). The
truth values of these statements depend on the domain. ▲

We use De Morgan’s laws for quantifiers in Example 22.
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EXAMPLE 22 Show that ¬∀x(P (x)→ Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P (x)→ Q(x))

and ∃x(¬(P (x)→ Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7
in Section 1.3, we know that ¬(P (x)→ Q(x)) and P(x) ∧ ¬Q(x) are logically equivalent
for every x. Because we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that ¬∀x(P (x)→ Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically
equivalent. ▲

Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a crucial
task in mathematics, logic programming, artificial intelligence, software engineering, and many
other disciplines. We began studying this topic in Section 1.1, where we used propositions to
express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers
to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”

Next, we introduce a variable x so that our statement becomes

“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as ∀xC(x).

However, there are other correct approaches; different domains of discourse and other
predicates can be used. The approach we select depends on the subsequent reasoning we want
to carry out. For example, we may be interested in a wider group of people than only those in
this class. If we change the domain to consist of all people, we will need to express our statement
as

“For every person x, if person x is a student in this class then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can be
expressed as ∀x(S(x)→ C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has
studied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain
∀xQ(x, calculus) or ∀x(S(x)→ Q(x, calculus)). ▲
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In Example 23 we displayed different approaches for expressing the same statement using
predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

EXAMPLE 24 Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that

“There is a student in this class with the property that the student has visited Mexico.”

We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”

We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as ∃xM(x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes ∃x(S(x) ∧M(x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as ∃x(S(x)→ M(x)), which is true when there is someone not
in the class because, in that case, for such a person x, S(x)→ M(x) becomes either F→ T or
F→ F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as ∀x(C(x) ∨M(x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as ∀x(S(x)→ (C(x) ∨M(x))).
Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited

Canada, respectively, we could use a two-place predicate V (x, y) to represent “x has visited
country y.” In this case, V (x, Mexico) and V (x, Canada) would have the same meaning as M(x)

and C(x) and could replace them in our answers. If we are working with many statements that
involve people visiting different countries, we might prefer to use this two-variable approach.
Otherwise, for simplicity, we would stick with the one-variable predicates M(x) and C(x). ▲
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Using Quantifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

EXAMPLE 25 Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and let C(m) denote
“Mail message m will be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as ∀m(S(m, 1)→ C(m)).

Remember the rules of
precedence for quantifiers
and logical connectives!

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link n is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
∃uA(u)→ ∃nS(n, available). ▲

Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-
land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

EXAMPLE 26 Consider these statements. The first two are called premises and the third is called the conclusion.
The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid conse-
quence of the premises. In this example, it is.) Let P(x), Q(x), and R(x) be the statements “x is
a lion,” “x is fierce,” and “x drinks coffee,” respectively.Assuming that the domain consists of all
creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

CHARLES LUTWIDGE DODGSON (1832–1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children,
all of whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without
stuttering only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes
in poses that today would be considered inappropriate). Although attracted to young girls, he was extremely
puritanical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice
in Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England

in 1861 but never practiced his ministry. His writings published under this real name include articles and books on geometry,
determinants, and the mathematics of tournaments and elections. (He also used the pseudonym Lewis Carroll for his many works
on recreational logic.)
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Solution: We can express these statements as:

∀x(P (x)→ Q(x)).

∃x(P (x) ∧ ¬R(x)).

∃x(Q(x) ∧ ¬R(x)).

Notice that the second statement cannot be written as ∃x(P (x)→ ¬R(x)). The reason is that
P(x)→ ¬R(x) is true whenever x is not a lion, so that ∃x(P (x)→ ¬R(x)) is true as long as
there is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the
third statement cannot be written as

∃x(Q(x)→ ¬R(x)). ▲

EXAMPLE 27 Consider these statements, of which the first three are premises and the fourth is a valid conclu-
sion.

“All hummingbirds are richly colored.”
“No large birds live on honey.”
“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

∀x(P (x)→ S(x)).

¬∃x(Q(x) ∧ R(x)).

∀x(¬R(x)→ ¬S(x)).

∀x(P (x)→ ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the
same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) ▲
Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog
rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

EXAMPLE 28 Consider a Prolog program given facts telling it the instructor of each class and in which classes
students are enrolled. The program uses these facts to answer queries concerning the professors
who teach particular students. Such a program could use the predicates instructor(p, c) and
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enrolled(s, c) to represent that professor p is the instructor of course c and that student s

is enrolled in course c, respectively. For example, the Prolog facts in such a program might
include:

instructor(chan,math273)
instructor(patel,ee222)
instructor(grossman,cs301)
enrolled(kevin,math273)
enrolled(juana,ee222)
enrolled(juana,cs301)
enrolled(kiko,math273)
enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be
defined using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class c such that professor p is the
instructor of class c and student s is enrolled in class c. (Note that a comma is used to represent
a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction
of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the facts
and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin
kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches(X,juana)

This query returns

patel
grossman

▲
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Exercises

1. Let P(x) denote the statement “x ≤ 4.” What are these
truth values?
a) P(0) b) P(4) c) P(6)

2. Let P(x) be the statement “the word x contains the
letter a.” What are these truth values?
a) P (orange) b) P (lemon)
c) P (true) d) P (false)

3. Let Q(x, y) denote the statement “x is the capital of y.”
What are these truth values?
a) Q(Denver, Colorado)
b) Q(Detroit, Michigan)
c) Q(Massachusetts, Boston)
d) Q(New York, New York)

4. State the value of x after the statement if P(x) then x := 1
is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is
a) x = 0. b) x = 1.
c) x = 2.

5. Let P(x) be the statement “x spends more than five hours
every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.
a) ∃xP (x) b) ∀xP (x)

c) ∃x ¬P(x) d) ∀x ¬P(x)

6. Let N(x) be the statement “x has visited North Dakota,”
where the domain consists of the students in your school.
Express each of these quantifications in English.
a) ∃xN(x) b) ∀xN(x) c) ¬∃xN(x)

d) ∃x¬N(x) e) ¬∀xN(x) f ) ∀x¬N(x)

7. Translate these statements into English, where C(x) is “x
is a comedian” and F(x) is “x is funny” and the domain
consists of all people.
a) ∀x(C(x)→ F(x)) b) ∀x(C(x) ∧ F(x))

c) ∃x(C(x)→ F(x)) d) ∃x(C(x) ∧ F(x))

8. Translate these statements into English, where R(x) is “x
is a rabbit” and H(x) is “x hops” and the domain consists
of all animals.
a) ∀x(R(x)→ H(x)) b) ∀x(R(x) ∧H(x))

c) ∃x(R(x)→ H(x)) d) ∃x(R(x) ∧H(x))

9. Let P(x) be the statement “x can speak Russian” and let
Q(x) be the statement “x knows the computer language
C++.” Express each of these sentences in terms of P(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.
a) There is a student at your school who can speak Rus-

sian and who knows C++.
b) There is a student at your school who can speak Rus-

sian but who doesn’t know C++.
c) Every student at your school either can speak Russian

or knows C++.
d) No student at your school can speak Russian or knows

C++.

10. Let C(x) be the statement “x has a cat,” let D(x) be the
statement “x has a dog,” and let F(x) be the statement “x
has a ferret.” Express each of these statements in terms of
C(x), D(x), F(x), quantifiers, and logical connectives.
Let the domain consist of all students in your class.
a) A student in your class has a cat, a dog, and a ferret.
b) All students in your class have a cat, a dog, or a ferret.
c) Some student in your class has a cat and a ferret, but

not a dog.
d) No student in your class has a cat, a dog, and a ferret.
e) For each of the three animals, cats, dogs, and ferrets,

there is a student in your class who has this animal as
a pet.

11. Let P(x) be the statement “x = x2.” If the domain con-
sists of the integers, what are these truth values?
a) P(0) b) P(1) c) P(2)

d) P(−1) e) ∃xP (x) f ) ∀xP (x)

12. Let Q(x) be the statement “x + 1 > 2x.” If the domain
consists of all integers, what are these truth values?
a) Q(0) b) Q(−1) c) Q(1)

d) ∃xQ(x) e) ∀xQ(x) f ) ∃x¬Q(x)

g) ∀x¬Q(x)

13. Determine the truth value of each of these statements if
the domain consists of all integers.
a) ∀n(n+ 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = −n) d) ∀n(3n ≤ 4n)

14. Determine the truth value of each of these statements if
the domain consists of all real numbers.
a) ∃x(x3 = −1) b) ∃x(x4 < x2)

c) ∀x((−x)2 = x2) d) ∀x(2x > x)

15. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.
a) ∀n(n2 ≥ 0) b) ∃n(n2 = 2)

c) ∀n(n2 ≥ n) d) ∃n(n2 < 0)

16. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) ∃x(x2 = 2) b) ∃x(x2 = −1)

c) ∀x(x2 + 2 ≥ 1) d) ∀x(x2 �= x)

17. Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.
a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f ) ¬∀xP (x)

18. Suppose that the domain of the propositional function
P(x) consists of the integers −2, −1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.
a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f ) ¬∀xP (x)
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19. Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.
a) ∃xP (x) b) ∀xP (x)

c) ¬∃xP (x) d) ¬∀xP (x)

e) ∀x((x �= 3)→ P(x)) ∨ ∃x¬P(x)

20. Suppose that the domain of the propositional function
P(x) consists of −5, −3, −1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.
a) ∃xP (x) b) ∀xP (x)

c) ∀x((x �= 1)→ P(x))

d) ∃x((x ≥ 0) ∧ P(x))

e) ∃x(¬P(x)) ∧ ∀x((x < 0)→ P(x))

21. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.
a) Everyone is studying discrete mathematics.
b) Everyone is older than 21 years.
c) Every two people have the same mother.
d) No two different people have the same grandmother.

22. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.
a) Everyone speaks Hindi.
b) There is someone older than 21 years.
c) Every two people have the same first name.
d) Someone knows more than two other people.

23. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.
a) Someone in your class can speak Hindi.
b) Everyone in your class is friendly.
c) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.
24. Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.
a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
c) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.

25. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.
a) No one is perfect.
b) Not everyone is perfect.
c) All your friends are perfect.
d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.
f ) Not everybody is your friend or someone is not per-

fect.
26. Translate each of these statements into logical expres-

sions in three different ways by varying the domain and
by using predicates with one and with two variables.
a) Someone in your school has visited Uzbekistan.
b) Everyone in your class has studied calculus and C++.
c) No one in your school owns both a bicycle and a mo-

torcycle.
d) There is a person in your school who is not happy.
e) Everyone in your school was born in the twentieth

century.
27. Translate each of these statements into logical expres-

sions in three different ways by varying the domain and
by using predicates with one and with two variables.
a) A student in your school has lived in Vietnam.
b) There is a student in your school who cannot speak

Hindi.
c) A student in your school knows Java, Prolog, and

C++.
d) Everyone in your class enjoys Thai food.
e) Someone in your class does not play hockey.

28. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.
a) Something is not in the correct place.
b) All tools are in the correct place and are in excellent

condition.
c) Everything is in the correct place and in excellent con-

dition.
d) Nothing is in the correct place and is in excellent con-

dition.
e) One of your tools is not in the correct place, but it is

in excellent condition.
29. Express each of these statements using logical operators,

predicates, and quantifiers.
a) Some propositions are tautologies.
b) The negation of a contradiction is a tautology.
c) The disjunction of two contingencies can be a tautol-

ogy.
d) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional function P(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.
a) ∃x P (x, 3) b) ∀y P (1, y)

c) ∃y¬P(2, y) d) ∀x ¬P(x, 2)

31. Suppose that the domain of Q(x, y, z) consists of triples
x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1.
Write out these propositions using disjunctions and con-
junctions.
a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1)

c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)
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32. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)
a) All dogs have fleas.
b) There is a horse that can add.
c) Every koala can climb.
d) No monkey can speak French.
e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then
form the negation of the statement, so that no negation
is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)
a) Some old dogs can learn new tricks.
b) No rabbit knows calculus.
c) Every bird can fly.
d) There is no dog that can talk.
e) There is no one in this class who knows French and

Russian.
34. Express the negation of these propositions using quanti-

fiers, and then express the negation in English.
a) Some drivers do not obey the speed limit.
b) All Swedish movies are serious.
c) No one can keep a secret.
d) There is someone in this class who does not have a

good attitude.
35. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables
consists of all integers.
a) ∀x(x2 ≥ x)

b) ∀x(x > 0 ∨ x < 0)

c) ∀x(x = 1)

36. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.
a) ∀x(x2 �= x) b) ∀x(x2 �= 2)

c) ∀x(|x| > 0)

37. Express each of these statements using predicates and
quantifiers.
a) A passenger on an airline qualifies as an elite flyer if

the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

c) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 38–42 deal with the translation between system
specification and logical expressions involving quantifiers.

38. Translate these system specifications into English where
the predicate S(x, y) is “x is in state y” and where the
domain for x and y consists of all systems and all possible
states, respectively.
a) ∃xS(x, open)

b) ∀x(S(x, malfunctioning) ∨ S(x, diagnostic))

c) ∃xS(x, open) ∨ ∃xS(x, diagnostic)

d) ∃x¬S(x, available)

e) ∀x¬S(x, working)
39. Translate these specifications into English where F(p) is

“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”
a) ∃p(F(p) ∧ B(p))→ ∃jL(j)

b) ∀pB(p)→ ∃jQ(j)

c) ∃j (Q(j) ∧ L(j))→ ∃pF(p)

d) (∀pB(p) ∧ ∀jQ(j))→ ∃jL(j)

40. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.
a) When there is less than 30 megabytes free on the hard

disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

c) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

41. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.
a) At least one mail message, among the nonempty set

of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

c) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

42. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.
a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.
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43. Determine whether ∀x(P (x)→ Q(x)) and ∀xP (x)→
∀xQ(x) are logically equivalent. Justify your answer.

44. Determine whether ∀x(P (x)↔ Q(x)) and ∀x P (x)↔
∀xQ(x) are logically equivalent. Justify your answer.

45. Show that ∃x(P (x) ∨Q(x)) and ∃xP (x) ∨ ∃xQ(x) are
logically equivalent.

Exercises 46–49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.
a) (∀xP (x)) ∨ A ≡ ∀x(P (x) ∨ A)

b) (∃xP (x)) ∨ A ≡ ∃x(P (x) ∨ A)

47. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.
a) (∀xP (x)) ∧ A ≡ ∀x(P (x) ∧ A)

b) (∃xP (x)) ∧ A ≡ ∃x(P (x) ∧ A)

48. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.
a) ∀x(A→ P(x)) ≡ A→ ∀xP (x)

b) ∃x(A→ P(x)) ≡ A→ ∃xP (x)

49. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.
a) ∀x(P (x)→ A) ≡ ∃xP (x)→ A

b) ∃x(P (x)→ A) ≡ ∀xP (x)→ A

50. Show that ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨Q(x)) are
not logically equivalent.

51. Show that ∃xP (x) ∧ ∃xQ(x) and ∃x(P (x) ∧Q(x)) are
not logically equivalent.

52. As mentioned in the text, the notation ∃!xP (x) denotes
“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth
values of these statements?
a) ∃!x(x > 1) b) ∃!x(x2 = 1)

c) ∃!x(x + 3 = 2x) d) ∃!x(x = x + 1)

53. What are the truth values of these statements?
a) ∃!xP (x)→ ∃xP (x)

b) ∀xP (x)→ ∃!xP (x)

c) ∃!x¬P(x)→ ¬∀xP (x)

54. Write out ∃!xP (x), where the domain consists of the in-
tegers 1, 2, and 3, in terms of negations, conjunctions,
and disjunctions.

55. Given the Prolog facts in Example 28, what would Prolog
return given these queries?
a) ?instructor(chan,math273)
b) ?instructor(patel,cs301)
c) ?enrolled(X,cs301)
d) ?enrolled(kiko,Y)
e) ?teaches(grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog
return when given these queries?
a) ?enrolled(kevin,ee222)

b) ?enrolled(kiko,math273)

c) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

57. Suppose that Prolog facts are used to define the predicates
mother(M, Y ) and father(F, X), which represent that M

is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y ),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

58. Suppose that Prolog facts are used to define the predi-
cates mother(M, Y ) and father(F, X), which represent
that M is the mother of Y and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather(X, Y ), which represents that X is the grand-
father of Y . [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59–62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59. Let P(x), Q(x), and R(x) be the statements “x is a
professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.
a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?
60. Let P(x), Q(x), and R(x) be the statements “x is a clear

explanation,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the domain for x consists of all
English text. Express each of these statements using quan-
tifiers, logical connectives, and P(x), Q(x), and R(x).
a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.
∗d) Does (c) follow from (a) and (b)?

61. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).
a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

d) Babies cannot manage crocodiles.
∗e) Does (d) follow from (a), (b), and (c)? If not, is there

a correct conclusion?


