
C++ Programming

85 Mohannad Al-Kubaisi

C++ Files and Streams
So far, we have been using the iostream standard library, which
provides cin and cout methods for reading from standard input and writing to standard
output respectively.

This tutorial will teach you how to read and write from a file. This requires another
standard C++ library called fstream, which defines three new data types −

Sr.No Data Type & Description

1 ofstream
This data type represents the output file stream and is used to create files and to write
information to files.

2 ifstream
This data type represents the input file stream and is used to read information from files.

3 fstream
This data type represents the file stream generally, and has the capabilities of both ofstream
and ifstream which means it can create files, write information to files, and read information
from files.

To perform file processing in C++, header files <iostream> and <fstream> must be
included in your C++ source file.

Opening a File

A file must be opened before you can read from it or write to it.
Either ofstream or fstream object may be used to open a file for writing. And ifstream
object is used to open a file for reading purpose only.

Following is the standard syntax for open() function, which is a member of fstream,
ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened and the
second argument of the open() member function defines the mode in which the file
should be opened.

Sr.No Mode Flag & Description

1 ios::app

Append mode. All output to that file to be appended to the end.

2 ios::ate

Open a file for output and move the read/write control to the end of the file.

C++ Programming

86 Mohannad Al-Kubaisi

3 ios::in

Open a file for reading.

4 ios::out

Open a file for writing.

5 ios::trunc

If the file already exists, its contents will be truncated before opening the file.

You can combine two or more of these values by ORing them together. For example if
you want to open a file in write mode and want to truncate it in case that already exists,
following will be the syntax −

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows −

fstream afile;

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams, release all the
allocated memory and close all the opened files. But it is always a good practice that a
programmer should close all the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream,
ifstream, and ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your program using
the stream insertion operator (<<) just as you use that operator to output information to
the screen. The only difference is that you use an ofstream or fstream object instead of
the cout object.

Reading from a File

You read information from a file into your program using the stream extraction operator
(>>) just as you use that operator to input information from the keyboard. The only
difference is that you use an ifstream or fstream object instead of the cin object.

Read and Write Example

Following is the C++ program which opens a file in reading and writing mode. After
writing information entered by the user to a file named afile.dat, the program reads
information from the file and outputs it onto the screen −

C++ Programming

87 Mohannad Al-Kubaisi

#include <fstream>

#include <iostream>

using namespace std;

int main () {

 char data[100];

 // open a file in write mode.

 ofstream outfile;

 outfile.open("afile.dat");

 cout << "Writing to the file" << endl;

 cout << "Enter your name: ";

 cin.getline(data, 100);

 // write inputted data into the file.

 outfile << data << endl;

 cout << "Enter your age: ";

 cin >> data;

 cin.ignore();

 // again write inputted data into the file.

 outfile << data << endl;

 // close the opened file.

 outfile.close();

 // open a file in read mode.

 ifstream infile;

 infile.open("afile.dat");

 cout << "Reading from the file" << endl;

 infile >> data;

 // write the data at the screen.

 cout << data << endl;

 // again read the data from the file and display it.

 infile >> data;

 cout << data << endl;

 // close the opened file.

 infile.close();

 return 0;

}

When the above code is compiled and executed, it produces the following sample input
and output −

C++ Programming

88 Mohannad Al-Kubaisi

$./a.out

Writing to the file

Enter your name: Zara

Enter your age: 9

Reading from the file

Zara

9

Above examples make use of additional functions from cin object, like getline() function
to read the line from outside and ignore() function to ignore the extra characters left by
previous read statement.

File Position Pointers

Both istream and ostream provide member functions for repositioning the file-position
pointer. These member functions are seekg ("seek get") for istream and seekp ("seek
put") for ostream.

The argument to seekg and seekp normally is a long integer. A second argument can be
specified to indicate the seek direction. The seek direction can be ios::beg (the default)
for positioning relative to the beginning of a stream, ios::cur for positioning relative to
the current position in a stream or ios::end for positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies the location in the file as a
number of bytes from the file's starting location. Some examples of positioning the "get"
file-position pointer are −

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);

