
C++ Programming

56 Mohannad Al-Kubaisi

C++ Functions
A function is a group of statements that together perform a task. Every C++ program has
at least one function, which is main(), and all the most trivial programs can define
additional functions.

You can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division usually is such that each
function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can
call. For example, function strcat() to concatenate two strings, function memcpy() to
copy one memory location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure
etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

 body of the function

}

A C++ function definition consists of a function header and a function body. Here are all
the parts of a function −

• Return Type − A function may return a value. The return_type is the data type
of the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return_type is the keyword void.

• Function Name − This is the actual name of the function. The function name and
the parameter list together constitute the function signature.

• Parameters − A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain
no parameters.

• Function Body − The function body contains a collection of statements that
define what the function does.

C++ Programming

57 Mohannad Al-Kubaisi

Example

Following is the source code for a function called max(). This function takes two
parameters num1 and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so
following is also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you
call that function in another file. In such case, you should declare the function at the top
of the file calling the function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To
use a function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A
called function performs defined task and when it’s return statement is executed or when
its function-ending closing brace is reached, it returns program control back to the main
program.

To call a function, you simply need to pass the required parameters along with function
name, and if function returns a value, then you can store returned value. For example −

C++ Programming

58 Mohannad Al-Kubaisi

#include <iostream>

using namespace std;

// function declaration

int max(int num1, int num2);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int ret;

 // calling a function to get max value.

 ret = max(a, b);

 cout << "Max value is : " << ret << endl;

 return 0;

}

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

I kept max() function along with main() function and compiled the source code. While
running final executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the
arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are
created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function
–

C++ Programming

59 Mohannad Al-Kubaisi

Sr.No Call Type & Description

1 Call by Value
This method copies the actual value of an argument into the formal parameter of the function. In
this case, changes made to the parameter inside the function have no effect on the argument.

2 Call by Pointer
This method copies the address of an argument into the formal parameter. Inside the function, the
address is used to access the actual argument used in the call. This means that changes made to
the parameter affect the argument.

3 Call by Reference
This method copies the reference of an argument into the formal parameter. Inside the function, the
reference is used to access the actual argument used in the call. This means that changes made to
the parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code
within a function cannot alter the arguments used to call the function and above
mentioned example while calling max() function used the same method.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last
parameters. This value will be used if the corresponding argument is left blank when
calling to the function.
This is done by using the assignment operator and assigning values for the arguments
in the function definition. If a value for that parameter is not passed when the function is
called, the default given value is used, but if a value is specified, this default value is
ignored and the passed value is used instead. Consider the following example −

#include <iostream>

using namespace std;

int sum(int a, int b = 20) {

 int result;

 result = a + b;

 return (result);

}

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int result;

 // calling a function to add the values.

 result = sum(a, b);

 cout << "Total value is :" << result << endl;

 // calling a function again as follows.

 result = sum(a);

 cout << "Total value is :" << result << endl;

 return 0;

}

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

C++ Programming

60 Mohannad Al-Kubaisi

When the above code is compiled and executed, it produces the following result −

Total value is :300

Total value is :120

C++ Programming

61 Mohannad Al-Kubaisi

C++ function call by value
The call by value method of passing arguments to a function copies the actual value of
an argument into the formal parameter of the function. In this case, changes made to the
parameter inside the function have no effect on the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code
within a function cannot alter the arguments used to call the function. Consider the
function swap() definition as follows.

// function definition to swap the values.

void swap(int x, int y) {

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put x into y */

 return;

}

Now, let us call the function swap() by passing actual values as in the following example

#include <iostream>

using namespace std;

// function declaration

void swap(int x, int y);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 // calling a function to swap the values.

 swap(a, b);

 cout << "After swap, value of a :" << a << endl;

 cout << "After swap, value of b :" << b << endl;

 return 0;

}

When the above code is put together in a file, compiled and executed, it produces the
following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had been changed inside
the function.

C++ Programming

62 Mohannad Al-Kubaisi

C++ function call by pointer
The call by pointer method of passing arguments to a function copies the address of
an argument into the formal parameter. Inside the function, the address is used to access
the actual argument used in the call. This means that changes made to the parameter
affect the passed argument.

To pass the value by pointer, argument pointers are passed to the functions just like any
other value. So accordingly you need to declare the function parameters as pointer types
as in the following function swap(), which exchanges the values of the two integer
variables pointed to by its arguments.

// function definition to swap the values.

void swap(int *x, int *y) {

 int temp;

 temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put x into y */

 return;

}

To check the more detail about C++ pointers, kindly check C++ Pointers chapter.

For now, let us call the function swap() by passing values by pointer as in the following
example −

#include <iostream>

using namespace std;

// function declaration

void swap(int *x, int *y);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 /* calling a function to swap the values.

 * &a indicates pointer to a ie. address of variable a and

 * &b indicates pointer to b ie. address of variable b. */

 swap(&a, &b);

 cout << "After swap, value of a :" << a << endl;

 cout << "After swap, value of b :" << b << endl;

 return 0;

}

When the above code is put together in a file, compiled and executed, it produces the
following result −
Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

https://www.tutorialspoint.com/cplusplus/cpp_pointers.htm

C++ Programming

63 Mohannad Al-Kubaisi

C++ function call by reference
The call by reference method of passing arguments to a function copies the reference
of an argument into the formal parameter. Inside the function, the reference is used to
access the actual argument used in the call. This means that changes made to the
parameter affect the passed argument.

To pass the value by reference, argument reference is passed to the functions just like
any other value. So accordingly you need to declare the function parameters as
reference types as in the following function swap(), which exchanges the values of the
two integer variables pointed to by its arguments.

// function definition to swap the values.

void swap(int &x, int &y) {

 int temp;

 temp = x; /* save the value at address x */

 x = y; /* put y into x */

 y = temp; /* put x into y */

 return;

}

For now, let us call the function swap() by passing values by reference as in the following
example −

#include <iostream>

using namespace std;

// function declaration

void swap(int &x, int &y);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 /* calling a function to swap the values using variable

reference.*/

 swap(a, b);

 cout << "After swap, value of a :" << a << endl;

 cout << "After swap, value of b :" << b << endl;

 return 0;

}

When the above code is put together in a file, compiled and executed, it produces the
following result −
Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

C++ Programming

64 Mohannad Al-Kubaisi

C++ Recursion

The process in which a function calls itself is known as recursion and the
corresponding function is called the recursive function. The popular example to
understand the recursion is factorial function.

Factorial function: f(n) = n*f(n-1), base condition: if n<=1 then f(n) = 1. Don’t
worry we wil discuss what is base condition and why it is important.

In the following diagram. I have shown that how the factorial function is calling
itself until the function reaches to the base condition.

Lets solve the problem using C++ program.

C++ Programming

65 Mohannad Al-Kubaisi

C++ recursion example: Factorial

#include <iostream>
using namespace std;
//Factorial function
int fact(int n){
 /* This is called the base condition, it is
 * very important to specify the base condition
 * in recursion, otherwise your program will throw
 * stack overflow error.
 */
 if (n <= 1)
 return 1;
 else
 return n*fact(n-1);
}
int main(){
 int num;
 cout<<"Enter a number: ";
 cin>>num;
 cout<<"Factorial of entered number: "<<fact(num);
 return 0;
}

Output:

Enter a number: 5
Factorial of entered number: 120

Base condition

In the above program, you can see that I have provided a base condition in the
recursive function. The condition is:

if (n <= 1)
 return 1;

The purpose of recursion is to divide the problem into smaller problems till the
base condition is reached. For example in the above factorial program I am
solving the factorial function f(n) by calling a smaller factorial function f(n-1), this
happens repeatedly until the n value reaches base condition(f(1)=1). If you do not
define the base condition in the recursive function then you will get stack
overflow error.

Direct recursion vs indirect recursion

Direct recursion: When function calls itself, it is called direct recursion, the
example we have seen above is a direct recursion example.

C++ Programming

66 Mohannad Al-Kubaisi

Indirect recursion: When function calls another function and that function calls
the calling function, then this is called indirect recursion. For example: function A
calls function B and Function B calls function A.

Indirect Recursion Example in C++

#include <iostream>
using namespace std;
int fa(int);
int fb(int);
int fa(int n){
 if(n<=1)
 return 1;
 else
 return n*fb(n-1);
}
int fb(int n){
 if(n<=1)
 return 1;
 else
 return n*fa(n-1);
}
int main(){
 int num=5;
 cout<<fa(num);
 return 0;
}

Output:

120

