
C++ Programming

38 Mohannad Al-Kubaisi

C++ if statement
An if statement consists of a boolean expression followed by one or more
statements.

Syntax

The syntax of an if statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside
the if statement will be executed. If boolean expression evaluates to false,
then the first set of code after the end of the if statement (after the closing
curly brace) will be executed.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 10;

 // check the boolean condition

C++ Programming

39 Mohannad Al-Kubaisi

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

a is less than 20;

value of a is : 10

C++ Programming

40 Mohannad Al-Kubaisi

C++ if...else statement
An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

Syntax

The syntax of an if...else statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

} else {

 // statement(s) will execute if the boolean expression is false

}

If the boolean expression evaluates to true, then the if block of code will be
executed, otherwise else block of code will be executed.

Flow Diagram

Example
Live Demo

#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

http://tpcg.io/D0T3iP

C++ Programming

41 Mohannad Al-Kubaisi

 // check the boolean condition

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 } else {

 // if condition is false then print the following

 cout << "a is not less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

a is not less than 20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement,
which is very usefull to test various conditions using single if...else if
statement.

When using if , else if , else statements there are few points to keep in mind.

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the
else.

• Once an else if succeeds, none of he remaining else if's or else's will
be tested.

Syntax

The syntax of an if...else if...else statement in C++ is −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

} else if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

} else if(boolean_expression 3) {

 // Executes when the boolean expression 3 is true

} else {

 // executes when the none of the above condition is true.

}

C++ Programming

42 Mohannad Al-Kubaisi

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 // check the boolean condition

 if(a == 10) {

 // if condition is true then print the following

 cout << "Value of a is 10" << endl;

 } else if(a == 20) {

 // if else if condition is true

 cout << "Value of a is 20" << endl;

 } else if(a == 30) {

 // if else if condition is true

 cout << "Value of a is 30" << endl;

 } else {

 // if none of the conditions is true

 cout << "Value of a is not matching" << endl;

 }

 cout << "Exact value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

Value of a is not matching

Exact value of a is : 100

C++ Programming

43 Mohannad Al-Kubaisi

C++ switch statement
A switch statement allows a variable to be tested for equality against a list
of values. Each value is called a case, and the variable being switched on
is checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as
the variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the
flow of control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is
reached.

• A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for

C++ Programming

44 Mohannad Al-Kubaisi

performing a task when none of the cases is true. No break is needed
in the default case.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

C++ Programming

45 Mohannad Al-Kubaisi

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

This would produce the following result −

You passed

Your grade is D

C++ Programming

46 Mohannad Al-Kubaisi

C++ nested if statements
It is always legal to nest if-else statements, which means you can use one
if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

 if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

 }

}

You can nest else if...else in the similar way as you have
nested if statement.

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 // check the boolean condition

 if(a == 100) {

 // if condition is true then check the following

 if(b == 200) {

 // if condition is true then print the following

 cout << "Value of a is 100 and b is 200" << endl;

 }

 }

 cout << "Exact value of a is : " << a << endl;

 cout << "Exact value of b is : " << b << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following
result −

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

C++ Programming

47 Mohannad Al-Kubaisi

C++ switch statement
A switch statement allows a variable to be tested for equality against a list
of values. Each value is called a case, and the variable being switched on
is checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as
the variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the
flow of control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is
reached.

• A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed
in the default case.

C++ Programming

48 Mohannad Al-Kubaisi

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

This would produce the following result −

You passed

Your grade is D

C++ Programming

37 Mohannad Al-Kubaisi

C++ decision making statements
Decision making structures require that the programmer specify one or
more conditions to be evaluated or tested by the program, along with a
statement or statements to be executed if the condition is determined to be
true, and optionally, other statements to be executed if the condition is
determined to be false.

Following is the general form of a typical decision making structure found in
most of the programming languages −

C++ programming language provides following types of decision making
statements.

Sr.No Statement & Description

1 if statement

An ‘if’ statement consists of a boolean expression followed by one or more statements.

2 if...else statement

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when the
boolean expression is false.

3 switch statement

A ‘switch’ statement allows a variable to be tested for equality against a list of values.

4 nested if statements

You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s).

5 nested switch statements

You can use one ‘switch’ statement inside another ‘switch’ statement(s).

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm

